Abstract
1. An electrophysiological and morphological study of sprouting and regeneration of motor nerves has been performed in the dually innervated pectoral muscle of Xenopus laevis. 2. Section of one of the nerves induced axon sprouting in the intact nerve. Synapse formation by the sprouting axons was slow since the intact nerve took more than 3 months to increase its field of innervation by 70%. The rate of axon regeneration was faster than that of axon sprouting since the cut nerve reinnervated its former territory in less than 1 month. 3. At early stages of synapse formation the sprouted or regenerated endings were poorly branched but any terminal branches were, as a rule, longer than normal. Signs of degeneration and replacement of endings have been observed. 4. Low levels of transmitter release persisted for several months in newly formed endings. This depression was more pronounced at the endings formed outside the normal field of innervation of the nerve. 5. Poly-innervated muscle fibres have been observed during reinnervation by regenerated or sprouted axons. Their number decreases gradually in the months that follow the beginning of reinnervation. Synaptic efficacy was lower at poly than at mono-innervated muscle fibres. At doubly innervated spots and at separated spots on the same fibre average end-plate potential (e.p.p.) amplitude was 1/3 and 2/3 respectively of that recorded at singly innervated fibres. 6. Electrophysiological and morphological data have been compared at individual doubly innervated end-plate sites. End-plate potential amplitude was positively correlated with the degree of ending development. 7. Sprouted endings remain functional after periods of reinnervation of 30 months, although signs of regression have been observed. These are probably mediated by spontaneous degeneration of the terminals and replacement by endings from the regenerating nerve.
Full text
PDF

















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angaut-Petit D., Mallart A. Dual innervation of end-plate sites and its consequences for neuromuscular transmission in muscles of adult Xenopus laevis. J Physiol. 1979 Apr;289:203–218. doi: 10.1113/jphysiol.1979.sp012733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRKS R., KATZ B., MILEDI R. Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol. 1960 Jan;150:145–168. doi: 10.1113/jphysiol.1960.sp006379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Florin T. A statistical analysis of the release of acetylcholine at newly formed synapses in striated muscle. J Physiol. 1974 Apr;238(1):93–107. doi: 10.1113/jphysiol.1974.sp010512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., McGrath P. A., Davey D. F. The regression of synapses formed by a foreign nerve in a mature axolotl striated muscle. Brain Res. 1979 Sep 21;173(3):451–469. doi: 10.1016/0006-8993(79)90241-5. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., Raftos J. The formation and regression of synapses during the re-innervation of axolotl striated muscles. J Physiol. 1977 Feb;265(2):261–295. doi: 10.1113/jphysiol.1977.sp011716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berndt W. O., Grote D. The accumulation of C14-dinitrophenol by slices of rabbit kidney cortex. J Pharmacol Exp Ther. 1968 Nov;164(1):223–231. [PubMed] [Google Scholar]
- Brown M. C., Ironton R. Sprouting and regression of neuromuscular synapses in partially denervated mammalian muscles. J Physiol. 1978 May;278:325–348. doi: 10.1113/jphysiol.1978.sp012307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COPENHAVER J. H., Jr, FORSTER R. P. Intracellular accumulation as an active process in a mammalian renal transport system in vitro; energy dependence and competitive phenomena. Am J Physiol. 1956 Jul;186(1):167–171. doi: 10.1152/ajplegacy.1956.186.1.167. [DOI] [PubMed] [Google Scholar]
- CROSS R. J., TAGGART J. V. Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Am J Physiol. 1950 Apr 1;161(1):181–190. doi: 10.1152/ajplegacy.1950.161.1.181. [DOI] [PubMed] [Google Scholar]
- Card D. J. Physiological alterations of rat extensor digitorum longus motor nerve terminals as a result of surgical denervation. Exp Neurol. 1977 Mar;54(3):478–488. doi: 10.1016/0014-4886(77)90251-5. [DOI] [PubMed] [Google Scholar]
- Chung S. T., Park Y. S., Hong S. K. Effect of cations on transport of weak organic acids in rabbit kidney slices. Am J Physiol. 1970 Jul;219(1):30–33. doi: 10.1152/ajplegacy.1970.219.1.30. [DOI] [PubMed] [Google Scholar]
- Dennis M. J., Miledi R. Characteristics of transmitter release at regenerating frog neuromuscular junctions. J Physiol. 1974 Jun;239(3):571–594. doi: 10.1113/jphysiol.1974.sp010583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis M. J., Yip J. W. Formation and elimination of foreign synapses on adult salamander muscle. J Physiol. 1978 Jan;274:299–310. doi: 10.1113/jphysiol.1978.sp012148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diamond J., Cooper E., Turner C., Macintyre L. Trophic regulation of nerve sprouting. Science. 1976 Jul 30;193(4251):371–377. doi: 10.1126/science.935873. [DOI] [PubMed] [Google Scholar]
- EDDS M. V., Jr Collateral nerve regeneration. Q Rev Biol. 1953 Sep;28(3):260–276. doi: 10.1086/399699. [DOI] [PubMed] [Google Scholar]
- FOULKES E. C., MILLER B. F. Steps in p-aminohippurate transport by kidney slices. Am J Physiol. 1959 Jan;196(1):86–92. doi: 10.1152/ajplegacy.1958.196.1.86. [DOI] [PubMed] [Google Scholar]
- Fangboner R. F., Vanable J. W., Jr Formation and regression of inappropriate nerve sprouts during trochlear nerve regeneration in Xenopus laevis. J Comp Neurol. 1974 Oct 15;157(4):391–406. doi: 10.1002/cne.901570404. [DOI] [PubMed] [Google Scholar]
- Frank E., Jansen J. K. Interaction between foreign and original nerves innervating gill muscles in fish. J Neurophysiol. 1976 Jan;39(1):84–90. doi: 10.1152/jn.1976.39.1.84. [DOI] [PubMed] [Google Scholar]
- Frank E., Jansen J. K., Lomo T., Westgaard R. H. The interaction between foreign and original motor nerves innervating the soleus muscle of rats. J Physiol. 1975 Jun;247(3):725–743. doi: 10.1113/jphysiol.1975.sp010954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerencser G. A., Hong S. K. Roles of sodium and potassium ions on p-aminohippurate transport in rabbit kidney slices. Biochim Biophys Acta. 1975 Sep 16;406(1):108–119. doi: 10.1016/0005-2736(75)90046-2. [DOI] [PubMed] [Google Scholar]
- Gerencser G. A., Park Y. S., Hong S. K., Solomon S. Sodium influence upon the transport kinetics of p-aminohippurate in rabbit kidney slices. Proc Soc Exp Biol Med. 1973 Nov;144(2):440–444. doi: 10.3181/00379727-144-37608. [DOI] [PubMed] [Google Scholar]
- Grinnell A. D., Letinsky M. S., Rheuben M. B. Competitive interaction between foreign nerves innervating frog skeletal muscle. J Physiol. 1979 Apr;289:241–262. doi: 10.1113/jphysiol.1979.sp012735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFFMAN H. Local re-innervation in partially denervated muscle; a histophysiological study. Aust J Exp Biol Med Sci. 1950 Jul;28(4):383–397. doi: 10.1038/icb.1950.39. [DOI] [PubMed] [Google Scholar]
- Kikuta Y., Hoshi T. Role of sodium ions in p-aminohippurate transport by newt kidney. Biochim Biophys Acta. 1979 Jun 2;553(3):404–416. doi: 10.1016/0005-2736(79)90296-7. [DOI] [PubMed] [Google Scholar]
- Koenig J., Pecot-Dechavassine M. Relations entre l'apparition des potentiels miniatures spontanes et l'ultrastructure des plaques motrices en voie de reinnervation et de neoformation chez le rat. Brain Res. 1971 Mar 19;27(1):43–57. doi: 10.1016/0006-8993(71)90371-4. [DOI] [PubMed] [Google Scholar]
- Kuno M., Turkanis S. A., Weakly J. N. Correlation between nerve terminal size and transmitter release at the neuromuscular junction of the frog. J Physiol. 1971 Mar;213(3):545–556. doi: 10.1113/jphysiol.1971.sp009399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUDGE G. H. Electrolyte metabolism of rabbit-kidney slices; studies with radioactive potassium and sodium. Am J Physiol. 1953 Jun;173(3):511–522. doi: 10.1152/ajplegacy.1953.173.3.511. [DOI] [PubMed] [Google Scholar]
- Mark R. F., Marotte L. R., Mart P. E. The mechanism of selective reinnervation of fish eye muscles. IV. Identification of repressed synapses. Brain Res. 1972 Nov 13;46:149–157. doi: 10.1016/0006-8993(72)90012-1. [DOI] [PubMed] [Google Scholar]
- Mark R. F., Marotte L. R. The mechanism of selective reinnervation of fish eye muscles. 3. Functional, electrophysiological and anatomical analysis of recovery from section of 3rd and IVth nerves. Brain Res. 1972 Nov 13;46:131–148. doi: 10.1016/0006-8993(72)90011-x. [DOI] [PubMed] [Google Scholar]
- Maxild J. Effect of externally added ATP and related compounds on active transport of p-aminohippurate and metabolism in cortical slices of the rabbit kidney. Arch Int Physiol Biochim. 1978 Aug;86(3):509–530. doi: 10.3109/13813457809055920. [DOI] [PubMed] [Google Scholar]
- Maxild J. Energy requirements for active transport of p-aminohippurate in renal cortical slices. Arch Int Physiol Biochim. 1973 Sep;81(3):501–521. doi: 10.3109/13813457309073400. [DOI] [PubMed] [Google Scholar]
- Maxild J., Moller J. V. Metabolic studies on renal transport of p-aminohippurate in vitro. Biochim Biophys Acta. 1969 Sep 2;184(3):614–624. doi: 10.1016/0304-4165(69)90276-1. [DOI] [PubMed] [Google Scholar]
- Miyamoto M. D. Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions. J Physiol. 1975 Aug;250(1):121–142. doi: 10.1113/jphysiol.1975.sp011045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto M., Riker W. F., Jr Motor nerve terminals as the site of initial functional changes after denervation. J Gen Physiol. 1969 Jan;53(1):70–80. doi: 10.1085/jgp.53.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podevin R. A., Boumendil-Podevin E. F. Monovalent cation and ouabain effects on PAH uptake by rabbit kidney slices. Am J Physiol. 1977 Mar;232(3):F239–F247. doi: 10.1152/ajprenal.1977.232.3.F239. [DOI] [PubMed] [Google Scholar]
- Podevin R. A., Boumendil-Podevin E. F., Priol C. Concentrative PAH transport by rabbit kidney slices in the absence of metabolic energy. Am J Physiol. 1978 Oct;235(4):F278–F285. doi: 10.1152/ajprenal.1978.235.4.F278. [DOI] [PubMed] [Google Scholar]
- Rotshenker S., McMahan U. J. Altered patterns of innervation in frog muscle after denervation. J Neurocytol. 1976 Dec;5(6):719–730. doi: 10.1007/BF01181583. [DOI] [PubMed] [Google Scholar]
- Rotshenker S. Synapse formation in intact innervated cutaneous-pectoris muscles of the frog following denervation of the opposite muscle. J Physiol. 1979 Jul;292:535–547. doi: 10.1113/jphysiol.1979.sp012870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHIDEMAN F. E., RENE R. M., STONEMAN F., REYNOLDS G. Succinate oxidation and Krebs cycle as an energy source for renal tubular transport mechanisms. Am J Physiol. 1951 Jul;166(1):104–112. doi: 10.1152/ajplegacy.1951.166.1.104. [DOI] [PubMed] [Google Scholar]
- Sanders F. K., Whitteridge D. Conduction velocity and myelin thickness in regenerating nerve fibres. J Physiol. 1946 Sep 18;105(2):152–174. [PMC free article] [PubMed] [Google Scholar]
- Scott S. A. Maintained function of foreign and appropriate junctions on reinnervated goldfish extraocular muscles. J Physiol. 1977 Jun;268(1):87–109. doi: 10.1113/jphysiol.1977.sp011848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheikh M. I., Moller J. V. The kinetic parameters of renal transport of p-aminohippurate in vitro. Biochim Biophys Acta. 1970;196(2):305–319. doi: 10.1016/0005-2736(70)90018-0. [DOI] [PubMed] [Google Scholar]
- Sheikh M. I., Stahl M. Characteristics of accumulation of probenecid by rabbit kidney cortical slices. Am J Physiol. 1977 Jun;232(6):F513–F523. doi: 10.1152/ajprenal.1977.232.6.F513. [DOI] [PubMed] [Google Scholar]
- Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer A. M., Sack J., Hong S. K. Relationship between PAH transport and Na-K-ATPase activity in the rabbit kidney. Am J Physiol. 1979 Feb;236(2):F126–F130. doi: 10.1152/ajprenal.1979.236.2.F126. [DOI] [PubMed] [Google Scholar]
- Tune B. M., Burg M. B., Patlak C. S. Characteristics of p-aminohippurate transport in proximal renal tubules. Am J Physiol. 1969 Oct;217(4):1057–1063. doi: 10.1152/ajplegacy.1969.217.4.1057. [DOI] [PubMed] [Google Scholar]
- WHITTAM R. Sodium and potassium movements in kidney cortex slices from new-born animals. J Physiol. 1960 Sep;153:358–369. doi: 10.1113/jphysiol.1960.sp006539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner I. M., Roth L., Skulan T. W. Effects of dinitrophenol and cyanide on TPAH and Na reabsorption. Am J Physiol. 1971 Jul;221(1):86–91. doi: 10.1152/ajplegacy.1971.221.1.86. [DOI] [PubMed] [Google Scholar]
- Wernig A. Estimates of statistical release parameters from crayfish and frog neuromuscular junctions. J Physiol. 1975 Jan;244(1):207–221. doi: 10.1113/jphysiol.1975.sp010792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodhall P. B., Tisher C. C., Simonton C. A., Robinson R. R. Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules. J Clin Invest. 1978 May;61(5):1320–1329. doi: 10.1172/JCI109049. [DOI] [PMC free article] [PubMed] [Google Scholar]