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SUMMARY

1. The ultrastructure of all the afferent fibres, or all the efferent fibres, was studied
in selected nerves from chronically de-afferentated or de-efferentated cat hind limbs
perfusion-fixed with glutaraldehyde.

2. The following parameters were measured: number of lamellae in the myelin
sheath (n), axon perimeter (s), external fibre perimeter (S), axon cross-sectional area
(A). Fibres were allocated to afferent groups I, II, III or efferent groups a and y
according to the number of lamellae in the myelin sheath.

3. The thickness of the myelin sheath (m) was linearly related to axon perimeter
within the range s = 4 gum to s = 20 jtm (groups II, III and y). The relation m =

0*103 s - 0*26 provided a good fit for all afferent and efferent axons in this range in
several different anatomical muscle nerves in three cats. The myelin sheaths were
thinner in a fourth, presumably younger, cat.

4. The myelin sheaths were relatively thinner for large fibres in groups I and a
(s = 20-50 j#m). The results are interpreted in one of three ways. Either m tends to
a limit of about 2*2 ,sm, or m is linearly related to s such that for large fibres m-
0*032 s+1.11.

5. Alternatively, m may be considered to be proportional to log10 s for all sizes
ofaxon so that m = 2-58 log10 s - 1t73. The interpretation that there are two separate
linear relations for large and small fibres is favoured.

6. The ratio of axon to external fibre perimeter (g) falls from about 0 70 for group
III and small y fibres in the cat to about 0-62 for group II and large y fibres and then
rises again to 0'70, or even 0-75 for group I and a axons.

7. The above relations between m and s are combined with the observations of
Boyd & Kalu (1979) that 0 = 5-7 D for groups I and a and 0 = 4-6 D for groups II,
III and y. It is shown that 0 = 2*5 s approximately for all sizes of axon (s from mate-
rial fixed for electron microscopy) in rat, cat and man. The accuracy of this equation
may be improved by deducting 3 m/sec in'the case of small fibres. This conclusion is
compatible with experimental observations of the relation between I and D (Hursh,
1939; Lubinska, 1960; Coppin, 1973) and between I and 0 (Coppin & Jack, 1972).

8. From the theoretical analyses of Rushton (1951) and others 0 should be propor-
tional to the external dimensions of the fibre rather than to axon size. It is shown
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that the thinning of the myelin sheath ought to affect 0 substantially. Thus some

other factors must compensate for the thinning of the sheath.
9. Small fibres are significantly more non-circular than large fibres. From the

quantitative data of Arbuthnott et al. (1980) it is concluded that non-circularity may
contribute to the fact that 0 cc s rather than 6 oc S, but cannot wholly account for
it. Other possibilities considered are that axoplasmic resistivity or specific nodal
conductance may differ for large and small fibres.

10. It is suggested that myelinated peripheral nerve fibres may fall into two distinct
classes with different properties, one comprising groups I and a and the other groups

II, III and y. The conclusion predicted from theory may apply to each of these classes
separately so that 6 = 2-0 S for the large-fibre class and 0 = 1-6 S for the small-
fibre class.

INTRODUCTION

The scaling factor for converting external (or total) fibre diameter in microns into
conduction velocity in metres per second for the largest myelinated fibres in normal
cat nerves was shown to be 6-0 by Hursh (1939). The scaling factor for different
functional groups in chronically de-afferentated or de-efferentated nerves in the cat
was subsequently shown to be 5-7 for group I afferent fibres and ax efferent fibres,
but considerably less, 4-6 in fact, for group II and III afferents and for y efferents
(Boyd, 1964, 1965; Boyd & Davey, 1968; Boyd & Kalu, 1979). Not only was the
factor different for large and small fibres, but it did not increase progressively with
fibre diameter. Thus, it had the constant value of 4-6 for all fibres up to about 11jIsm
in external diameter and 5 7 for all fibres over about 11 /m. In the overlap zone of
10-12 gm there appeared to be a discontinuity in the scaling factor which suggested
that fibres in groups I anda must have distinctly different structural or functional
features, or both, from fibres in other groups. An ultrastructural study of all the
individual fibres in a number of chronically de-afferentated or de-efferentated nerves

was undertaken to identify any structural differences between fibres in different
functional groups. Preliminary results were published (Arbuthnott, 1972; Boyd &
Kalu, 1973; Arbuthnott, Boyd & Kalu, 1975, 1977) and the details are given in the
present paper. The following parameters were measured for every fibre in each nerve

save those cut through clefts of Schmidt-Lanterman; axon perimeter, external fibre
perimeter, the number of lamellae in the myelin sheath and the cross-sectional area

of the axon.

METHODS

The left hind limb of two cats was chronically de-afferentated and that of two further cats
de-efferentated, and the limbs were perfusion-fixed with glutaraldehyde, as described by Boyd &
Kalu (1979). Details of the preparation of material for electron microscopical study of every

fibre in each nerve, using the one-hole mount technique of Arbuthnott (1974), were given by
Arbuthnott, Ballard, Boyd & Kalu (1980). Individual fibres were photographed at a nominal
electron-microscopic magnification of 3000 or 5000 times for large fibres and 7500 times for
small fibres. The AEI EM6B microscope was calibrated using polystyrene beads of known
diameter. The axon and external perimeters of each fibre were measured with a Pathfinder Map
Measure. Axon cross-sectional area was measured with a Stanley hand planimeter. All measure-

ments were converted to microns. Counts of myelin lamellae for small fibres were made on prints
of the whole fibre (usually x 2.5), while for large fibres part of the sheath was photographed at a
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nominal electron-microscopic magnification of 10,000 times. Counts of lamellae were made at
a point on the fibre where resolution of the lamellae was greatest and as distant from marked
convexities or concavities in the sheath as possible. In the case of small fibres the innermost
layer of the sheath, which is further from the adjacent layer than the distance between the major
period lines elsewhere in the sheath, was excluded from the measurements.
Symbols used in this paper are as follows:

8, axon perimeter
S, external fibre perimeter
n, number of lamellae in myelin sheath
m, thickness of myelin sheath
d, axon diameter
D, external (total) fibre diameter
A, axon cross-sectional area
1, internodal length
Ri, resistivity of axoplasm

8

0 = conduction velocity
cross-sectional area of axon A

area of circle with same perimeter 82/4f

The relation of the thickness of the myelin sheath to the size of the axon has been expressed
in the past as the ratio, g, of axon diameter to external fibre diameter. Since axons are non-
circular to a varying degree it is more meaningful to use the ratio of axon perimeter to external
fibre perimeter, and g, defined in this way, is used throughout this paper. The term 'fibre'
generally refers to an axon and its myelin sheath.

RESULTS

All the afferent fibres were studied in one sample of each of the nerves to the flexor
digitorum longus lateralis (f.d.l.l.) and soleus muscles from two different cats. These
nerves were chosen because their afferent fibre-diameter histograms frequently show
three distinct peaks corresponding to afferent fibre groups I, II and III (Boyd &
Davey, 1968; Fig. 1 C and D of this paper). All the efferent fibres were studied in the
nerves to the tibialis posterior, soleus and peroneus longus muscles in two cats. These
nerves were chosen because of the known variations in their y fibre populations (Boyd
& Davey, 1968). For example, the nerves to soleus and peroneus longus tend to have
y populations of relatively small and relatively large diameter, respectively, whereas
the y fibres to tibialis posterior often resolve into two groups, large and small, the
thickly and thinly myelinated y fibres of Boyd & Davey (1962, 1968). Thus it was
possible to compare the relation between axon size and myelin thickness in several
different nerves in the same cat, and also to determine whether or not the same
relation applied to afferent and efferent fibres in four different cats.
The designation of individual motor fibres as a or y presents little difficulty as

there is usually little overlap between their external fibre diameter distributions and
in some nerves there is a clear separation between the two groups (Boyd & Davey,
1968). Afferent groups I, II and III tend to overlap considerably, however, even in
nerves showing three distinct peaks in their afferent fibre-diameter histogram. Since
fibres are rarely circular and vary in cross-sectional area along the internode (Berthold,
1968; Arbuthnott et al. 1980) fibre diameter is not a very reliable criterion for the
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subdivision of fibres into groups. The number of myelin lamellae, however, is almost
constant along an internode, and Friede & Samorajski (1967) suggested that it was a
better criterion to employ. This has been done throughought this paper. It can be
seen from Fig. 1 that not only do afferent fibres resolve into three groups in a histogram
of the number of myelin lamellae, as they do in one of external diameter, but further-
more the three peaks may be more distinct in the histogram of the number of lamellae
(cf. Fig. 1A and C). No attempt was made in the present work to estimate the overlap
between the three afferent groups as at best such an estimate can be very approximate
only. It was felt useful, however, to indicate where the minima in the histogram of
myelin lamellae occurred by using different symbols for groups I, II and III, and for
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Fig. 1. Comparison of histograms of external fibre diameter (D) and number of lamellae
(n) in the myelin sheath for all the afferent fibres in two muscle nerves chronically de-
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period 14*1 nm. B and D, nerve to soleus, cat 4. Myelin period 14-2 nm. Note presence
of group I, II, III peaks in both forms of histogram.

3pm

128

I



ULTRASTRUCTURAL DIMENSIONS OF NERVE FIBRES 129

a and y fibres, in the other figures. It should be remembered, however, that in the
case ofafferent fibres in particular the division into functional groups is not as clear-cut
as the figures suggest.
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Fig. 2. Relation between axon cross-sectional area (A) and number of myelin lamellae
(n) for all the afferent fibres in (A), nerve to f.d.l.l., cat 3 and (B), nerve to soleus, cat 4,
both de-efferentated 40 days previously. x , group I fibres. 0, group II fibres. *, group

III fibres. *, fibres cut through paranode. Note linearity in groups II and III and
limiting thickness of myelin sheath in group I.

Relation between axon size and myelin thickness
A typical example of the relation between the number of myelin lamellae and the

cross-sectional area of the afferent axons in two nerves from different cats is shown
in Fig. 2. Values for all the fibres in each nerve are included in this and later figures
save for those sectioned through a Schmidt-Lanterman incisure, or which deviated
widely from circularity because of the proximity of the Schwann cell nucleus (see
Arbuthnott et al. 1980). Fibres cut through the region of paranodal folding are indi-
cated by stars. It is immediately obvious that while n and A are linearly related
throughout groups II and III, a quite different situation applies to group I where
above A = 40 /sm2, n and A appear to be randomly related. Thus, the myelin sheath
appears to reach a limiting thickness even though axons continue to increase in
cross-sectional area.

The linearity of the relation between myelin thickness and axon size is even more

evident if the number of myelin lamellae is plotted against axon perimeter as in
5 PHY 308
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Fig. 3 which refers to the same two nerves as Fig. 2. Furthermore, the gradient of the
linear regression line between n and s for fibres in groups II and III is quite close to
7-0 in both the nerves which are from different cats, and the intercept in both cases
occurs near s = 3 /tm. Deviation from linearity is very obvious when s exceeds 20 /tm,
so that group I afferent axons have relatively thinner myelin sheaths than group II
axons (PI. 1A). The regression equations in this and other similar figures were
obtained on the basis that error was present in both n and s and the error ratio was
equal to the slope of the line.
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Fig. 3. Relation between axon perimeter (8) and number of myelin lamellae (n) or

myelin sheath thickness (in) for all the afferent fibres in the same two nerves to A,
f.d.l.l. and B, soleus, as in Fig. 2, x, group I. 0O group II. 0, group III. * fibres
cut through paranode. Regression line for groups II and III had equation (A)n = 7-45 8

-24 and (B) n = 6*91 8-20. Error assumed to be present in both n and 8 with error

ratio equal to the slope of the line. The gradient is almost the same in the two cats.

Similarly, n and s for motor fibres are linearly related throughout the y group,
whereas the relative thickness of the sheath of a axons is much less and for the larger
ax axons at least is unrelated to axon perimeter (Figs. 4 and 5; P1. 1 B). The gradient
of the linear regression line between n and s for y axons in Fig. 4A is again close to
7*0 as it was for the afferent axons in groups II and III in two other cats in Fig. 3.
The myelin sheaths in a fourth cat (Fig. 4B) were relatively thinner, however. That
the relation between n and s is approximately the same for all axons with s < 20tam
in all the limb nerves in the same cat is evident from a comparison of Figs. 4A and 5
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ULTRASTRUCTURAL DIMENSIONS OF NERVE FIBRES 131
and from Table 1 in which all the results were aggregated. For groups II, III and y
in all three nerves in cat 1, and for those in cats 3 and 4, the gradient is about the same
(Fig. 6) and a good fit is provided by the relation

n = 6*9s-17 or m = 0-103s-0-26.
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Fig. 4. Relation between axon perimeter (s), and number of myelin lamellae (n) or
myelin thickness (m) in two nerves de-afferentated 35 days previously. A, nerve to tibialis
posterior, cat 1. B, nerve to tibialis posterior, cat 2. x, a fibres. 0O y fibres. Values
of 8 for y axons in B are mean of measurements for each fibre in five transverse sections
at 25 Arm intervals; paranodal values excluded. Values of 8 in A and in other figures are
from a single section. Regression equations for y fibres: (A) n = 6 92 8- 10 and (B)
n = 4 85 s- 11. Note different gradient in cats 1 and 2, but similar gradients for cats
1, 3, 4 (cf. Fig. 3).

The above and later equations relating m and s were derived on the basis that the
myelin period was 15 nm. In fact it was 14-2 nm in cats 3 and 4 and 15-6 nm in cats
1 and 2. This degree of approximation does not affect the final equations appreciably.
In every nerve in cats 1, 3 and 4 the intercept of the regression line on the s axis

occurred at between 0 and 4/m, consistent with the fact that myelination commences
when axons are about 3 lum in perimeter, or 1 /m in diameter. In nerves such as
these from adult animals, however, there are rarely any myelinated fibres with less
than ten myelin lamellae (Figs. 3, 4 and 5) and frequently none with less than twenty
lamellae (Figs. 3B, 5A and B), and all the fibres are mature fibres. In two nerves
from cat 2 there was a small negative intercept on the s axis; in both cases there was
a relatively large scatter in the data.

Clearly the relation between n and 8 for group I afferent and a efferent fibres is
different from that for smaller fibres. Three ways of interpreting the data suggest
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themselves. First, myelination proceeds linearly from s = 4-20,m approximately
and then sheath thickness tends to a limit. This view is supported by the fact that if
all values below s = 25 ,um are rejected then the correlation coefficient (r) for larger
fibres is < 04 for the nerves to tibialis posterior (C,; Fig. 4A), soleus (C1, 2; Fig. 5B)
and flexor digitorum longus lateralis (C3; Fig. 3A). For the nerve to soleus in cat 4,
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Fig. 5. Relation between axon perimeter (8) and number ofmyelin lamellae (n) or myelin
thickness for two further nerves from cat 1. x , a fibres, 0O y fibres. A, nerve to peroneus
longus, y regression line equation n = 5'93 8-6. B, nerve to soleus, n = 5-97 8-2.
Note similar gradient in both nerves as in Fig. 4A from same cat.

r < 0-2 if all values of s < 30 ,um are excluded (Fig. 3 B). For all ax fibres in the nerve
to tibialis posterior in cat 2, s > 30 #tm and r is only 0-29 (Fig. 4B and Table 1).
The only nerve which showed a reasonable positive correlation between n and s for
large ax fibres was that to peroneus longus in cat 2 in which 8 > 25 ,um for all ax fibres
and r = 0-57 (Table 1). If this interpretation that sheath thickness tends to a limit
is correct then it appears that the limiting value may be less for motor fibres (n = 130
lamellae, Figs. 4 and 5) than it is for afferent fibres (n = 150 lamellae, Fig. 3), despite
the fact that the maximum axon perimeter is usually about 40 /tm for both afferent
and motor fibres, and may sometimes be greater for motor fibres (Fig. 4B). Since
only four cats were studied it is not possible to say, however, whether this difference
between afferent and motor axons is significant, and the limiting value will be assumed
below to be 150 lamellae (m = 2-2 /tm).

Alternatively, the relation between n and s for group I or a axons may be con-
sidered to be linear but with a much shallower slope than applies to smaller fibres.
The linear regression equation constants for group I or a axons in individual nerves
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are given in Table 1 and the regression equations which provide a good fit for all the
nerves in each cat are plotted in Fig. 6. The slope of the relation is close to 2-0 in all
four cats though cat 2 clearly differs once again in having a axons with myelin sheaths
which are much thinner than those in the other cats. In this interpretation, in which
a and group I fibres are considered to be discretely different populations from those
in groups II, III and y, it should be noted that the correlation coefficients are much
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Fig. 6. Linear regression equations for all the data from cats 1, 2, 3 and 4 relating n and
8, in which group I or a fibres were treated separately from groups II and III or y fibres.
Note close similarity of the relations for cats 1, 3 and 4, and distinctly different relations
for cat 2 in which the myelin sheaths were thinner. For regression equations, see Table 1.

lower for the large fibres than for the small fibres. A good fit for the group I and ax
fibres in all the nerves in cats 1, 3 and 4 is provided by the equation

n = 2415s+74 or m = 0*032s+1*11.

The third alternative interpretation is that large and small fibres form a single
population in which the thickness of the myelin sheath is related to the logarithm
of the axon perimeter. Table 1 and Fig. 7 show that such a logarithmic relation
provides a good fit for all the nerves (r > 092). It should be remembered, however,
that the high correlation coefficient is in part due to the relatively large number of
data points, and that the fit is not always very good for the smallest fibres (Fig. 7A).
On this interpretation, a good fit for all the nerves in cats 1, 3 and 4 is provided by

n = 1721glogs-115 or m = 2-5810glogs-173.
This is the dashed line in Fig. 7A and B.
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Ratio of axon perimeter to external fibre perimeter (g)
Since m is linearly related to s for s < 20 /m, it seems at first sight that g should

be constant for this range of axon size. In fact, the intercept of the relation between
m and s on the s axis has a profound effect on the value of g for small fibres. Thus,
in Figs. 8 and 9 the dashed curves indicate the expected value of g if s and m are

linearly related according to the regression equations given in Table 1 for the four
nerves in question and the axons are assumed to be circular. The value of g should
fall steeply from a value in excess of 0 75 and level out at about 0-6 for the nerves

from cats 1, 3 and 4 (Fig. 8). In practice most of the values of g for a and group I
fibres ( x ) lie well above the dashed curve as expected because of their relatively
thin sheaths.

In the case of the nerve to tibialis posterior from cat 2, which had thinner myelin sheaths, g

should fall from about 0-8 and level out at about 0 7 (Fig. 9A). The regression lines for y fibres,
calculated with the assumption that there was equal error in n and 8. in the other two nerves in
this cat had a small negative, rather than a positive, intercept on the s axis. It follows that g

should ri8e as shown by the dashed line in Fig. 9B. In fact, this negative intercept is not typical
of cat peripheral nerve and is due, in part, to the relatively large scatter in the data for y fibres
in these two nerves and, in the case of the nerve to peroneus longus, to the almost complete
absence of axons less than 10 ,sm in perimeter. The regression lines for 8 as a function of n for
y fibres in these two nerves both had positive intercepts on the 8 axis. In any case, it is clear
that the actual values of g for small fibres with 8 = 10-20 jum were lower than those for large
fibres (Fig. 9B) as was the case for all the other nerves studied.

The actual values of g for fibres in groups II and III (Fig. 8A, 0, *) are distributed

about the dashed curve as expected, though more occur below the dashed curve
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136 E. R. ARBUTHNOTT, I. A. BOYD AND K. U. KALU
than above. In the case of y fibres (Figs. 8B, 9A and B) the value of g lies below the
curve for almost all the fibres.
Some scatter about the dashed curve is to be expected since there is a corresponding

scatter about the linear regression line relating s and n (Figs. 3, 4 and 5). This is in
part due to variations in s along the internode and is reduced by deriving a mean
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Fig. 8. Relation between axon perimeter (8) and ratio of axon perimeter to external
fibre perimeter (g) for all the A, afferent fibres in soleus nerve, cat 4. x, group I. O,
group II. *, group III. B, motor fibres in nerve to tib. post., cat 1. x, a fibres. 0,
y fibres. *, fibres cut through paranode. Dashed curves give relation between 8 and g
predicted from A, n = 6.91 8-20 and B, n = 6.92 s-t1. Values for group I and a
lie above dashed curve because of relative thinness of myelin sheath. Values for other
groups fall below dashed curve because of non-circularity (see text). Continuous curve
in A, eqn. (1) giving g in terms of 8.

value for s from a number of sections at different points in an internode as in Fig. 4B.
Values for measurements at a paranode lie well to the right of the regression line
(Figs. 3, 4 and 5, *) since s increases by about 70% in the proximal paranodal bulb
relative to its value in the internode (Williams & Landon, 1963). This large increase
in s without any increase in n accounts for the fact that g for paranodes is well above
the dashed curve in Figs. 8 and 9 (*) since the myelin sheath is relatively thinner.
The more non-circular an axon, on the other hand, the lower the value ofg. For example,
if a circular axon with g = 06 became an ellipse with major axis twice the minor
axis, and s and n remained unchanged, then for the ellipse g = 0 5. This substantial
effect accounts for the fact that so many of the points in Figs. 8 and 9 lie below the
curve predicted from the linear relation between s and n and also for the fact that
this is more obvious for motor axons (Figs. 8B and 9), which are more non-circular,
than it is for afferent axons (Fig. 8A).

In practice, therefore, g is a minimum, occasionally as low as 0-55, when s lies
between 10 Mum and 20 #um and has a greater value not only for large fibres but also
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for very small fibres. Thus, group III afferent axons tend to have relatively thinner
sheaths than group II axons (Fig. 8A and P1. 1 C), though there is a large amount of
scatter from fibre to fibre. If there are very few y axons with s < 10 /tm, as in the
nerve to peroneus longus, then all the y axons have relatively much thicker sheaths
than the a axons, and this is reflected in the mean value of g for each group (Fig. 9B

A B
0-85 - 085

0~~~~~~~~~~~~~~~~~~~~

080 _, 080 _

00 x 7
XX~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

X XxX
X X

g
0

0 0
X 9X

PI.2b o 0x x X
0*70 _ 0 0o. . 2b x 0.70 0 0

0
8 _ _ _ __ _xX_ _ __X__°

0~ 0 0 OoO80° oOOI000
1?00) 000 X 0 0000

0*65 90 0'65 0

0.60 I I I 10.60 IIo I I I

0 10 20 30 40 50 0 10 20 30 40
Axon perimeter, s (pm)

Fig. 9. Relation between s and g for two nerves from cat 2. x, a fibres. 0O y fibres. *,
fibres cut through paranode. A, nerve to tib. post., dashed curve derived from n = 4-85 s
- 11. B, nerve to per. longus, curve derived from n = 3 44 8+ 8. Note y fibres with
s < 8 ,tm in A but absent in B.

and Table 2). If, on the other hand, there are an appreciable number of y axons for
which s < 10,um, these axons have relatively thinner sheaths than those of the larger
y axons (Figs. 8B and 9A). In particular, if the y fibres contribute to two distinct
peaks in histograms of external fibre diameter, or of the number of myelin lamellae,
as is not infrequent in the nerve to tibialis posterior (Boyd & Davey, 1968; Arbuthnott,
1972), then the group of small y axons will be relatively thinly myelinated, and the
group of large y axons will be relatively thickly myelinated. Electron microscopy
thus confirms the existence of the 'thickly myelinated' and 'thinly myelinated' y
fibres which were described for certain nerves in the light-microscopic study of Boyd
& Davey (1962, 1968). In such cases (e.g. Figs. 8B and 9A; Table 2, tib. post.) the
mean value of g for the whole y group may not be so very much less than that for the
a group, but g for large y fibres only is much less than that for the ax fibres or small y
fibres. Thus, in the nerve to tibialis posterior from cat 1 the value of g for the groups
of large y (thickly myelinated) and small y (thinly myelinated) fibres was 0'58 and
0-65, respectively (PI. 2A), while for the same nerve in cat 2 it was 0-67 and 0-71,
respectively (PI. 2B).

In general, then, the value of g falls as s increases and then rises again. There is
considerable variation in the range of g from one nerve to another, in part due to
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ULTRASTRUCTURAL DIMENSIONS OF NERVE FIBRES

differences in the degree of non-circularity of individual fibres, and in part to differ-
ences between cats. But if cats 1, 3 and 4 are taken as typical, and cat 2 as having
unusually thin myelin sheaths, then it may be concluded that g is about 0 70 for
group III and small y fibres, falls to about 0-62 for group II and large y fibres and
then rises again to 0-72 for group I and a fibres (Fig. 10 and Table 2). For the largest
fibres g may rise, in fact, to 0-75, and occasionally even to 0-80.

Average II or large y axon Average III or

S=22 small y axon

g 070~~~~~~~~~S=11-5
m =1 5 ---d =5- -m=05

=9 = 0162 _G_ Largest I or a axon!_1 -D=4 J ~~~~~~~~~~~~S= 64
LW- ---D = 8- -

Average I or a axon

S 46,_

f------ D=16 ^-22-------sJ L--

t---~-d = 11-5-

%--~D= 16 -;;-D2----

Fig. 10. Typical parameters for nerve fibres in different functional groups derived
from data of the present work. Largest group I or a axon may be nearer 8 = 45 #cm,
g = 0 75 in many nerves. Note relative thinness of myelin sheath on small fibres and
large fibres relative to that on medium sized fibres.

DISCUSSION

Axon perimeter and myelin sheath thickness
Axon perimeter and number of myelin lamellae are linearly related for all sizes

of axon in peripheral nerves in the mouse and rat (Friede & Samorajski, 1967, 1968),
in rat ventral spinal roots (Fraher, 1972) and in central tracts in rat and cat (Samor-
ajski & Friede, 1969; Bishop, Clare & Landau, 1971). There are few axons larger than
20 ,tm in perimeter in most mice and rats. In the present work on the cat the relation
between s and n was linear, also, for s < 20 Itm but the same relation did not apply
to larger axons. It can be seen from Table 3 that, for axons with s < 20 ,#m, the
increment in axon perimeter which is accompanied by the addition of one turn to
the myelin spiral (gradient a) of 0-13 ,um-0 16 gm in cats 1, 3 and 4 of the present
work is not greatly different from that found in peripheral nerves and spinal roots in
rats and mice. The same appears to be true of the human sural nerve if both large and
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ULTRASTRUCTURAL DIMENSIONS OF NERVE FIBRES

small fibres are considered to form a single population (Schr6der, Bohl & Brodda,
1978). Some difference in the gradient is to be expected due to differing shrinkage
with various fixation procedures, but the higher value of a in cat 2 than in cats 1, 3
and 4 in the present work is unlikely to have been due to this since the myelin period
was the same for cats 1 and 2 whose nerves were processed by the same individual

30 -

2.5-

E. 2-0 ,

En .0 -

C

NC.

-c 5 -

Cu

,.00-5

0 5 10 1 5 20 25 30 35 40 45 50
Axon perimeter, s (mm)

Fig. 11. Mean relation between m and 8 for all the nerves from cats 1, 3 and 4 in the
present work. Straight line, eqn. (2) m = 0*103 8- 0 26, linear regression equation for
groups II, III and y. Dashed line, eqn. (5), m = 0-0328+1-11, linear regression
equation for groups I and a. Continuous curve, eqn. (9), m = 2 58 log,, 8I- 73, linear
regression equation for all fibre groups on a semi-logarithmic plot. Dashed curve,
relationship estimated by eye for data for group I and a if m tends to a limit of 2-2 ,tm.

using an identical technique. There is evidence that the gradient, a, is greater in
younger animals in the rat (Friede & Samorajski, 1968, 1969) and in man (Schrbder
et al. 1978; J. M. Schr6der, personal communication). We are inclined to think that
the higher value of a in cat 2 was due to the fact that this animal was younger than
the others although, unfortunately, only the weights, and not the ages, of the cats
were known. Accordingly, the results for cats 1, 3 and 4 have been taken to be typical
of adult animals.

It has been shown in the Results that axons in groups I and a in the cat (s, 20-50,m)
have relatively thinner sheaths than the smaller axons in other groups, and that the
data can be interpreted in at least three ways. Either the thickness of the myelin
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sheath tends towards a limiting value, or there is a linear relation between s and n
with a quite different slope (a about 0.5; Table 3) for group I and a axons from that
for other groups, or n is proportional to log10 s for all sizes of axon (Fig. 1 1). The most
readily understandable explanation would appear to be that the driving force for the
process of myelination diminishes or ceases as axons grow larger, and that myelina-
tion stops at different times in different axons although the axons continue to increase
in perimeter. In small mammals like the mouse and rat in which few axons exceed
20 gtm in perimeter the driving force is adequate to ensure that they all myelinate
to a degree proportional to axon size.

Other evidence suggests strongly, however, that different types of fibre fall into
discrete groups which differ in the relative thickness of their myelin sheaths. Thus,
myelinated fibres in the third cranial nerve of the rat form two distinct populations:
small fibres (8, 2-7 /sm) with sheath thickness scattered around 02 cam and large
fibres (s, 7-17,um) with sheaths around 0-6#,m thick (Bronson & Hedley-White,
1977; Bronson, Bishop & Hedley-White, 1978). For both groups taken separately
the regression coefficient must have been very low indeed, i.e. m almost constant.
Likewise, in a study of the human sural nerve, Behse & Buchthal (1977) concluded
that they were dealing with two distinctly different groups of small and large fibres.
For the small group III (or A&) cutaneous axons the gradient, a, was 0 35 (Table 3).
The large fibres (group I or At) had relatively thick sheaths averaging nearly 150
lamellae, and m seemed to be unrelated to s. The data of Schr6der et al. (1978), also
derived from the human sural nerve, is similar. Although they plotted regression
lines for all the fibres as a single population (Table 3), their data suggest that the
large and small fibres again may have belonged to two separate populations. The
relation between n and s for small fibres has a relatively shallow slope (a large) while
for the limited sample of large fibres studied the sheaths are relatively thick and
there is no obvious correlation between m and s. These results support the inter-
pretation of the present results that group I afferent and a motor axons in the cat
form discretely different populations from those containing axons in afferent groups
II and III, or y motor axons. If so, then it is quite likely that they may differ in
respects other than just the relative thickness of their myelin sheaths.

Myelin sheath thickness and the ratio g
It has been shown in the present work on peripheral nerves in the cat that g, the

ratio of s to S in fixed nerves declines from about 0 70 for small fibres to a minimum
of about 0*62 for medium sized fibres and then rises again to 0 70 or perhaps 0 75
for large fibres. Coppin (1973, Figs. IX. 11, 12) obtained a very similar pattern from
electron micrographs of two de-efferentated cat muscle nerves. Friede & Samorajski
(1967) stated that they could not determine a definite trend in 9 with increasing
axon size in the mouse but they thought that g ought to increase from about 0-6 for
the thinnest fibres to about 0-8 for the thickest fibres. In fact, using the same reasoning
as was used earlier for the present work, the linear relationship they obtained between
s and n with a positive intercept on the s axis (Table 3) means that q shouldfall from
about 0*8 for the smallest fibres to 0*7 for the largest ones. Such a trend is perhaps
apparent in their Fig. 4 though it is obscured by the large scatter ofindividual observa-
tions. The value of g in the rat will not, of course, rise again for large fibres as it does
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in the cat since s and n are linearly related throughout the entire range of axon size
in rats. The positive intercept on the s axis in both rat and cat usually occurs at a
value close to 3/tm, i.e. axon diameter about 1 /m. This is the critical size below
which axons in peripheral nerves and spinal roots do not become myelinated. Myelina-
tion may commence, however, on axons with perimeters anywhere within the range
3 jum to about 8 jsm (Fraher, 1972).
Measurements of g in thick sections, e.g. 5,um fresh or fixed, viewed under the

light microscope are much too low in small fibres, as was shown by Dyck, Gutrecht,
Bastron, Karnes & Dale (1968). The myelin thickness is exaggerated due to the fact
that an irregular cylinder is being observed end on and the effect is proportionately
greater for small fibres. Dyck et al. (1968) showed that if g for a fibre in a section 1 um
thick was 0-6, it could be 0*4-0*5 in a section of the same fibre 4,m thick, and 0 3-0 4
in a 6 jsm section. For this reason the conclusion from work using thick sections that
g increases with fibre size from 0*4 or less for small myelinated fibres in peripheral
nerves to 0 7 or 0-8 for large ones is almost certainly incorrect (e.g. Gasser & Grundfest,
1939; Sanders, 1948; Sunderland & Roche, 1958; Williams & Wendell-Smith, 1971).
Likewise, values of g obtained from teased fibres (Schmitt & Bear, 1937; Taylor,
1942; Schwartzacher, 1954) are suspect because the 'lens effect' of myelin makes the
sheath appear thinner than it really is.

It should be noted, however, that if a linear relation between a and n passes through
the origin then g will be constant. This seems to be true in central tracts in the cat
where myelination takes place on very much smaller axons ( < 0- 3 /m) than in
peripheral nerve (Table 3; Bishop et al. 1971). It may be true for some peripheral
nerves as in the work of Schnepp & Schnepp (1971) on rat, mouse, cat and dog, though
some downward trend from 0-7 to 0-6 is apparent in their figures.

If a linear relation between a and n has a negative intercept on the a axis then g
will rise with increasing a. This is, in general, true for groups I and a in cat and man
(Table 3) where sometimes a and n may actually appear to be unrelated and the
myelin thickness is scattered round a constant value. In the only two nerves in the
present work in which g for small fibres in groups II, III or y, calculated from the
linear regression equation, appeared to increase with a, the actual values of g for
individual fibres were so scattered that no trend in g was obvious (Fig. 9B). It seems,
however, that an increase in g with a may occur within the group of small fibres in
human sural nerve (Behse & Buchthal, 1977; Schr6der et al. 1978) and in the third
cranial nerve in the rat (Bronson et al. 1978).

It is concluded that, in general, g in peripheral nerves in cat and rat falls as axon
size increases from 4,m to about 20 #m. In the cat g rises again when the myelin
sheath becomes relatively thinner as a increases from 20 Am to 40 or 50 #m. Although
there is some variation in the actual value of g from nerve to nerve the form of the
relation between y and a in the cat is quite well described by the equation

g = 1-20e2O (1)20
e2

shown by the continuous curve in Fig. 8A. This curve has a minimum at g = 0-63
when a = 20,um.
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Axon perimeter and conduction velocity
It has been shown in the present work that for axons in groups II, III and y (s

between 4 /tm and 20 /um)
m = 0t03s-0-26 (2)

if it is assumed that cats 1, 3 and 4 were typical adult animals (Fig. 11 continuous
straight line). It has been established previously that for fibres in these groups the
ratio of conduction velocity in m/sec to external fibre diameter in microns is 4-6 (Boyd
& Kalu, 1979). Thus, for II, III and y fibres

0= 4.6D= 46(d+2m) (3)
and from eqns. (2) and (3)

6 = 2*41 s - 2-4. (4)

If the interpretation that, for group I and a fibres (s between 20 ,tm and 50 #um),
m and s are linearly related but the slope is substantially less than for fibres in other
groups is accepted (Fig. 11 dashed straight line), then it has been shown that for cats
1, 3 and 4

m = 0*032 s+ Pit1. (0)

The ratio of 6 to D both for the peak and the maximum diameter of fibre in groups I
and ax is 5-7 (Boyd & Kalu, 1979). Thus, for group I and ax fibres

6=5.7D=5.7(d+2m) (6)
and from eqns. (5) and (6)

0 = 2.18 s + 12-7. (7)

Eqns. (4) for small fibres and (7) for large fibres are shown by continuous straight
lines in Fig. 12.

If the results are interpreted as showing that m tends to a limit of 2-2 /um when
s > 30 ,tm (Fig. 11 dashed curve) then for group I and ax fibres of this size eqn. (6)
becomes 0= 181s+251 (8)

shown by the interrupted straight line in Fig. 12.
If the interpretation that myelin thickness and axon perimeter are logarithmically

related is accepted (Fig. 11 continuous curve) then for all sizes of axon

m = 2-58 logo s-1173 (9)

Eqn. (9) combined with eqns. (3) and (6) for small and large fibres, respectively,
gives rise to the relation between 6 and s shown by the two dashed curves in Fig. 12.
Whichever interpretation of the results is employed it is clear that the difference

in the scaling factor relating 0 and D for large and small fibres is neatly explained
by the difference in the relative thickness of their myelin sheaths if conduction
velocity is proportional to axon size. Eqn. (4) derived for small fibres gives values of
6 for most large fibres which are quite close to the true value.

The discontinuity at 8 = 20 gm in Fig. 12 (eqns. 4 and 7) arises from the apparent discon-
tinuity in the O/D scaling factor obtained by Boyd & Kalu (1979) in the range D = 10-12 Asm.
This discontinuity may not be present in one particular nerve, however. While the factor of 5-7
applied to both the largest and the mean size of group I or a fibre in every nerve and 4-6 to both
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the largest and the mean size of fibres in groups II, III and y, it is less certain that the factor of
5.7 applied to the smallest group I and a fibres. It was not possible to derive meaningful values of
0 from the tail of the compound action potential of a particular fibre group. The values of a in
the range D = 10-12 jm for group I and a fibres in Boyd & Kalu (1979, Figs. 7, 8) were the con-
duction velocity of the mean size of fibre in nerves in which the fibres in these groups are relatively
small (e.g. nerves to the foot). If the largest, and the mean size, of group I or a fibre in every
nerve have thinner sheaths than the largest group II or y fibres, it could still be true that in any
particular nerve there is a smooth transition in scaling factor from 4-6 to 5-7 in the midrange. How-
ever, the undoubted anatomical discontinuity in the relation between m and 8 for large and small
fibres in some rat and human nerves mentioned earlier suggests that this may also be true for the
cat.
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Fig. 12. Derived relations between conduction velocity (6) and axon perimeter (8)
assuming axons are circular. Lower straight line, eqn. (4), relation between m and 8 for
groups II, III and y from present work (eqn. 2) combined with 6 = 4-6 D from Boyd
& Kalu (1979). Upper straight line, eqn. (7), relation between m and 8 for groups I and
a in present work (eqn. 5) combined with 6 = 5-7 D from Boyd & Kalu (1979). Dashed
curves, relation between m and log10 8 (eqn. 9) combined with 6 = 4-6 D and 5-7 D as
above. Continuous curve, eqn. (9) combined with 6 = 1-5 D'5 from Coppin & Jack
(1972). Dotted line, 6 = 2-5 s which gives approximate values of 6 for all sizes of axon.
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Thus, the relation between 0 and s is approximately linear throughout the entire
range of axon size in the cat. As a first approximation

0= 2.58 (10)

shown by the dotted straight line in Fig. 12. The accuracy of this equation may be
improved by deducting 3 m/sec for all axons with s < 20 sum.

Variation in myelin sheath thickness also explains why the ratio of 0 to D for
human group I (or Afi) cutaneous afferents is 4-4 (Buchthal, Rosenfalck & Behse,
1975). The range of external diameter for this group is about the same in man and
cat, 7-14,tm (Buchthal et al. 1975; Boyd & Davey, 1968). The corresponding axon
diameters (d) in electron micrographs of human sural nerves range from 3 to 8 sum
(Behse & Buchthal, 1977), and the myelin sheaths are relatively thick, averaging
about 2-2 ,tm. The fastest conducting fibre in the human sural nerve of Buchthal
et al. (1975) had a conduction velocity of 62 m/sec. This is the same as that for a fibre
with d = 8 gm (s = 25 gim) derived from eqn. (10). Further, eqn. (10), with the
3 m/sec deduction for small fibres, gives a velocity of 18 m/sec for an axon with
d = 2-8 ,tm, the peak axon diameter for group III human sural afferents (Behse &
Buchthal, 1977). The corresponding total diameter is 4 0 /tm (Buchthal et al. 1975),
and the scaling factor of 44 gives a velocity of 18 m/sec. Thus, the conduction velocity
of all human sural afferents is directly proportional to axon perimeter and is given
by 0 = 2-5 s as in 1he cat, with the appropriate 3 m/sec deduction for small fibres.
The equivalent data do not appear to be available for human muscle nerves but it
seems likely that, as in cutaneous nerves, the conduction velocities of human motor
and afferent fibres are lower than those of corresponding fibres in the cat because
they have smaller axons and thicker sheaths, the external diameters being about the
same in the two species.

Likewise, myelin sheaths in the rabbit seem to be thicker than in the cat, according
to the detailed study of 5 um fresh frozen sections of Williams & Wendell-Smith
(1961) using the light microscope. Unfortunately, m in sections of this thickness is
usually over-estimated. However, thicker sheaths on smaller axons would be con-
sistent with lower conduction velocities than in the cat for a given external diameter
and hence the scaling factor between 0 and D is 4-4 for large fibres in the rabbit
(Cragg & Thomas, 1964), similar to that of man.
In the rat, myelin sheath thickness tends to be slightly less than for the same size

of axon in the cat (s = 0 20 n+ 3, Table 3). The largest fibres in the rat hind-limb
nerves have external diameters of 14-14-5 #sm (Mellstrom & Skoglund, 1965; Tomanek
& Tipton, 1967; Thompson, 1970). This corresponds to an axon perimeter of about
30 gim. The fastest conducting axons in hind-limb nerves in a number of rats were
found by Andrew, Leslie & Thompson (1973) to have velocities between 70 and
75 m/sec. Hence eqn. (10) appears to apply to the rat also.
Thus, the conduction velocity of axons in all mammals so far studied appears to

be proportional to axon perimeter and, if values of s are derived from tissue fixed
for electron microscopy, 0 = 2-5 s approximately. It is worth noting that as long
ago as 1939 Gasser & Grundfest reached the conclusion that 0 was proportional to
d rather than to D on the basis of much more limited data. They concluded, however,
that 0 = 8*7 d whereas the result of the present work is equivalent to 0 = 7.9 d for
a circular fibre.
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Relation between conduction velocity and fibre dimensions predicted from theory
Conduction velocity in a myelinated fibre depends on the time taken to generate

the action potential at successive nodes of Ranvier together with the much shorter
time taken to traverse the internode. The rate ofdepolarization ofthe nodal membrane
by 'local circuit' activity clearly depends on the total nodal capacitance and nodal
conductances and one might expect the area of exposed nodal membrane to be
important. Secondly, the local circuit current intensity will depend upon the longi-
tudinal resistance of the column of axoplasm between nodes, and the amount of
leakage of current through the myelin sheath in the internode. Longitudinal resistance
varies with axon cross-sectional area, and inversely with internodal length, while
capacitative and ionic leak current per unit length of internode depends upon the
thickness of the myelin sheath and, for a cylindrical fibre, should each be proportional
to (-Ing)-1.
From a theoretical consideration of current flow, Rushton (1951), in his theory of

conduction in fibres in 'corresponding states', deduced that

I/Doc (-In g)i. (11)

This function of g was a maximum at g = 0-6 and was constant within 5 % for g
between 0*47 and 0 74, the range of 9 found experimentally at that time. Hence 1 was
almost proportional to D. Since other factors such as 6 scaled with I in the theory of
'corresponding states', Rushton concluded that 0 should be almost proportional to
D, the external diameter of the fibre.
Subsequent dimensional analyses, or simulations of conduction using experimental

data for myelinated fibres in the frog, appear to confirm that 0 oc D (e.g. Goldman &
Albus, 1968; Smith & Koles, 1970; Fitzhugh, 1973). In their recent computer simula-
tion of conduction in frog fibres Moore, Joyner, Brill, Waxman & Najar-Joa (1978)
studied the effect of changing many of the variables independently and came to
some interesting conclusions. In the first place, for a fibre of a particular size, 0 is
almost independent of 1. This is not altogether unexpected since Huxley & Stimpfli
(1949) pointed out long ago that although there is an optimum value of I for which
6 is a maximum for a fibre of a particular size, quite large variations in I around the
optimum value might result in only a small fall in 6. This was confirmed by Goldman
& Albus (1968), whose data was replotted by Coppin (1973) and by Jack, Noble &
Tsien (1975, Fig. 10. 10); 6 was almost constant throughout a range of l/D from 50
to 200 in the frog. The increased delay resulting from the presence of more nodes per
unit length of fibre is almost compensated by the smaller current leak in the internode
and hence greater local circuit current bringing the next node to threshold more rap-
idly. The conclusion that, for a particular D, 6 is almost independent of I appears to
apply to all normal values of l/D including the situation in remyelinated peripheral
axons where I may be only one half normal although myelin thickness and con-
duction velocity are normal (Sanders & Whitteridge, 1946). It does not apply, how-
ever, if I is very small relative to D, which may be the case in some C.N.S. fibres (Brill,
Waxman, Moore & Joyner, 1977).

Secondly, Brill et al. (1977) found that 0 is almost independent of exposed nodal
area. This surprising conclusion was possibly due to the fact that the sensitivities
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to nodal membrane capacitance and maximum number of sodium channels were
equal and opposite.
Thus it appears that the principal factors influencing 6 are the size of the axon

and the thickness ofthe myelin sheath. It is obvious that increasing the cross-sectional
area of an axon, while keeping the myelin thickness constant, will increase 6 con-
siderably since there is a marked reduction in the longitudinal resistance of the
axoplasm. Brill et al. (1977) computed this effect for the frog and found that the
percentage change in 6 was 0-65 times that in s.
The effect on 0 of increasing the thickness of the myelin sheath (m) on an axon of

fixed size is also substantial. Smith & Koles (1970) computed the effect of increasing
m on a frog axon 10 jsm in diameter. They obtained a 30% increase in 6 for a fall in
g from 0-75 to 0-6, the range of g found in the present work. Brill et al. (1977) found
that under these conditions the percentage change in 0 was about 0-3 times the
percentage change in m.

It should be noted that the above situation is different from that in which external fibre diameter,
D, is held constant and m is increased. It follows that axon diameter must decrease with conse-
quent increase in longitudinal resistance. In this case there is an optimum value of g for maximum
9, deduced by Rushton (1951) to be 0-6 and found to be about 0-65 by Smith & Koles (1970)
and 0-62 by Brill et al. (1977).

Brill et al. (1977) found that the greatest increase in 6 occurred if both axon size
and myelin thickness increased in proportion to one another (g constant) in which
case the percentage change in 0 was 1-1 times the percentage change in D. It follows
that 0 = x D"-' which is a curve very slightly concave towards the 6 axis.

If the above theoretical conclusions apply to the cat, then we may estimate the
effect of the known change in g on the relation between 0 and fibre size. If g were
constant the 0/D relation and 6/s relation should be slightly concave towards the
o axis. In practice g is a minimum for medium-sized axons (a, 15-20 jsm) and rises
for both small and large axons. Thus, 0 should be proportionately smaller for small
axons (8 < 15 jum) and for large axons (s > 20 /sm) than if g were constant, and the
relation between 6 and a should become linear for 8 < 20 ,um and probably concave
towards the a axis for $ > 20 jam. If, in fact, m tends to a limit at values of a in excess
of 30 ,um, then the effect on 6 should be considerable. Some appreciable fall away
from a linear relation between 6 and 8 should occur at large values of a. Thus, a
linear relation between 6 and a up to a = 20 jam such as occurs in practice (Fig. 12) is
to be expected, but that the same linear relation should provide values of 6 which are
consistent with those found experimentally for large fibres is not what is predicted
from theory. Note, however, that in the above theoretical considerations axons were
assumed to be circular, axoplasmic resistivity was assumed to be constant for all sizes
of fibre, and the possibility that different groups of fibre might have different specific
membrane properties was not considered.

Experimental relations between 1, D, m and 6
The relation between I and D in the cat is shown in Fig. 13 in which the histological

measurements of Hursh (1939) and Lubinska (1960) on the lateral popliteal trunk are
combined with the findings of Coppin (1973) in which I was measured electro-
physiologically in the nerve to the semitendinosus muscle. In all three studies the
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relation was not linear and there was appreciable fall-off in 1 at large values of D.
In fact, as pointed out by Coppin (1973), a semi-logarithmic relation provides a good
fit to the data and the linear regression equation for the semi-logarithmic plot

I = 1P69 logo D-0-62 (12)

is shown by the continuous curve in Fig. 13.
If eqn. (11), deduced by Rushton (1951), were correct in practice, then there

should be a small fall-off in 1 at large values of D. If g is obtained from eqn. (1) and
the constant is chosen such that I = 1 07 mm when D = 10 jtm (i.e. to coincide
with eqn. 12) then eqn. ( 11) becomes

1 = 0.25Dg(-lng)l (13)

shown by the dashed curve in Fig. 13. Clearly the experimental values deviate appre-
ciably from this curve at large values of D or 1 so that Rushton's deduction in eqn.
( 11) is only approximately valid.

Since the myelin sheath is relatively thinner on large axons the form of the data in Fig. 13
replotted as 1 against s rather than D would clearly be very similar to that of m against 8 in the
present work. If D in eqn. (12) is replaced by (s/7r + 2 m), i.e. axons are assumed to be circular,
and s in terms ofm is derived from eqn. (9) ofthe present work, then the resultant relation between
I and mn is a curve slightly concave towards the m axis which approximates very closely to the
linear relation 1 = 66 m. Thus, internodal length is much more nearly directly proportional to
myelin sheath thickness than it is to either axon perimeter or total fibre perimeter (or diameter
in the case of a circular fibre).

Rushton's second assumption that 0 x 1, which was supported by the dimensional
analyses of Goldman & Albus (1968) and Fitzhugh (1973), is also not valid for all
sizes of axon in practice. This is clearly evident from the data of Coppin & Jack (1972)
shown in Fig. 14. Both 0 and 1 were measured electrophysiologically in these experi-
ments. These authors felt that the data was best fitted by a semi-logarithmic relation
and the linear regression equation for the semi-logarithmic plot

I = 0 97 logo0- 0 70 (14)

is shown by the continuous curve in Fig. 14. Coppin & Jack (1972) and Coppin (1973)
corrected this equation to take account of the difference in the values of 0 measured
in the semitendinosus nerve compared with the over-all value from spinal roots to
muscle and concluded that

1 = 1 12 logo 00-0098 (15)

Eqn. (15), combined with the semi-logarithmic relation between I and D derived
from the data of Hursh (1939) and Lubinska (1960), but excluding Coppin's own data,
which was almost the same as eqn. (12) above, led them to conclude that

0 = 1-5D1l5 (16)

It is not obvious how they obtained the value 0-98 which, in fact, gives rise to a
multiplying factor of 2-0. To obtain the factor 1-5 the intercept in eqn. (15) needs to
be about 0-8 which is closer to that in the uncorrected eqn. (14).

Eqn. (16) gives values of 0 which are valid in the mid range but are somewhat high
for the largest group I or ac fibres and low for group III or small y fibres (Boyd &
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Kalu, 1979). If it is combined with eqn. (9) from the present work, and it is assumed
that axons are circular, then the resultant relation between 6 and s is that shown by
the continuous curve in Fig. 12. Conclusions based on linear regression equations
through data plotted semi-logarithmically should be interpreted with caution, how-
ever, since linear regression equations are only strictly applicable to data which is
distributed normally. In semi-logarithmic plots there tend to be a large number of
points at the upper end of the graph.
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Fig. 13. Data relating 1 and D from Hursh (1939, 0)' Lubmneka (1960, x ) and Coppin
(1973, *), all replotted. Continuous curve, linear regression eqn. (12) for I in terms of
D for all the data on a semi-logarithmic plot (r = 0.96). Lower dotted line, linear
regression equation (17) for 1 in terms of D for D < 10 4Am (r = 0-92). Upper dotted
line, linear regression eqn. (19) for I in terms of D for D > 10 jam (r = 0.58). Dashed
curve, eqn. (13) relation between £ and D deduced by Rushton (1951) combined with
gfrom eqn. (1).

Although it is not true experimentally that I cc D or I cc 6 for all sizes of fibre, it
could still be true for fibres within particular functional groups. The largest axons in
groups II, III and y have perimeters of about 20 Elm (Figs. 3, 4 and 5) and myelin
sheaths about 1-8 jum thick, so that their external diameter is close to 10 ,sm and
their conduction velocity is between 45 and 50 i/sec. The data in Figs. 13 and 14
for fibres with D < 10 jtm or 6 < 47 in/sec are approximately linear. The regression
equations for 1 as a function of D or 6 are

10= 0109D-0a02 (17)

andI = 00180+019

150
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and are shown in Figs. 13 and 14 by the lower dotted lines. Eqn. (17) is not signifi-
cantly different from a line through the origin, I = 0-106 D. The relation between I
and 0 if forced through the origin is I = 0023 6. These two latter equations combine
to give 0 = 4-6 D which is precisely the same as that found by measurement of 0
and D on the same nerve for groups II, III and y by Boyd & Kalu (1979). Further,
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0 0 o 0
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Conduction velocity, 0 (m/sec)

Fig. 14. Data of Coppin & Jack (1972) relating 6 and I determined electrophysiologically
for four cats denoted by different symbols (replotted). Continuous curve, linear regres-
sion eqn. (14) for I in terms of 6 for all the data on a semi-logarithmic plot (r = 0-88).
Dotted line, linear regression eqn. (18) for I in terms of 6 for 6 < 47 m/sec (r = 0.89).
Dashed line, eqn. (20) which when combined with eqn. (19) relating I and D leads to
6 = 5.7 D; note that it is not incompatible with the data for 6 > 47 m/sec (see text).

eqn. (13), shown by the dashed curve in Fig. 13, is almost coincident with eqn. (17)
for D < 10 jum. Hence Rushton's (1951) deduction given in eqn. (11) is valid, and I is
almost proportional to 0, for these groups. So it seems that Rushton's theory of
'corresponding states' is applicable to axons in groups II, III and y taken separately
from those in groups I and a.
The fitting of straight lines to the data for D > 10 ,um and 0 > 47 m/sec is less

satisfactory because of the wide scatter in the data derived from different cats.
Clearly the maximal internodal length in Fig. 13 is at least 1-4 mm, whereas in three
of the cats in Fig. 14 it is 1-3 mm or less. The regression equation for I as a function
ofD forD > IOumminFig. 13is

l = 0-043D+0-74 (19)

shown by the upper dotted line. The correlation coefficient is only 0-58, however
(0.66 if the data of Hursh (1939) are taken by themselves). The following equation

I = 0-0075 0+ 0-74 (20)
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combines with eqn. (19) to give 6 = 5-7 D, the relation obtained experimentally for
group I anda fibres by Boyd & Kalu (1979). Eqn. (20) is shown in Fig. 14 by the
dashed line and it provides a reasonable fit for the data for the cat in which the maxi-
mum value of 1 was similar to that in Fig. 13. Thus, the data shown for large fibres
is not incompatible with the concept that1 cc D, and 1 cc0, and hence 6 cc D, for
group I anda fibres, in which case the Rushton theory is again valid within this class
of fibres taken by itself.
The conclusion to be drawn from the above is that all the available experimental

data suggest that for all sizes of axon0 is much more nearly proportional to s than
to S (or D for a circular fibre). Thus, conventional theory of conduction in myelinated
fibres is not applicable to all fibres treated as a single class. But if groups II, III and y
are considered as one like class, and groups I anda as a quite separate class, then
theoretical analyses, which lead to the conclusion that0 should be almost proportional
to the external dimensions of the fibre, may be true within these two classes which
must differ in some fundamental respect.

It has not yet been explained, however, in what way large fibres and small fibres
are fundamentally different. Certainly the relative thinness of the myelin sheath on

large fibres explains why the scaling factor relating 6 and D is 5-7 rather than 4-6 if,
in fact,0xc s. But it does not explain why the thinning of the myelin sheath does
not have the expected effect of reducing substantially the conduction velocity of
large fibres compared with what it would have been if m had continued to increase
in proportion to s. Thus, there must be some other compensating difference between
large and small fibres.
Most obviously, the theory outlined earlier, derived from data in one particular

experimental situation in the frog, may not apply to all fibre groups in the cat. But
even if it does, there are other possibilities. In the first place, it is usually assumed
that axoplasmic resistivity (Ri) is the same for all sizes of axon. If Ri were substantially
less for large fibres than small fibres this might account for the fact that they have
a higher conduction velocity than expected. There is some evidence that R, may
differ from the value calculated from the concentrations of ions present due to ordering
of intracellular water or ions, or both (Carpenter, Hovey & Bak, 1973). It is not
considered worth pursuing this possibility at present, however. Secondly, although
theory suggests that 0 is almost independent of nodal area it could be that different
fibre classes have distinctly different specific nodal conductances or specific nodal
capacitance, most probably the former. This possibility is discussed by Jack (1975,
1976). Thirdly, axons are not usually circular and non-circularity may influence
conduction velocity as described below.

The effect of non-circularity on conduction velocity

If, as suggested by Coppin (1973) and Jack (1976), there is a systematically greater
degree of non-circularity in small axons than in large ones then the relatively small
cross-sectional area of a very non-circular small axon would increase the resistance
of the column of axoplasm between nodes appreciably, and 6 for a given value of D
would be less than if the axon were circular. This might explain why the scaling
factor relating 0 to D is less for small fibres than for large fibres.

In the derivation of eqn. (11) Rushton assumed that the conductance of the axo-
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plasm between two nodes was proportional to d2/l. For a non-circular axon this
conductance is oc A/i and, as pointed out by Jack (1976), eqn. (11) must be rewritten

Ioc(-Alng)i. (21)

Non-circularity is expressed in the present paper by q5, the ratio of axon cross-sectional
area to the area of a circle with the same perimeter. Thus

locs(-7lng)I. (22)

Arbuthnott et al. (1980) showed that small axons are, in fact, more non-circular,
on average, than large ones. This applied particularly to motor axons where the
mean value of0 was 0*79 for a axons and 0-69 for y axons, the difference being statisti-
cally highly significant. There was, however, a large amount of variability in the
degree of non-circularity within both a and y groups.

If we assume that 6 oc I within groups II, III and y and within groups I and a,
but that the actual relation differs within these two classes as discussed in the previous
section then, from eqn. (22)

6ocSg(-q lng)f (23)

within one fibre class. For a typical a axon (Fig. 10), q+ = 0-89. For a typical y axon,
0S is 0-83. This difference in the degree of non-circularity could give rise to a slightly
greater scaling factor relating 0 to external fibre size for large fibres than for small
ones, if the function ofg in eqn. (23) were constant, but is not nearly enough to account
for the size of the observed difference (1 24 times). In any case, the function of g in
eqn. (23) is slightly greater for the typical y axon than for the typical a axon, so
that any difference in scaling factor for large and small fibres, due to non-circularity
and change in g, should be very small.
In the case of afferent fibres the value of 0-0 84 for group I fibres was not signifi-

cantly different from that for group II fibres (Arbuthnott et al. 1980), so that non-
circularity cannot contribute to the difference in scaling factor between these two
groups (again 1-24 times). The difference between the value of q = 0*79 for group
III fibres and 0 = 0-83 for group II fibres was statistically significant, but the scaling
factor is the same for these two groups. Since g is larger for group III than for group
II fibres the changes in 0 and g ought to complement rather than oppose each other.

It is concluded that the observed difference in non-circularity between large and
small fibres may contribute to the fact that 6 Xc s rather than to S for all sizes of
axon, but cannot wholly account for it. This is probably the case even if eqn. (23)
is not strictly true in practice.

Non-circularity may also lead to an error in the conversion of measurements of D
in light microscopy to values of S. It was shown by Arbuthnott et al. (1980) that, if
D is the diameter of the circle which just contains a fibre, then S = 0-95 irD for
nearly circular large fibres in afferent groups I and II, S = 0 90 nTD for a efferent and
group III afferent fibres, while S = 0-85 7TD for y efferent fibres which are the most
non-circular of all. The relations 0 = 5-7 D and 4-6 D for large and small fibres,
respectively, thus become 0 = 1-95 S and 0 = 1-60 S, rather than 0 = 1-81 S and
6 = 1*46 S5 if the fibres were circular. The derivation of eqns. (4) and (7) relating 0
and s for small and large fibres is also affected. The slope of the relation for small
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fibres increases from about 2-4 to 2-6 whereas that for large fibres increases from
about 2-2 to 2-4; the intercepts are not altered appreciably. Eqn. (4) for small fibres,
corrected for non-circularity, gives a value of 0 for the average size of large fibre very
close to that given by the corrected eqn. (7). Thus, the effect of this correction for
non-circularity is to bring the experimental data closer to 6 = 2-5 a for all sizes of fibre.

Conclusion
The thinness of the myelin sheath on large axons does not have the expected effect

ofreducing 0 for large axons relative to its value for smaller axons with thicker sheaths.
In practice 0 = 2-5 8 approximately for all sizes of axon. The fact that large axons
are more nearly circular than small axons may compensate to some extent for the
thinning of the sheath on large axons, but cannot compensate for it completely.
Some other basic difference between large and small fibres must be responsible,
possibly a difference in specific nodal conductance. The evidence suggests that there
is a genuine discontinuity in the relation between 6 and fibre size, so that there may
be two distinct classes of peripheral myelinated nerve fibre. One class comprises
group I afferent and a motor fibres, and the other group II and III afferent and y
motor fibres. Theoretical analyses which suggest that 0 ought to be proportional to
the external perimeter of the fibre may apply to these two classes of fibre separately,
but not to all myelinated fibres taken together. Thus 6 = 2-0 S for the class of large
fibres and 6 = 1-6 S for the class of small fibres.
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PLATE 1

A, typical group I afferent and group II afferent fibres from nerve to flex. dig. long. lat., cat 3,
de-efferentated 40 days previously, to show large size difference and relatively thicker sheath
on the group II axon. group I fibre: 8 = 32 tom, n = 153 lamellae, g = 0-70. group II fibre:
8 = 10-5 sum, n = 60, g = 0-60. B, adjacent a andy efferent fibres from nerve to tibialis posterior,
cat 2, de-afferentated 35 days previously, to show large size difference and relatively thicker
sheath on the y axon. a fibre: 8 = 32 jm, n = 100, g = 0-73. y fibre: 8 = 9-5,um, n = 49,
g = 0-62. C, typical group II and group III afferents from nerve to soleus, cat 4, de-efferentated
40 days previously, to show relatively thicker sheath on the group II axon. group II fibre:
8 = 10-5 jm, n = 60, g = 0-63. Group III fibre: 8 = 6/m, n = 29, g = 0-70. See also Figs.
3B and 7A.

PLATE 2
Typical thickly and thinly myelinated y fibres from nerve to tibialis posterior from A, cat 1,
de-afferentated 35 days previously; large y axon: 8 = 12-5 /m, n = 69, g = 0-60; small y axon:
8 = 7*5 /m, n = 35, g = 0-70 and B, cat 2, de-afferentated 36 days previously; large y axon:
8 = 11-5 /m, n = 48, g = 0-70; small y axon: 8 = 6/m, n = 22, g = 0-73. Note that myelin
sheaths are thicker in cat I than in cat 2 but that the large y axon has a relatively thicker sheath
in both animals. See also Figs. 4A, B, 7B and 8A.


