Studies in Detoxication

28. THE BIOSYNTHESIS OF o-, m- AND p-CYANOPHENYLGLUCURONIDES

By J. N. SMITH

Department of Biochemistry, St Mary's Hospital Medical School, London, W. 2

(Received 3 August 1949)

Studies in progress in this laboratory on the fate of cyanobenzene in the rabbit (Smith & Williams, 1949) required as reference compounds the glucuronides of the o-, m- and p-cyanophenols. These compounds were made biosynthetically by feeding the necessary phenols to rabbits and isolating the glucuronides from the urine. Only p-cyanophenylglucuronide was isolated as such, the o- and m-glucuronides being obtained as crystalline amides and triacetyl methyl esters.

EXPERIMENTAL

o-Cyanophenylglucuronide

o-Cyanophenol (1.5 g.; m.p. 90°)* was fed in aqueous suspension to a 3.5 kg. rabbit. No ill effects were noted, and after 4 hr. the urine (70 ml.) was collected. The urine gave negative tests with Benedict reagent, FeCl_a and dichloroquinonechloroimide, but an intense test with naphthoresorcinol. The basic Pb acetate precipitate of the urine was prepared as described in earlier papers (e.g. Smith & Williams, 1948). The Pb was removed with H₂S and the aqueous residue taken to a gum in vacuo. This gum (ocyanophenylglucuronide) was soluble in 95% ethanol and water, but attempts to crystallize it or to form crystalline salts with benzylamine or triethanolamine were not successful. Urine collected after 4 hr. contained only traces of the glucuronide. The gum was dissolved in 5 ml. 95% ethanol and methylated by shaking for an hour with an excess of diazomethane in 150 ml. diethyl ether. The mixture was filtered and the ether removed in vacuo leaving a neutral gum which was presumably the methyl ester of o-cyanophenylglucuronide. This ester was now dissolved in a mixture of 10 ml. acetic anhydride and 10 ml. pyridine. After 20 hr. at room temperature, the mixture was diluted to 100 ml. with water and cooled to 0°. Crystals (1.35 g. or 25% of the dose) of the methyl ester of triacetyl β -o-cyanophenyl-D-glucuronide were thrown out. These were collected and recrystallized from absolute ethanol-ligroin as long, colourless needles, m.p. 151–152° and $[\alpha]_D^{20^\circ} - 71^\circ$ (c, 4.9 in CHCl₃). (Found: C, 55.45; H, 4.8; N, 3.4; OMe, 7.2. C20H21O10N requires C, 55.2; H, 4.9; N, 3.2; OMe, 7.1%.) The compound was sparingly soluble in hot water, hot ligroin and CCl₄, easily soluble in CHCl₈, acetone, ethanol and ethyl acetate and insoluble in light petroleum.

 β -o-Cyanophenyl-D-glucuronidamide. The above acetylated ester (0-1 g.) was dissolved in 5 ml. absolute ethanol, and the solution saturated with NH₃ at 0°. On standing overnight β -o-cyanophenyl-D-glucuronidamide hemihydrate was deposited as fine colourless needles. It was recrystallized from ethanol/light petroleum and had m.p. 195° and $[\alpha]_{20}^{20^\circ} - 78^\circ$ (c, 1·3 in 50% aqueous ethanol). (Found: C, 51·3; H, 5·0; N, 9·7; $C_{13}H_{14}O_8N_8.0\cdot5$ H₂O requires C, 51·5; H, 5·0; N, 9·5%.) The compound was soluble in water, sparingly soluble in ethanol and insoluble in ether and light petroleum.

m-Cyanophenylglucuronide

m-Cyanophenol (2 g.; m.p. 83°) was fed, as a suspension in water, to a 3 kg. rabbit and the clear yellow 4 hr. urine (100 ml.), which gave only the naphthoresorcinol test, was worked up as for the o-compound. m-Cyanophenylglucuronide was obtained as a gelatinous solid which dried to a non-crystalline powder soluble in 95% ethanol and water. The powder was methylated in ethanol for 3 hr. with excess ethereal diazomethane to give a gummy methyl ester. This ester was acetylated as above and yielded 2.9 g. (40% of dose) of the crystalline methyl ester of triacetyl- β -m-cyanophenyl-D-glucuronide. Its solubility was similar to that of the o-compound. On recrystallization from absolute ethanol the compound formed colourless needles, m.p. 156-157° and $[\alpha]_D^{20°} - 37°$ (c, 3.2 in CHCl₃). (Found: C, 55.3; H, 5.2; N, 3.7; OCH₃, 7.2. C₂₀H₂₁O₁₀N requires C, 55.2; H, 4.9; N, 3.2; OCH₃, 7.1%.)

 β -m-Cyanophenyl-D-glucuronidamide was obtained by treating the above ester (0.25 g.) in ethanol (4 ml.) with NH₃, and after keeping the solution overnight the amide (0.1 g.) was precipitated from the solution by ether. On recrystallization from hot ethanol, the *amide* formed colourless needles of the monohydrate, m.p. 207° (decomp.) and $[\alpha]_{2^{3^{\circ}}}^{2^{\circ}} - 63^{\circ}$ (c, 0.4 in water). (Found: C, 50.4; H, 5.3; N, 9.5. C₁₃H₁₄O₆N₂.H₂O requires C, 50.0; H, 5.2; N, 90%.) It was soluble in water and ethanol but not in benzene or ether.

p-Cyanophenylglucuronide

p-Cyanophenol (1.5 g., m.p. 110°) was fed to a 3 kg. rabbit as before. A 4 hr. urine (100 ml.) was collected which gave no colour with FeCl₃, no reduction with Benedict reagent but an intense naphthoresorcinol test. On extracting the untreated urine with ether, an extract was obtained which gave feebly, with FeCl₃, the colours characteristic of a catechol derivative. The glucuronide fraction of the urine was separated by the Pb acetate procedure and the Pb-free filtrate was taken down *in vacuo* to a thin syrup, which solidified on standing. The solid was treated with a little water and the crystals (230 mg. or 6% of the dose) of pcyanophenylglucuronide monohydrate filtered off. The compound on recrystallization from water formed colourless needles, m.p. 140° (decomp.) and $[\alpha]_D^{20^\circ} - 92^\circ$ (c, 3.5 in

^{*} All melting points are uncorrected.

	Glucuronide		Triacetyl methyl ester of glucuronide		Glucuronidamide	
Cyanophenol	М.р.	$[\alpha]_{D}^{20^{\circ}}$ in water	М.р.	$[\alpha]_{D}^{20^{\circ}}$ in CHCl ₃	М.р.	$[\alpha]_{D}^{20^{\circ}}$ in water
ortho- meta- para-		vstallized vstallized – 92°	151° 156–157° 130–135°	- 71° - 37° - 42°	195°* 207°‡ 210–21 3 °	- 78°† - 63° - 72°
	* Hemihydrate. † In 50% aqueous ethanol. ‡ Monohydrates.					

Table 1. Melting points and optical rotations of biosynthetic cyanophenylglucuronides and derivatives

water). (Found: C, 50·15; H, 4·9; N, 4·45. $C_{13}H_{13}O_7N$, H_2O requires C, 49·85; H, 4·8; N, 4·5%.) The glucuronide was soluble to the extent of 5% in water; it was more soluble in ethanol but insoluble in ether.

The mother liquors after the separation of the crystalline glucuronide were evaporated to dryness, and the residue dissolved in a little 95% ethanol. The solution, on treatment with ethereal diazomethane as before, gave a gummy methyl ester. The latter, on acetylation with pyridine and acetic anhydride for 48 hr. at room temperature and then pouring into water, yielded the crystalline methyl ester of triacetyl β -p-cyanophenyl-D-glucuronide (0.51 g. or 9% of the dose). On recrystallization from ethanol-light petroleum the compound formed colourless needles, m.p. 130–135° and $[\alpha]_D^{00} - 42^\circ$ (c, 1.4 in CHCl₃). (Found: C, 54.8; H, 4.75; N, 3.65. C₂₀H₂₁O₁₀N requires C, 55.2; H, 4.9; N, 3.2%.)

β-p-Cyanophenyl-D-glucuronidamide. Treatment of the above acetylated ester (0.3 g.) with ethanol saturated with NH₃ at 0°, yielded after keeping overnight no crystalline material. However, on diluting the solution with light petroleum, the *amide* was thrown out as an oil which gradually solidified (yield 0.15 g.). It was recrystallized from ethanol-benzene and formed fine colourless needles, m.p. 210-213° (decomp.) and $[\alpha]_D^{20^\circ} - 72°$ (c, 2.6 in water). (Found: C, 53.3; H, 5.1; N, 9.5. C₁₃H₁₄O₆N₂ requires C, 53.05; H, 4.8; N, 9.5%.)

DISCUSSION

The properties of the o-, m- and p-cyanophenylglucuronides and their derivatives are summarized in Table 1.

The only figure calling for comment is the specific optical rotation of the methyl ester of triacetyl

Garton, G. A. & Williams, R. T. (1948). Biochem. J. 43, 206.
Garton, G. A. & Williams, R. T. (1949). Biochem. J. 44, 234.
Pigman, W. W. & Goepp, R. M. (1948). Chemistry of the Carbohydrates, p. 88. New York: Academic Press. o-cyanophenylglucuronide which is nearly twice that of its isomers. The rotations of the three amides are, however, of the same order. It is known that the tetra-acetates of some ortho-substituted phenyl- β glucosides have anomalous rotations (see Pigman & Goepp, 1948) when compared with the m- and pisomers. In view of this, the high negative rotation of triacetyl o-cyanophenyl-ß-glucuronide methyl ester compared with the m- and p-isomers is not unexpected. It may be noted also that the methyl ester of triacetyl β -o-methoxyphenylglucuronide (Garton & Williams, 1948, 1949) has $[M]_p - 21,560$ in ethanol, while the corresponding derivatives of β -m-acetoxyphenyl- and β -p-acetoxyphenyl-glucuronides have $[M]_p$ values about half of this (-11,466)and -10,296, respectively) in acetone.

One further point in this work is worthy of comment and that is that the main bulk of the cyanophenylglucuronides was excreted within 4 hr. of administering the cyanophenols, none of which was toxic at 0.5 g./kg.

SUMMARY

1. The preparation of p-cyanophenylglucuronide, by feeding p-cyanophenol to rabbits, is described.

2. The characterization of the biosynthetic o-, *m*- and *p*-cyanophenylglucuronides as their amides and triacetyl methyl esters, is described.

The author wishes to thank Prof. R. T. Williams for his stimulating interest and encouragement in this work.

REFERENCES

Smith, J. N. & Williams, R. T. (1948). Biochem. J. 42, 538.

Smith, J. N. & Williams, R. T. (1949). Biochem. J. (in the Press).