Novel Type of Staphylococcal Cassette Chromosome *mec* Identified in Community-Acquired Methicillin-Resistant *Staphylococcus aureus* Strains

Xiao Xue Ma,¹ Teruyo Ito,¹ Chuntima Tiensasitorn,¹ Mantana Jamklang,¹ Piriyaporn Chongtrakool,¹ Susan Boyle-Vavra,² Robert S. Daum,² and Keiichi Hiramatsu^{1*}

> Department of Bacteriology, Juntendo University, Tokyo, Japan,¹ and Department of Pediatrics, University of Chicago Children's Hospital, Chicago, Illinois²

Received 25 July 2001/Returned for modification 10 October 2001/Accepted 28 November 2001

We identified a new type of staphylococcal cassette chromosome *mec* (SCC*mec*) from two communityacquired methicillin-resistant *Staphylococcus aureus* (MRSA) strains. The novel element, designated type IV SCC*mec*, had a unique combination of the class B *mec* gene complex and the type 2 *ccr* gene complex and was much smaller in size (21 to 24 kb) than previously identified SCC*mec* elements of hospital-acquired MRSA. Consistent with the strains' susceptibilities to various non- β -lactam antibiotics, the type IV SCC*mec* was devoid of any antibiotic resistance genes other than the *mecA* gene.

Since the first discovery of methicillin-resistant *Staphylococcus aureus* (MRSA) in 1961 in England, MRSA has become one of the most prevalent pathogens that cause nosocomial infections (13). MRSA produces a specific penicillin-binding protein (PBP) called PBP 2' (or PBP 2a) that possesses reduced affinities for binding to β -lactam antibiotics (2, 7, 22). PBP 2' is encoded by the *mecA* gene, which is carried by a large mobile genetic element that is designated staphylococcal cassette chromosome *mec* (SCC*mec*) and that is integrated on the chromosomes of MRSA strains isolated from hospitals in various countries throughout the world (11, 12, 14, 15).

Recently, MRSA infections have increasingly been reported among groups of patients with no apparent connection to hospitals (4). Those strains, designated community-acquired MRSA (C-MRSA) strains, have been reported in various countries such as Australia (16, 18), New Zealand (19), the United Kingdom (20), Canada (5), and the United States (6, 8). The death of four children caused by C-MRSA strains has alerted us to the threat of latent dissemination of highly virulent C-MRSA strains in the community in the United States (3).

In contrast to hospital-acquired MRSA (H-MRSA), C-MRSA is characteristically susceptible to many antibiotics (3, 21), but it remains unclear whether C-MRSA is a descendant of H-MRSA or was born and evolved independently of the hospital environment (4). In order to understand the evolutionary relationship between C-MRSA and H-MRSA, we determined the entire nucleotide sequences of the SCCmec elements integrated into the chromosomes of two C-MRSA clinical strains. Strain CA05 (JCSC1968) was isolated from the joint fluid of a patient with septic arthritis and osteomyelitis, and strain 8/6-3P (JCSC1978) was isolated from the perineum of another patient (10).

We amplified DNAs encompassing the entire SCC*mec* sequence by long-range PCR with several sets of primers, as follows. The region from the left extremity to the *ccr* genes (L-C region) was covered by primer sets α 5 and cLs1 (CA05) or CL2b (8/6-3P) (Fig. 1). Primers α 6 and mcR8 were used to cover the middle part (from the region just upstream of *ccrA* to *mecR1*; the C-M region). Two overlapping primer sets (primers is4 and mA2 and primers mA3 and cR1) were used to cover the right extremities (from IS431mec to *orfX*; the I-R region) (Fig. 1) (11, 12, 14). The rest of the element was amplified and sequenced with primers as described previously (11, 12, 14). The PCR products were purified with a High Pure PCR product purification kit (Roche Diagnostics GmbH, Mannheim, Germany), and their nucleotide sequences were determined as described previously (9).

Figure 1 illustrates the genomic organizations of the SCCmec elements identified from the two C-MRSA strains in comparison with the three extant types of SCCmec. The SCCmec elements of strains CA05 and 8/6-3P were 24,248 and 20,920 bp, respectively, and were much smaller (34 to 67 kb) than three types of SCCmec elements identified from H-MRSA strains (12). Both elements were found to be integrated at the integration site for SCCmec, attBscc, which is found inside orfX, which has an unknown function and is located near the origin of replication of the S. aureus chromosome (12, 15). The SCCmec elements shared a pair of 15-bp direct repeat sequences: one (DRscc-R) at the right extremities and the other (DRscc-L) on the chromosome region abutting the left termini of the elements (shown as thick arrows in Fig. 2). Degenerate inverted repeats were also found in the extremities of the two SCCmec elements (shown by thin arrows in Fig. 2). The authenticity of the SCCmec boundaries was vindicated by using a previously described method (14); i.e., by confirming that the element was precisely cut out from the chromosomes of the two C-MRSA strains, regenerating attBscc in the chromosomes of the cell populations from which it was excised.

The nucleotide sequences of the L-C regions of the two SCCmec elements differed from each other, but otherwise,

^{*} Corresponding author. Mailing address: Department of Bacteriology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-8421. Phone: 81-3-5802-1040. Fax: 81-3-5684-7830. E-mail: hiram @med.juntendo.ac.jp.

IV SCCmec carried by strain CA05 (subtype a). (C) Type IV SCCmec carried by strain 8/6-3P (subtype b). (D) Type II SCCmec carried by N315. (E) Type III SCCmec carried by 85/2082. The four types of SCCmec elements with greater than 99% amino acid identities; gray, ORFs or the parts of ORFs that are conserved in four types of SCCmec with amino acid identities of 46 to 98%; magenta, ORFs or the parts of ORFs that are common to type I and type II SCCmec elements; yellow, ORFs or the parts of ORFs that are common to type II and type III SCCmec elements; blue, ORFs or the parts of ORFs that are unique to type I SCCmec; red, ORFs or the parts of ORFs that are unique to type II SCCmec; green, ORFs or the parts of ORFs that are unique to type III SCCmec, light green, ORFs or the parts of ORFs that are unique to type IVa SCCmec; and orange, ORFs or the parts of ORFs that are unique to type IVb SCCmec. The FIG. 1. Structure of the SCCmec elements identified from C-MRSA strains in comparison with the three types of SCCmec elements. (A) Type I SCCmec carried by NCTC 10442. (B) Type ORFs of greater than 200 nucleotides in six possible reading frames of type IV SCC*mec* elements are illustrated in the squares under the bars that represent essential genes and restriction sites for HindIII and XbaI. Differences in coloration correspond to differences in the nucleotide sequences. Color codes are as follows: white, ORFs or the parts of ORFs that are conserved in all locations of primers used for amplification of the type IV SCCmec are indicated by arrows: they are primers $\alpha 5$ (5'-TGTTAAGTATAGTATTGCACTTTATGATTCAATGCCT-3'), cLs1 are available in the DDBJ/EMBL/GenBank databases under accession no. AB063172 (subtype a) and AB063173 (subtype b). H, HindIII, X, Xbal; E, EcoRI; P, PxL.

are aligned with those of type II SCCmec. Thin arrows indicate inverted repeats IR-L and IR-R at both extremities of SCCmec elements. Thick arrows indicate direct repeats DRscc-L and DRscc-R.

TABLE 1. ORFs in SCCmec's of CA05 and 8/6-3P

Strain (element) and ORF ^a	Location (position) ^b	Size (bp) of gene	Description of gene product		
CA05 (JCSC1968) (type IV					
SCCmec subtype a)					
CQ001	Complement (1280–1900)	621	Hypothetical protein		
Q001	2653-3657	1,005	Hypothetical protein		
CQ002	Complement (4281–5771)	1,491	Hypothetical protein		
CQ003	Complement (6389–7438)	1,050	Conserved hypothetical protein		
Q002	7577–7867	291	Conserved hypothetical protein		
Q003	7867–9654	1,788	Conserved hypothetical protein		
Q005	9888–11237	1,350 (ccrA2.1)	Cassette chromosome recombinase A		
Q006	11259–12887	1,629 (ccrB2.1)	Cassette chromosome recombinase B		
Q007	13409-13759	351	Conserved hypothetical protein		
Q008	13846-14157	312	Conserved hypothetical protein		
Q009	14169-14678	510	Conserved hypothetical protein		
Q010	14679–16337	1,659	Putative transposase of IS 1272		
CQ004	Complement (16560-17546)	987 ($\Delta mecR1$)	Truncated signal transducer protein MecR1		
O011	17646–19652	2.007 (mecA)	PBP 2'		
CO005	Complement (19698-20126)	429	Conserved hypothetical protein		
CO007	Complement (20223–20966)	744 $(ugnO)$	Glycerophosphoryldiester phosphodiesterase		
Q012	22268–22942	675 <i>tnp</i>	Transposase for insertion sequence-like element IS431me		
CQ008	Complement (22974-23213)	240	Conserved hypothetical protein		
CQ009	Complement (23628-24659)	1,032	Truncated conserved hypothetical protein		
CO010	Complement (24509–24883)	375	Truncated conserved hypothetical protein		
(CQ011)	Complement (25205-25684)	480	OrfX		
8/6-3P (JCSC1978) (type IV					
SCCmec subtype b)					
CM001	Complement (325–1446)	1,122	Hypothetical protein		
CM002	Complement (1424–2194)	771	Hypothetical protein		
M001	2311-3741	1,431	Hypothetical protein		
M002	3861-5651	1,791	Conserved hypothetical protein		
M004	5885-7234	1,350 (ccrA2.2)	Cassette chromosome recombinase A		
M005	7256-8884	1,629 (ccrB2.2)	Cassette chromosome recombinase B		
M006	9406-9756	351	Conserved hypothetical protein		
M007	9843-10154	312	Conserved hypothetical protein		
M008	10166-10675	510	Conserved hypothetical protein		
M009	10676-12334	1,659	Putative transposase of IS1272		
CM003	Complement (12557-13543)	987 ($\Delta mecR1$)	Truncated signal transducer protein MecR1		
M010	13643–15649	2.007 (mecA)	PBP 2'		
CM004	Complement (15695–16123)	429	Conserved hypothetical protein		
CM006	Complement $(16220 - 16963)$	744 (ugnO)	Glycerophosphoryldiester phosphodiesterase		
M011	18265–18939	675 <i>tnp</i>	Transposase for insertion sequence-like element IS431me		
CM007	Complement (18971-19210)	240	Conserved hypothetical protein		
CM008	Complement (19625-20656)	1,032	Truncated conserved hypothetical protein		
CM009	Complement (20506–20880)	375	Truncated conserved hypothetical protein		
CM010	Complement $(21204, 21683)$	480	OrfY		

^a ORFs shown in parentheses were located outside of SCC mec.

^b The nucleotide position in the nucleotide sequences deposited under DDBJ/EMBL/GenBank accession no. AB063172 (type IV subtype a) and AB063173 (type IV subtype b).

^c Identity to amino acid sequences of each ORF.

^d Incomplete ORFs that are potentially defective genes or pseudogenes containing either a deletion, a nonsense mutation, or a frameshift mutation.

they shared the same features: type 2 ccr gene complexes, the class B mec gene complexes (IS1272- Δ mecR1-mecA-IS431), and the I-R region that was 99.9% identical to that of type II SCCmec elements (Fig. 1). This combination of ccr and mec gene complexes was a novel one. That is, the class B mec gene complex has been found to be in close linkage with the type 1 ccr gene complex in type I SCCmec (12). However, the ccr gene complexes of the novel SCCmec elements were more similar to the type 2 gene complex than to the type 1 ccr gene complex. The novel SCCmec the novel CcrA proteins and the type 2 CcrA (CcrA2) and type 1 CcrA (CcrA1) proteins

were about 98 and 75%, respectively; and those between the novel CcrB proteins and the CcrB2 and CcrB1 proteins were 97 to 99 and 72 to 81%, respectively (Table 1). Accordingly, we classified the genes as variants of *ccrA2* and *ccrB2* by designating them the *ccrA2.1* and *ccrA2.2* genes and the *ccrB2.1* and *ccrB2.2* genes, respectively (Table 1). As shown in Table 1, the predicted proteins encoded by the open reading frames (ORFs) surrounding the *ccrA* and *ccrB* genes also had significantly higher degrees of similarity to those of the type 2 gene complex than to those of the type 1 *ccr* gene complex. On the basis of this unique combination of the two complexes, we

Homology to ORFs of type I SCCmec		Homology to ORFs of type II SCCmec		Homology to ORFs of type III SCCmec		Homology to ORFs of type IV SCCmec subtype b		
% Identity ^c	Corresponding ORF(s) (size [bp])	% Identity ^c	Corresponding ORF(s) (size [bp])	% Identity ^c	Corresponding ORF(s) (size [bp])	% Identity ^c	Corresponding ORF(s (size [bp])	
96.4	E024 (1329)	72.4	$N053^d$ (861)	72.4	$Z025^{d}$ (861)			
16.2	E025 (207)	16	N020 (207)	77.8	CZ002 (1,068)			
46.2	E025 (297)	46	N030 (297)	45.7	Z003 (288)	00.4	1000 (1701)	
77.3	E026 (1,770)	85.3	N031 (1,794)	66.3	Z004 (1,569)	82.4	M002 (1791)	
75	ccrA1 (1,350)	97.6	ccrA2 (1,350)	72.4	ccrA3 (1,350)	98.2	M004 (1350)	
72.4	* <i>ccrB1</i> (1,152)	97.4	ccrB2 (1,629)	87.5	ccrB3 (1,629)	99.3	M005 (1629)	
85.3	E031 (351)	88.8	N041 (351)	51.3	Z011 (351)	100	M006 (351)	
85.4	E032 (327)	89.2	N042 (312)	47.2	Z013 (396)	100	M007 (312)	
97.6	E033 (510)	92.7	N043 (318)	61.3	Z014 (522)	100	M008 (510)	
100	E034 (1,659)					100	M009 (1659)	
100	$\Delta mecR1_{NCTC10442}$ (987)	100	$mecR1_{N315}$ (1,758)	100	$\Delta mecR1_{85/2082}$ (114)	100		
99.9	$mecA_{\rm NCTC10442}$ (2,007)	100	$mecA_{N315}$ (2,007)	99.7	$mecA_{85/2082}$ (2007)	100		
99.3	CE025 (429)	100	CN038 (429)	100	CZ029 (429)	100	CM004 (429)	
100	CE026 (744)	100	CN039 (744)	100	CZ030 (744)	100	· · · ·	
100	E040 (675)	100	N062 and N070 (675)	100, 99.6.	Z035, Z041, Z046, and	100		
			()	99.1. 99.1	Z058 (675)			
100	CE029 (240)			,)	100	CM007 (240)	
100	CE030 (1.296)	100	CN050 (1.296)			100	CM008(1032)	
98.4	CE030(1,296)	98.4	CN050 (1,296)			100	CM009 (375)	
100	orfX (480)	100	orfX (480)	100	orfX (480)	100	CM010(480)	
70.3	E026 (1.770)	80.7	N031 (1.794)	72.1	Z004 (1.569)			
75.2	ccrA1 (1.350)	96.2	ccrA2 (1.350)	73.5	ccrA3 (1.350)			
80.6	ccrB1 (1.152)	98.2	ccrB2 (1.629)	87.1	ccrB3 (1.629)			
85.3	$E_{031}(351)$	88.8	N041 (351)	5.3	Z_{011} (351)			
85.4	E032(327)	89.2	N042 (312)	42	Z013 (396)			
97.6	E032(527)	92.3	N043 (318)	61.3	$Z_{014}(522)$			
100	E033(510) E034(1.659)	12.5	11045 (516)	01.5	2014 (322)			
100	$\Delta mac P1$ (087)	100	macP1 (1.758)	100	$\Lambda mac P1$ (114)			
100	$\Delta mech_{\rm NCTC10442}(987)$	100	$mech1_{N315}(1,756)$	100	$\Delta mech_{85/2082}$ (114)			
99.9	$mecA_{\rm NCTC10442}(2,007)$	100	(2,007)	99.7	(2,007)			
99.3 100	CE023 (429) CE026 (744)	100	CN020 (744)	100	CZ029 (429)			
100	CEU20(744)	100	UNU39(744)	100 00 (CZU3U (744) Z025 Z041 Z046 1			
100	E040 (075)	100	10062 and $100/0$ (6/5)	100, 99.6, 99.1, 99.1	Z035, Z041, Z046, and Z058 (675)			
100	CE029 (240)							
100	CE030 (1,296)	100	CN050 (1,296)					
98.4	CE030 (1,296)	98.4	CN050 (1,296)					
100	orf Y (180)	100	orf X (480)	100	orf X (480)			

TABLE 1—Continued

named the novel SCC*mec* elements type IV SCC*mec* and assigned the designations subtypes IVa and IVb to the individual elements of CA05 and 8/6-3P, respectively, on the basis of their unique nucleotide sequences in the L-C region (Fig. 1).

The BLAST and MOTIF programs failed to assign any biological functions to the hypothetical ORFs in the L-C regions of type IV SCC*mec* elements (1, 17). With their simple genetic organizations, neither a virulence factor nor antibiotic resistance other than that encoded by *mecA* was found to be encoded by the entire regions of the novel SCC*mec* elements. This lack of genes encoding resistance to non- β -lactam antibiotics in the type IV SCC*mec* was consistent with the notable characteristic of C-MRSA; i.e., its susceptibility to various antibiotics except β -lactams (3, 6). In fact, as shown in Table 2, the two strains were susceptible to all the non- β -lactam antibiotics tested.

The lack of function of type IV SCCmec other than those for the movement of the element (ccr genes) and methicillin resistance (mecA), together with its small size, may lead to the view that the element has gone through evolutionary refinement as a specific carrier of DNA for methicillin resistance. Furthermore, the lack of superfluous functions may make the element more fit as a mobile genetic element for *S. aureus* in the community than any other type of SCCmec, for the following reasons. A number of ORFs carried by type I and type II SCCmec elements in their long L-C regions are considered unnecessary for the benefit of the host cells that carry the elements (11, 12). Actually, many of them are mutated or

Strain	Type of SCCmec		MIC (mg/liter) ^a							
		Oxacillin	Ampicillin	Ceftizoxime	Imipenem	Erythromycin	Tobramycin	Kanamycin	Tetracycline	
CA05	IV	8	32	128	0.125	0.5	0.25	2	0.125	
8/6-3P	IV	8	16	128	0.125	0.125	0.125	1	0.125	
NCTC 10442	Ι	256	256	>512	16	0.125	0.125	1	128	
N315	II	16	32	16	1	>512	512	>512	0.125	
85/2082	III	32	32	>512	0.5	>512	8	512	128	
ATCC 29213 ^b		0.25	0.5	4	0.03	0.125	0.25	1	0.125	

TABLE 2. Antibiotic susceptibility profiles of the two C-MRSA strains in comparison with those of H-MRSA strains

^a The MICs were determined by the agar plate dilution method of the NCCLS.

^b A methicillin-susceptible *S. aureus* type strain.

partially deleted and do not seem to be active. Moreover, an ORF for type I SCCmec encoding plasmin-sensitive surface protein may even be hazardous to the host cell because it interferes with the fibrinogen- and fibronectin-binding properties of the host cell (23). Although the type III SCCmec has a short L-C region comparable in size to those of type IV SCCmec elements, the size of the element is extremely large (68 kb) because of the accumulation of multiple genes for resistance to various antibiotics and heavy metals (12). The determinants for resistance to multiple antibiotics carried by the previously studied types of SCCmec elements (type II and type III elements) may be suited for the survival of H-MRSA in the hospital environment, where various antibiotics as well as antiseptics provide selective pressure, but their large sizes and potentially hazardous arrays of exogenous genes may not be suited to MRSA strains in the community, where selective advantage would make strains more inclined to have a higher growth rate and to be better able to colonize humans than to have a multidrug resistance phenotype. From this viewpoint, the type IV SCCmec may be one of the fit SCCmec types that can confer β-lactam resistance to community strains of S. aureus without greatly compromising their competitiveness among the natural flora of humans. Future analyses of many communityacquired strains will be required to test if this hypothesis holds true.

Nucleotide sequence accession numbers. The subtype a and b type IV SCC*mec* elements have been deposited in the DDBJ/ EMBL/GenBank databases under accession no. AB063172 and AB063173, respectively.

This work was supported by the Core University System Exchange Program under the Japan Society for the Promotion of Science, coordinated by the University of Tokyo Graduate School of Medicine and Mahidol University. The study was also partly supported by a grant for International Health Cooperation Research (grant 11C-4) from the Ministry of Health and Welfare of Japan.

REFERENCES

- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
- Brown, D. F., and P. E. Reynolds. 1980. Intrinsic resistance to beta-lactam antibiotics in *Staphylococcus aureus*. FEBS Lett. 122:275–278.
- Centers for Disease Control and Prevention. 1999. Four pediatric deaths from community-acquired methicillin-resistant *Staphylococcus aureus*—Minnesota and North Dakota, 1997–1999. Morb. Mortal. Wkly. Rep. 48:707–710.
- Chambers, H. F. 2001. The changing epidemiology of *Staphylococcus aureus*. Emerg. Infect. Dis. 7:178–182.
- Embil, J., K. Ramotar, L. Tomance, M. Alfa, J. Conly, S. Cronk, G. Taylor, B. Sutherland, T. Louie, E. Henderson, et al. 1994. Methicillin-resistant *Staphylococcus aureus* in tertiary care institutions on the Canadian prairies 1990–1992. Infect. Control. Hosp. Epidemiol. 15:646–651.
- Gross-Schulman, S., D. Dassey, L. Mascola, and C. Anaya. 1998. Community-acquired methicillin-resistant *Staphylococcus aureus*. JAMA 280:421–422.

- Hartman, B. J., and A. Tomasz. 1984. Low-affinity penicillin-binding protein associated with beta-lactam resistance in *Staphylococcus aureus*. J. Bacteriol. 158:513–516.
- Herold, B. C., L. C. Immergluck, M. C. Maranan, D. S. Lauderdale, R. E. Gaskin, S. Boyle-Vavra, C. D. Leitch, and R. S. Daum. 1998. Communityacquired methicillin-resistant *Staphylococcus aureus* in children with no identified predisposing risk. JAMA 279:593–598.
- Hiramatsu, K., K. Asada, E. Suzuki, K. Okonogi, and T. Yokota. 1991. Molecular cloning and nucleotide sequence determination of the regulator region of *mecA* gene in methicillin-resistant *Staphylococcus aureus* (MRSA). FEBS Lett. 298:133–136.
- Hussain, F. M., S. Boyle-Vavra, C. D. Bethel, and R. S. Daum. 2000. Current trends in community-acquired methicillin-resistant *Staphylococcus aureus* at a tertiary care pediatric facility. Pediatr. Infect. Dis. J. 19:1163–1166.
- Ito, T., Y. Katayama, and K. Hiramatsu. 1999. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob. Agents Chemother. 43:1449–1458.
- Ito, T., Y. Katayama, K. Asada, N. Mori, K. Tsutsumimoto, C. Tiensasitorn, and K. Hiramatsu. 2001. Structural comparison of three types of staphylococcal cassette chromosome *mec* integrated in the chromosome in methicillin-resistant *Staphylococcus aureus*. Antimicrob. Agents Chemother. 45: 1323–1336.
- Jevons, M. P. 1961. "Celbenin"-resistant staphylococci. Br. Med. J. 124:124– 125.
- Katayama, Y., T. Ito, and K. Hiramatsu. 2000. A new class of genetic element, staphylococcus cassette chromosome *mec*, encodes methicillin resistance in *Staphylococcus aureus*. Antimicrob. Agents Chemother. 44:1549– 1555.
- 15. Kuroda, M., T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N. K. Takahashi, T. Sawano, R. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, K. Furuya, C. Yoshino, T. Shiba, M. Hattori, N. Ogasawara, H. Hayashi, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant *Staphylococcus aureus*. Lancet 357:1225–1240.
- Maguire, G. P., A. D. Arthur, P. J. Boustead, B. Dwyer, and B. J. Currie. 1998. Clinical experience and outcomes of community-acquired and nosocomial methicillin-resistant *Staphylococcus aureus* in a northern Australian hospital. J. Hosp. Infect. 38:273–281.
- Nakai, K., and P. Horton. 1999. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24:34–36.
- Nimmo, G. R., J. Schooneveldt, G. O'Kane, B. McCall, and A. Vickery. 2000. Community acquisition of gentamicin-sensitive methicillin-resistant *Staphylococcus aureus* in southeast Queensland, Australia. J. Clin. Microbiol. 38: 3926–3931.
- Rings Terry, R. F., and S. Lang. 1998. Ethnicity and methicillin-resistant S. aureus in South Auckland. N. Z. Med. J. 24:151.
- Stacey, A. R., K. E. Endersby, P. C. Chan, and R. R. Marples. 1998. An outbreak of methicillin-resistant *Staphylococcus aureus* infection in a rugby football team. Br. J. Sports Med. 32:153–154.
- Suggs, A. H., M. C. Maranan, A. Boyle-Vavra, and R. S. Daum. 1999. Methicillin-resistant and borderline methicillin-resistant asymptomatic *Staphylococcus aureus* colonization in children without identifiable risk factors. Pediatr. Infect. Dis. J. 18:410–414.
- Utsui, Y., and T. Yokota. 1985. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant *Staphylococcus aureus*. Antimicrob. Agents Chemother. 28:397–403.
- Vaudaux, P. E., V. Monzillo, P. Francois, D. P. Lew, T. J. Foster, and B. Berger-Bachi. 1998. Introduction of the *mec* element (methicillin resistance) into *Staphylococcus aureus* alters in vitro functional activities of fibrinogen and fibronectin adhesins. Antimicrob. Agents Chemother. 42:564–570.