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Reduction-of-Dimensionality Kinetics at Reaction-Limited Cell Surface
Receptors
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ABSTRACT It has been suggested for several years that reactions between ligands and cell surface receptors can be speeded
up by nonspecific adsorption of the ligand to the cell surface followed by two-dimensional surface diffusion to the receptor, a
mechanism referred to as “reduction-of-dimensionality” (RD) rate enhancement. Most of the theoretical treatments of this and
related problems have assumed that the receptor is an irreversibly absorbing perfect sink. Such receptors induce a depletion
zone of ligand probability density around themselves. The reaction rate in this case (called “diffusion-limited”) is limited only by
the time required for ligands to diffuse through this depletion zone. In some cases, however, the receptor may be far from “perfect”
such that a collision with a ligand only rarely leads to binding. Receptors then do not create significant local depletion zones
of ligand probability density, and the reaction rate becomes strongly affected by the (small) probability of reaction success per
diffusive encounter (the “reaction-limited” case). This article presents a simple theory of RD rate enhancement for reaction-limited
receptors that are either reversible or irreversible binders. In contrast to the diffusion-limited theories, the reaction-limited theory
presented here: (a) differs quantitatively from diffusion-limited models; (b) is simple and algebraic in closed form; (c) exhibits
significant rate enhancement in some realistic cases; (d) depends strongly on the actual Brownian rather than pure diffusive
nature of the ligand’s motion; (e) depends (for irreversibly binding receptors only) on the kinetic rates (not just equilibria) of
reversible adsorption to nontarget regions, in contrast to some previous approximate theories of reduction of dimensionality;
and ( f) is applicable to actual ligand/receptor systems with binding success probabilities at the opposite extreme from the perfect

sink/diffusion-limited models.

INTRODUCTION

Since Adam and Delbruck (1968) hypothesized that reaction
rates between solutes and membrane receptors can be en-
hanced by nonspecific solute adsorption and subsequent two-
dimensional (2D) diffusion to the receptor, numerous theo-
retical and experimental works have attempted to clarify the
relevance and magnitude of this enhancement in actual bio-
chemical or biological systems (Berg and Purcell, 1977,
Wang et al., 1992; Berg, 1985; Cukier, 1983; Burghardt and
Axelrod, 1981; Thompson et al., 1981; Axelrod, 1983; Ful-
bright and Axelrod, 1993; McCloskey and Poo, 1986;
Rhodes et al., 1985). This enhancement, by “reduction of
dimensionality” (RD) from three-dimensional (3D) to 2D,
might in principle contribute to the great sensitivity of some
cells to low concentrations of ligands, and it also might pro-
vide practical clues on how to speed up reactions of immo-
bilized enzymes in industrial applications.

Several models of ligand/cell surface receptor interactions
(Berg and Purcell, 1977; DeLisi, 1980; Northrup, 1988;
Zwanzig and Szabo, 1991; Baldo et al., 1991; Goldstein,
1989) assume that the receptor targets are permanent perfect
sinks that can irreversibly absorb with infinite capacity any
ligands that collide with them. As the target consumes ligand,
it creates its own local concentration depletion zone, which
then slows the observable reaction rates to a steady state. In
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a perfect sink theory, the ligand concentration right at the
target is held equal to zero. The infinite capacity assumption
does not well describe actual cell surface receptors, which are
generally single-capacity and are continually replaced by
fresh receptors. But even single-capacity receptors reside in
statistical ligand depletion zones, apart from the very few that
might appear on the surface in the immediate proximity of
aligand (Berg, 1978; Collins and Kimball, 1949), so theories
based on infinite capacity sinks are still applicable.

On the other hand, a typical cell surface receptor may be
“imperfect” in that only some small fraction of the Brownian
collisions leads to binding. The ligand concentration at the
target will generally be greater than zero and will approach
the distant ligand concentration as the binding probability per
collision approaches zero. The RD enhancement problem
could be solved by the numerical methods of Wang et al.
(1992) for a diffusion-limited perfect sink, except with an
appropriately modified boundary condition for a “partial dif-
fusion limited” sink (Collins and Kimball, 1949). However,
in the limit of low binding probability, the solutions become
much simpler and algebraically explicit and still show the
effects of changing various parameters; this is the approach
taken here. The low binding probability limit is called the
“reaction-limit” because the speed of the reaction is limited
by the low binding probability rather than the depleted local
concentration. The zero-depletion zone/reaction-limit ap-
proach here is valid (at low binding probabilities) with only
minor modifications for both irreversible and reversible re-
actions (such that a newly dissociated receptor may rebind
the same or new ligand), but the results differ in several
respects. Reversibility in ligand binding is seen in a variety
of cell surface receptors, notably those for neurotransmitters.



Axelrod and Wang

The perfect sink/diffusion-limited RD theory by Wang et
al. (1992) itself was a significant modification of the Berg
and Purcell (1977) theory, a theory that assumed equilibrium
(rather than steady-state) adsorptive binding in the nontarget
regions. Because of this difference, the theory of Wang et al.
(1992) showed that the kinetic rate constants, and not just the
equilibrium constant, of nontarget adsorption and desorption
strongly affect the RD enhancement. The present article also
shows the importance of these kinetic rate constants for ir-
reversible reactions, but in addition shows that knowledge of
the ligand’s Brownian motion characteristic persistence
length can be essential for predicting RD enhancement in
some cases. Because the results of this paper for reaction-
limited receptors differs quantitatively from that of Wang et
al. (1992) for diffusion-limited receptors, we can conclude
that the probability of reaction success per collisional en-
counter is a key parameter in determining the efficasy of RD
enhancement.

THE MODEL

Here we qualitatively consider questions of dimensionality,
ligand reversibility, receptor distribution and ligand deple-
tion zones, reaction probability, available receptor popula-
tion, geometry, and microscopic details of the receptor/
ligand interaction. (For general discussions of receptor
ligand kinetics, see DeLisi (1983) and Lauffenburger and
Linderman 1993).) We use the terms “target” as a more gen-
eral substitute for “receptor”; “solute” as a more general sub-
stitute for “ligand”; “collision” for an encounter between a
ligand and a target closer than some specified radius; and
“reaction” for only those collisions that lead to ligand dis-
appearance or inactivation (for irreversible reactions) or li-
gand detention (for reversible reactions).

Dimensionality

In the RD system here, the kinetic processes in second and
third dimensions are coupled so that reversible adsorption
(characterized by adsorption and desorption rate constants k,
and kg) occurs only in nontarget (“nonspecific”) regions.
Specific targets embedded in the surface are assumed to be
capable of binding solutes that approach from either 2D or
3D.

Solute reversibility

In an irreversible reaction, the solute “disappears” once a
reaction occurs. We assume it is replaced on the average by
another solute molecule entering the system from an infinite
reservoir far from the targets. In a reversible reaction, the
solute binds to a specific target but then dissociates with
some probability rate. Dissociated solutes would then be free
to recollide and possibly (with some constant probability per
collision) react again. The results for irreversible reactions
can be applied as well to the reversible case, provided we
reinterpret some of the variables.
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Target distribution and depletion zones

A biologically realistic picture should assume that the targets
are single-capacity for ligands. In the reversible solute case,
a target releases the solute unaltered after some time. In the
irreversible solute case, two possibilities exist: a target/solute
complex might “disappear” (e.g., by endocytosis) to be re-
placed (assumed instantaneously here) at some, possibly
other, site by a fresh unbound target; or the solute may dis-
sociate in an altered inactive form (e.g., as a product of a
surface-bound enzyme), thereby leaving the target available
for binding to another solute molecule.

Both the targets and the available solutes near and on the
surface are presumed to be randomly distributed such that
any small subarea or subvolume contains a Poisson-
distributed number of targets and solutes, respectively. A
random deletion of solutes and targets (e.g. by endocytosis
after binding) will leave behind distributions that are still
Poisson. Nevertheless, the relative distribution of solutes and
targets is not random locally. Even in cases in which fresh
targets appear randomly on the surface, some targets will be
closer to solutes than others and those targets will likely react
with solutes earlier. In this manner, the fact that a particular
target may not have reacted for a “long time” (longer than
a few tens of nanoseconds) is evidence that there are few
solutes in its immediate vicinity. This local statistical deple-
tion zone is just as real as if the target had been a steady state
perfect sink with an infinite capacity and had annihilated the
local solutes (Collins and Kimball, 1949; Berg, 1978). These
local statistical depletion zones determine the reaction rate,
even for single-capacity irreversible targets. The diffusion-
limit/infinite sink RD enhancement theory of Wang et al.
(1992) is thereby applicable even to diffusion-limit/single-
capacity sinks. Likewise, the present reaction-limited theory
is valid for both single capacity (with continual replacement)
and infinite capacity (but permanent) targets.

For ease of calculation here, we approximate a random
distribution of targets as a uniform one such that the targets
are evenly spaced. Globally, irreversible targets on a cell
surface will develop a depletion zone around the whole cell,
of characteristic size on the order of the cell size. Solute
molecules flow down the gradient of this global depletion
zone, accounting for the rate at which the whole cell con-
sumes solute.

For an equilibrated system with reversibly binding targets
that remain on the surface, no global depletion zones will be
present. However, local statistical depletion zones still exist
around unoccupied targets for the same reason as discussed
above. In fact, the diffusive flow (even at equilibrium)
through this local depletion zone that accounts for the ten-
dency of any group of purely unoccupied targets to become
partially occupied over time.

Reaction probability

The probability that any collision between an unoccupied
target and a solute leads to a reaction affects the solute con-
centration in the local depletion zone proximal to the target.
If the probability is unity, the local solute concentration ap-
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proaches zero, creating a very deep depletion zone (the “dif-
fusion-limit”). But if the reaction probability is sufficiently
low (as discussed in Appendix A), the local concentration
around each target can approach the solute concentration at
regions near the cell surface that are more distant from any
target, creating a very shallow depletion zone (the “reaction-
limit”). Our simple algebraic approximation for RD enhance-
ment assumes that the kinetic rate with the targets is reaction-
limited.

Population of available targets

For reversible targets, the total reaction rate from 2D and 3D
affects the fraction of the targets that are unoccupied and
thereby available for immediate reaction. But for those ir-
reversible target reactions in which target/solute complexes
disappear and new targets are incorporated into the cell sur-
face, the population of available targets may be under some
intracellular biochemical control that is sensitive to total re-
action rate (e.g., “down-regulation”). For simplicity, in this
case, we assume that the new incorporation is instantaneous
after the disappearance of a bound complex (such that the
new incorporation rate always equals the total reaction rate)
and the number of available targets thereby remains a con-
stant independent of total reaction rate. Last, for those irre-
versible target reactions in which the solute is held for a finite
time and then released in an inactive form (e.g., enzyme/
substrate systems), the number of available unoccupied tar-
gets will depend on the total reaction rate. Aside from point-
ing out where the theory can be modified to handle this case,
we will not consider it further.

Geometry

A common geometry for ligand/cell-surface receptor kinetics
models consists of targets on a spherical cell of radius A. This
geometry produces a steady state when the distant solute
concentration is held at a finite constant. An alternative ge-
ometry consists of targets on an infinite flat plane, which for
steady state requires a constant source concentration at some
finite distance H away. We show here that in the zero-
depletion zone/reaction-limit, the math for the two geom-
etries is formally identical: the sphere’s radius A is replace-
able by the height H in the equations.

Microscopic details

Pure diffusion, with its fractal-like path, necessarily leads to
an infinitely high collision rate for the situation here: a non-
zero average solute concentration immediately in contact
with each target. To account for finite reaction rates with
nonzero local concentrations in pure diffusion, one must as-
sume that the reaction probability per collision is diminish-
ingly small (Collins and Kimball, 1949). Another approach
recognizes that the molecules follow a Brownian motion path
rather than pure diffusion; this approach yields a finite num-
ber of collisions/s from a finite solute concentration near a
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target. In Brownian motion, molecular velocity has a finite
persistence length because the instantaneous momentum of
the molecule can be transferred to the solvent at only a finite
rate by solvent viscosity. The Brownian motion persistence
length plays a central role in determining both reaction ki-
netic rates and the degree of RD enhancement in the present
theory.

The effects of other molecular-scale features, such as the
direction of approach and relative orientation of the reac-
tants, and local electrical fields, are all compressed into the
phenomenological constants of effective collision radius and
probability of a reaction per collision.

DEFINITIONS

We use notations somewhat similar to those of Wang et al.
(1992).

Diffusion coefficients

The diffusion coefficients used are: D5 = bulk (3D) diffusion
coefficient of solute (cm?/s); and D, = surface (2D) diffusion
coefficient of solute (cm?/s).

Nonspecific adsorption constants

The nonspecific adsorption constants are: k, = adsorption
rate constant onto nontarget regions of the surface (cm/s);
k4 = desorption rate constant from nontarget regions of the
surface (s™'); and K, = k,/ks = adsorption equilibrium
constant (cm).

Rate k, refers to the simple conversion of a bulk solute (at
concentration C3) into a nonspecifically adsorbed surface
solute (at concentration C,), represented by the chemical
reaction

k,
C,— G,

Rate k, is implicitly proportional to the concentation of
surface sites available for nonspecific binding and is
thereby independent of solute concentration only if the ad-
sorbate is far from saturating its surface sites. This formal-
ism is slightly different from the definition of the corre-
sponding k; rate of Thompson et al (1981) which explicitly
takes into account the concentration of free surface sites B
through the reaction

k,
C,+B—C,.

Geometry

We assume that the targets are circular and uniformly spaced.
Because of the uniform spacing, we assume each target sees
the same solute environment as any other on the average and



Axelrod and Wang

therefore can be considered singly. Each target is positioned
in the bottom center of its own exclusive volume domain with
a bottom area corresponding to the target’s share of the total
surface area on the plane or the sphere. This assumption
concerning the lateral position of the targets involves no loss
of generality here because both the surface concentration and
the bulk concentration proximal to the surface are laterally
uniform in the reaction-limit. R, = radius of a target (cm);
and R, = radius of the circular domain around the target
(cm).

We consider either a spherical or flat geometry for the cell
surface. For targets on a flat plane, a finite concentration
solute source must be at a finite height above the surface to
maintain a steady-state flow to the surface. For targets on a
sphere, steady state can be maintained by a finite concen-
tration source of molecules at infinity. A = radius of the
sphere on which the circular targets reside; H = height meas-
ured from the flat plane on which the circular targets reside
to the source plane.

In the spherical geometry, RZ = 4A%/N, where N is the total
number of available (unbound) targets on the cell.

Solute concentrations

The relevant solute concentrations are: Cy = 3D concentra-
tion at the solute source at the top of the domain (mol/cm?)
(at r = o for a sphere and z = H for a plane); C; = 3D
concentration in the bulk immediately above the surface
(mol/cm?) (at r = A for a sphere and z = 0 for a plane); and
C, = 2D concentration on the surface (mol/cm?).

Concentrations C3 and C, are those that are “seen”
locally by the target; we assume that neither is a function
of lateral position in the target domain. This assumption
makes the math simple but is accurate only in the case
considered here: the limit of low probability of binding
success upon collision (“reaction-limited”; see Appendix
A).

Collision rates and probabilities

A collision of a solute with a target is considered “successful”
if the collision leads to a chemical reaction of interest. The
relevant successful collision rates of solute per target (all in
mol/s) are: F, = successful collision rate of nonspecifically
adsorbed solute from 2D; and F; = successful collision rate
of bulk solute directly from 3D.

The total reaction rate is:

F =F,+F, (6))

Fo = F, evaluated at D, = 0 (i.e., no surface diffusion);
Fy, = maximum diffusion-limited rate per target, assuming
the whole surface is a perfect sink; and F, cannot possibly
be larger than Fy, for irreversibly binding targets. x,; =
probabilities of reaction success per collision from 2D or
3D, respectively. These are denoted as x in cases where

X2 = Xa-
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Brownian motion

0,3 = characteristic persistence distance of Brownian mo-
tion of the solute in 2D or 3D, respectively. o is related to
the average radius of curvature in the Brownian path of the
solute, or equivalently, to the characteristic decay distance of
the Brownian motion velocity autocorrelation function.
However, for simplicity, this distance has been approximated
as a “jump” size in a random walk that simulates diffusion
(Collins and Kimball, 1949; Noyes, 1954).

EQUATIONS AND SOLUTIONS

First, we write expressions for F, 5 in terms of the diffusion
coefficients, local concentrations, and Brownian motion per-
sistence lengths. One can show (Reif, 1965) that the number
of collisions/s % of a Brownian solute at bulk concentration
C; with a unit area surface is:

F = (v);,Cy/4 @

where (v); is the instantaneous speed of the Brownian solute
in 3D averaged over the Maxwell distribution of speeds. The
corresponding 2D expression for number of collisions/s .%
per unit length can be calculated in an analogous fashion,
giving:

F = (W,Cofm 3

In either dimensionality, speed (v), (n = 2, 3) is infinite for
pure diffusion (as can be deduced from the diffusive dis-
placement relationship (x2) = 2nDt or from the Maxwell
mean square speed kT/m, where for a purely diffusing par-
ticle, mass m — 0). But for Brownian motion, (v}, is finite
such that:

(V) = &0, @

where &, is the frequency of collisions experienced by a
single particle and o, is the free “run” between collisions.
Strictly speaking, this relationship is appropriate for self-
diffusion in gases, but the formalism has been applied
(Collins and Kimball, 1949; Noyes, 1954) to Brownian
motion where o, is reinterpreted approximately as the
Brownian persistence distance.

The effective diffusion coefficient D, in the appropriate
dimensionality is:

D, = §o00/2n ®)

The reaction rates F 5 are found simply by multiplying the
respective .% 3 rates of Eqgs. 3 or 2 by success probabilities
X2,3 and by the circumference (for 2D) or the area (for 3D)
of the circular target. Therefore, from Egs. 1 through 3, we
can write:

F, = (3w/2)x,R2D,C; /o, 6)
F, = 8x,R,D,C,/0, ™

The reaction rates F,, are obviously strongly dependent
on 0,. As expected, the rates approach infinity in the pure
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diffusion limit of o, — O for finite x, 3. Approximate val-
ues for o, can be derived from the Langevin approach to
Brownian motion (Reif, 1965; Russel, 1981). For very
short times, the Brownian mean square displacement
(x)V2 = (kT/m)'?t varies linearly with time f, and for
very long times the Brownian displacement (for a spherical
molecule) (x?)2 = (kT/3mnst)"2 becomes diffusive and
varies linearly with /2, where k = Boltzman’s constant;
T = temperature; 11 = viscosity; m = molecular mass; and
s = molecular radius. By setting these displacement ex-
pressions equal, we can find an intermediate characteristic
time, given by f, = m/3mns, around which the motion
passes from predominantly linear to diffusive. The dis-
tance traveled in this characteristic time is then o3 =
(x>)12 evaluated at t.. Plugging in appropriate constants
for m and s for a small peptide hormone and n = 0.01 p
for the viscosity of water gives o3 = 0.15 A. The effective
viscosity in 2D on a biological membrane surface may be
quite different from the 3D value. For the purposes of gen-
erating graphs of the solutions here, we will assume that
0, = 03. This assumption implies (from Egs. 4 and 5) that
any difference between D, and D5 is accounted for entirely
by a difference between collision frequencies &, and &;. In
general, however, knowing the ratio D3/D, does not unam-
biguously determine F3/F,.

Irreversible binding to targets

The “nonspecific” reversible binding to nontarget areas is
characterized by association and dissociation kinetic rate
constants k, and k4, respectively. For irreversibly binding
targets, every molecule that reacts with the target from 2D
must have been previously adsorbed nonspecifically onto the
surface from the bulk. Therefore, the net flow rate onto non-
target areas of the surface equals the irreversible 2D reaction
rate with the target:

Fir = 7(®2 - RY(K,C, — k,C) ®

(The superscript “irr” refers to the irreversible target version
of the indicated variable). The factor involving R, is the
nontarget area in the domain surrounding each target and
accounts for the reaction rate as defined per target rather than
per area.

In the case of infinite capacity targets, the rate of irre-
versible binding to a newly incorporated target in a sea of
solutes typically shows a rapidly decaying initial transient
as nearby ligands (if any are available) are captured,
“eventually” (after tens of nanoseconds) reaching a steady
state as more distant ligands flow down a local concentra-
tion probability density gradient toward the target. Even in
the case of single capacity targets that disappear upon li-
gand binding and are replaced by fresh targets elsewhere,
the situation is mathematically similar (for sufficiently low
ligand concentrations, generally less than 1 M): we need
only substitute the ligand concentration with the ligand
probability density, and the ligand binding rate with a
binding probability rate. But if x, 3 are low, this local gra-
dient of concentration (or probability density) can be quite
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flat, as discussed in Appendix A. In such a case, the only
significant depletion zone is not a local one around each
target as discussed above, but rather a global one between
the membrane surface and distant regions of the bulk,
formed by the combined effect of all the targets distributed
on the surface. Regardless of whether the geometry is pla-
nar or spherical, the total reaction rate F, per target is
equal to the flow rate of solute toward the target, and that
flow rate is proportional to the difference between the bulk
concentrations at a large distance Cy and at the membrane
surface Cj:

7 =B(C, — C3) (&)

For a planar geometry, the bulk concentration gradient and
the flow rate are easily calculated from the diffusion equa-
tion and Fick’s Law (and subsequently multiplying by the
target domain area mR?2), yielding:

Botsne = TREDS/H (10)

For a sphere, the flow toward the whole sphere is
4mAD3(Cy - C3), so the flow per target can be easily writ-
ten with:

Bsphere = "R§D3/A (1 1)

Factor 3 is the only parameter in which the plane versus
sphere question arises. Eqs. 10 and 11 show that H of the
planar geometry and A of the spherical geometry should be
interchangeable in the final results.

In the “enzyme/substrate” case where a bound target is
unavailable for a certain finite time interval as the substrate
is converted into a product, the number of available targets
will depend on the total reaction rate. Hence the domain
radius R, becomes a variable that itself depends upon Fi".
Although this complication can be still be handled algebra-
ically in a straightforward fashion, for simplicity we only
consider irreversible cases below in which Ry, is a fixed
constant.

The five equations, Eq. 1 and Egs. 6 through 9, are suf-
ficient to solve for the five unknowns (Fy, F3, F, Cy C3)
in terms of all the other physical parameters (R, H or A,
02,3, kag» D23, X2,3) by elementary algebra. We express the
results in terms of three functions of particular interest
here.

(1) 2D fraction £~ is the ratio of the binding rate from the

surface to the total binding rate:
f=FyIFF (12)
We find that

| (37\(o2\(x: \(D5 \(R,
= (6)(2) () E) (@)
8x,D,R, -1
.<1 * 170'2kd(2Rt2) - RZ)) " 1] (3

Fraction f; of solute arriving directly from the bulk is:

fr=1-f7 (14)
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Clearly, fi™ increases monotonically to a plateau as the
nonspecific desorption kinetic rate constant k4 increases,
even as the nonspecific adsorption equilibrium constant K,
is held fixed. Fig. 1 plots fi* versus k4 for a particular rea-
sonable set of parameters, for both the reaction-limited and
diffusion-limited (Wang et al., 1992) cases. For the reaction-
limited assumption to be valid given the choices of R, ;, and
0,3, we must have x = .001: see Appendix A. We choose
x = .001 for Fig. 1 a; smaller y values shift the curves to the
left without changing their shapes. At large enough kg4, col-
lisions from 2D can completely dominate the collisional
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behavior, even for surface diffusion coefficients that are
more than an order of magnitude less than the bulk diffu-
sion coefficient.

As the target concentration increases (R, decreasing to-
ward R,), fi* approaches zero. As we proceed far into the
reaction limit (x, 3 — 0, while keeping xs/x. constant), f,
increases to a plateau that depends only on the equilibrium
constant K. but not separately on the kinetic rate constant
k4. The radius of the whole cell A (or the interplane spac-
ing H) has no effect on f2irr.

(2) RD factor 0™ is the ratio by which a nonzero 2D

1.0 N=6 _—————————=————=———
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osd  f g
IRREVERSIBLE TARGETS
~ REACTION-LIMITED
=" 0.6
c - -N
5 D,=15x10
I3 (cm?/sec)
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N L
0.2
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N P
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diffusion coefficient enhances the total flow rate relative to
what it would have been with D, = 0:

n" = FEFy 15)
F™ can be written as a function of fi":
_ 2f5Ba; !
F,= BCO(I + 3D R (16)
Fi is simply Fi" evaluated at D, = 0, which sets fi¥ =
Therefore,
1+gqg
"= - 17
T T it gfy an
where
2Boa;
= 37wD,R%x, (8)

Fig. 2 plots 1\ versus k4 for the corresponding reaction-
limited and diffusion-limited cases. The same parameters as
in Fig. 1 are used in Fig. 2. RD enhancement '™ increases
to a plateau with increasing k4, even for a constant K. This
effect, true for both the reaction-limited model and the
diffusion-limited model, is in sharp distinction to the ap-
proximation of Berg and Purcell (1977), in which the rate
enhancement depends only on the equilibrium constant, and
the kinetic rates of nonspecific adsorption do not appear in
the theory. At any particular D, and kg4, RD enhancement '™
increases with K, as all the curves of Fig. 2 expand upward
and shift to the left.

As we proceed far into the reaction-limit (x,,; — 0 with
X3/X2 constant), n'™ approaches a limiting value for any par-
ticular set of parameters. For the constant values of D3, 0, 3,
R,, and K, used in the figures, 7™ can be quite substantial,
ranging from severalfold to several hundredfold for D, rang-
ing from = 1.5 X 1078 to 1.5 X 107 (cm%/s).

Fig. 3 a shows how 7' varies with the intertarget spacing
Ry, which increases with decreasing target concentration. RD
enhancement '™ increases monotonically from unity (at
high target concentration) to 1/fi" (at low target concentra-
tion).

(3) Global efficiency ¥"™™ compares the total flow rate per
target F, with the flow rate per target Fy, that would occur
if the entire membrane surface were a perfect sink.

¥y = Fi"F_ (19)

F,, equals BCy, as can be seen by setting C5 = 0 (the perfect
sink boundary condition in Eq. 9). From Eq. 16, we get:

i — 2f3mBa.3 !
r(sbmg) @

Fig. 3 b shows how <y varies with target concentration. It
shows that the whole cell can behave as a perfect sink even
if the small targets on its surface are highly imperfect,
reaction-limited sinks. Evidently, a solute molecule can col-
lide often enough with targets while in the vicinity of the cell
surface to overcome the low reaction probability per colli-
sion; it will eventually be consumed with high probability by
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some target. As long as the conditions for reaction-limit are
met (Appendix A), a deep global depletion zone can exist
even when local depletion zones are very shallow. This be-
havior is a generalization of the Berg and Purcell (1977)
conclusion that even a low concentration of small perfect
sink targets uniformly distributed on a spherical cell could
make the whole cell appear as a perfect sink to the envi-
ronment.

Global efficiency y, RD enhancement 7, and 2D fraction
f> are related by:

@D

Reversible binding to targets

The theory in the previous subsection treats the targets as
irreversible sinks. What if the targets are not sinks at all but
can bind ligands reversibly? In such a case, we might assume
that each binding leads to some physiological effect, but the
ligand is unaltered and is free to rebind any time after dis-
sociation from the target. The flow rate of solute toward the
targets, averaged over all targets—both bound and
unbound—is zero. But the flow rate toward just the unbound
targets is not zero; these available targets reside in statistical
depletion zones as evidenced by the fact that they are un-
bound. As for the irreversible case, this depletion zone is very
shallow if the reaction probabilities x, 3 << 1, and the same
overall simple algebraic approach should still be applicable.
The system is not just in steady state, but in equilibrium, so
that the nontarget adsorption kinetic rates &, and k4 will act
only in their ratio K, which then also equals the surface/bulk
concentration ratio C,/Cs.

In the reversible target case, the number of available un-
bound targets on the cell surface depends on the specific
binding and dissociation rates at the targets: the ratio of these
rates determines the equilibrium fraction « of unbound ver-
sus total targets. The reaction-limited binding rate per un-
bound target is F, + F; the dissociation rate per bound target
is given by 77! where 7 is the mean time that a target holds
its ligand before randomly releasing it. Fraction a can be
easily calculated to be:

8x,D,K, 3m,R.D -1
o= I:TRaC3< Xzaj © 4 ”’;30 : 3) + 1] (22)

The average binding rates per target (averaged over all tar-
gets both bound and unbound) are then (F,3,) = aF,3,. It
is true that R, becomes a variable as the number of avail-
able sites changes, as in the irreversible “enzyme/
substrate” case discussed earlier. But here in the reversible
target case, R, does not enter into the calculations. We
now calculate for the reaction-limited reversible case the
analogous variables to those of the reaction-limited irre-
versible case above.

(1) 2D fraction ( f5). In the reversible case, the reaction
rate (F,) analogous to Eq. 1 is no longer equal to the net flow
toward the surface as in the irreversible case Fi™ (Eq. 9);
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indeed, the net flow is zero for reversible binding. The rates
(F,3) are given by Egs. 6 and 7, each multiplied by «, but
they are entirely decoupled because bulk concentration C;
near the surface is constant and equals the distance bulk
concentration C, under all conditions. The solution for

(5" (= (FKFy) = 1 - (f5")) is then:

- [EERREET -

Note that (f5) does not depend on Cs, nor 7, nor the un-
bound fraction a, nor the intertarget spacing Ry. (f5") is
identical with the asymptotic limits (x,,3 — .0 for constant
Xa/X2, ot kg — o for constant K.) of fir.

(2) RD factor (") (= (F™)/F¥")) is affected by the
dependence of the free target fraction a on D,. If D, = 0,
then « increases to the value ap. We find that:

(™) = ()AL f5)) 24
(M™") is a strong function of the bulk concentration Cs, un-
like '™ (Eq. 27) which is independent of Cs. The reason
for this difference is that, in the reversible case, the num-
ber of available reversible receptors decreases as the spe-
cific binding rates increase (for the same characteristic
binding time 7), but in our irreversible cases, the number
of available receptors is unaffected by binding rates. Fig. 4
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shows (n"") plotted against the product x7C; for param-
eters similar to those used to calculate 0™ in Fig. 3. The
potential RD enhancement can be very substantial for quite
reasonable physiological values of x7Cs; and D,. The ap-
pearance of the product y7C; shows that a decrease in any
of those three factors can be compensated by an increase
in the others. (n™") is not a function of the kinetic rate
constants k, and k4 separately (as is m'™) but only of the
nonspecific adsorption equilibrium constant K, as would
be expected from an equilibrium process.

(3) Global efficiency {(y™") compares the average total
reversible reaction rate per target ((F©™) = aF™) with the
highest possible total irreversible reaction rate per target Fp,

Target spacing R, (cm)

(= BCy) as can be attained by a surface covered by perfect
sink targets.

(y™) = (F)F, (25)
For reversible targets, there is no global depletion zone, so
Co = C;3 and F,, = BC;. In general, (y*") is linearly pro-
portional to the target concentration and can be orders of
magnitude larger than unity at the higher target densities
(R, — R,). The reason why reversible reactions are so “ef-
ficient” is that the solute can rebind repeatedly without
having to diffuse through a global depletion zone, as in the
irreversible case.
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DISCUSSION

The theory presented here for RD enhancement toward
reaction-limited targets, both irreversible and reversible, is
an extension of that presented by Wang et al. (1992) for ir-
reversible diffusion-limited/perfect sinks. The present
model is simple and algebraic because here it assumes that
no significant local depletion zones develop around any
targets. This assumption is approximately true if binding
occurs only with low probability on each collision, as dis-
cussed in Appendix A. A distinct difference between this
reaction-limited model and the diffusion-limited model for
irreversible targets is the strong dependence of RD en-
hancement on the reaction probabilities x,3;. A general
model of RD enhancement for partial-diffusion-limited ir-
reversible sinks has not yet appeared, but would almost
certainly require a numerical solution on a computer. Such
a model would follow the approach of Wang et al. (1992)
except that the solute concentration boundary condition at
the surface of a target would be set as the “partial reflec-
tion” condition of Collins and Kimball (1949) (their Eq.
28) rather than set at zero.

The constant parameters used in the Figs. 1 through 3
for the reaction-limited irreversible target case were cho-
sen to be biophysically reasonable. R, = 5 A is a value
typically used in Smoluchowski theory calculations
(DeLisi, 1980). o5 = 0.15 A comes from our Brownian
motion approximation for a solute molecule with a mo-
lecular weight of 3000 and effective spherical radius of 10
A dissolved in water. o, was set equal to o5 although the
actual value probably depends greatly on the detailed mo-
lecular environment of the surface. A was set equal to 5
pm, typical of a lymphocyte. R, was set at 0.5 wm so that
the total number of targets per cell is set at 400, which is
sufficiently small for 2D diffusion to have a chance to in-
crease the total collision rate (see Fig. 3 a). The K, was set
to the value (1.5 X 10~° c¢m) found for nonspecific adsorp-

x:C;5 (molec-sec/cm®)

tion of insulin on erythrocyte membrane (Fulbright and
Axelrod, 1993). Reaction probabilities x, 5 were set at .001
to ensure we are in the reaction-limit (see Appendix A).
These reasonable parameters result in substantial RD en-
hancement factors 0'™, ranging from 1.5 to 337, for D, =
1.5 X 107 to 1.5 X 107® (cm?s), respectively, for kg >
10* 571,

For any particular desorption rate constant, k4, stronger
equilibrium binding as measured by K, leads to a greater
2D enhancement factor 7. Increasing K. for a constant kg4
means increasing k,; evidently, more adsorptions (and
desorptions)/s of solute at nontarget regions lead to a
greater enhancement of the reaction rate with the targets.
Nonetheless, there is a limit to how large the adsorption
rate k, can be. In analogy with Eq. 6 which concerns target
reactions, the number of collisions/s F3 with the nontarget
region of the surface in each target domain is:

F} = (3m/2)(R2 — R)D,C,/a, (26)

At the maximum possible adsorption rate, all of these col-
lisions would lead to adsorption. We then can set F3 equal
to the adsorption rate term analogous to that.in Eq. 8,
(R — R?) k™*C,, thereby giving:

km = (3/2)D, /o, @27

For the values of D; and o3 used previously, this gives
k> = 2250 cm/s. For any K., this maximal diffusion-
limited k7* then determines the maximal possible desorp-
tion rate k7**. For our parameters with K, = 1.5 X 1075
cm, we get k7™ = 1.5 X 108 s7!. Because this maximal
value is larger than any plotted in the abscissa of Fig. 2,
the range shown there is physically reasonable. Given an
actual k, value obtained from experimentally measured k4
and K. values, we can also calculate the ratio k,/kI™,
which is the probability that nontarget collisions will result
in adsorption. This probability can be remarkably small (as
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small as 1077 for the chosen parameters, four orders of
magnitude yet smaller than the already-small probabilities
of success for on-target reaction-limited collisions) and
still yield a significant RD enhancement over the zero sur-
face diffusion case.

A significant approximation in the approach presented
here is the substitution of a mean-free-path model of mo-
lecular motion in place of a more accurate formulation of
Brownian motion in a liquid. This approximation probably
does not affect the trends, but it will affect the absolute mag-
nitudes chosen for the o>, ; lengths. Because we do not know
what the exact value of o, should be, it is interesting to see
what happens when it is varied. For both the reversible and
irreversible reaction-limited cases considered here, RD en-
hancement 7 increases as o, decreases (while D, is held
constant). A smaller o, corresponds to sharper twists and
turns in the random walk of Brownian motion and thereby
to more collisions/s in 2D. In both the reversible and irre-
versible models here, decreasing o3 toward zero (the pure
diffusion limit) suppresses the RD enhancement factor down
toward unity, at which value 2D diffusion could not possibly
enhance reaction rates.

The strong dependence of all the results on o7, 5 parameters
which do not even appear in pure diffusion theories (e.g.,
Berg and Purcell, 1977; Collins and Kimball, 1949), seems
at first to raise a question about the relevance of pure dif-
fusion theories. However, in situations in which depletion
zones are relevant (non-reaction-limited targets), pure dif-
fusion theories become applicable when the characteristic
size of the depletion zone becomes much larger than the
Brownian persistence distances 0,3 and the former thereby
becomes the relevant characteristic distance in the problem.

It is entirely possible that the reaction probabilities are not
the same for both the 2D and 3D routes; i.e., xo # x3. In
particular, what if the probability y, = 0 but y; > 0? Ac-
cording to Eq. 7, the effect would be exactly the same as if
D, were zero; i.e., surface diffusion could not possibly lead
to reaction rate enhancement. This conclusion is in contra-
distinction to the diffusion-limited model, where the depth
and shape of the local depletion zone in 3D can be affected
by 2D diffusion, even if no reactions occur directly from 2D
(see Appendix B).

Our calculations show that RD enhancement can be sub-
stantial for reaction-limited cell surface targets. But the mag-
nitude of the predicted RD enhancement depends on a variety
of molecular details of the reactions beyond those considered
by the approximate Berg and Purcell theory. These features
are characterized by: Brownian distances o, and o3; non-
specific kinetic rate constants k, and k4 separately; the po-
sition of the specific reaction on the spectrum between
diffusion- and reaction-limited rates; whether the reaction
can occur by collision from both 2D and 3D or from 3D only,
or perhaps in a guided 3D manner (as suggested by Tan et
al., 1993); whether or not reversible nonspecific adsorption
occurs at the receptive patches themselves (e.g., Berg, 1985);
and whether the targets are reversible or irreversible.
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APPENDIX A
The reaction-limit and x

For the simple algebraic approach to kinetic rates in this
article to be valid, the local concentrations C, and C; around
a target must not vary much with distance from the target,
at least out to a distance on the order of the intertarget radius
Ry. To obtain very approximate expressions for x,; for
which this condition will be true, we will divide the problem
into pure 3D and pure 2D aspects.

In 3D, we can approximate each target as a partially ab-
sorbing spherical sink of radius R, (rather than a disk of the
same radius). The distant concentration (at » ~ R,,) is C3, and
the concentration at the surface of the target (necessarily less
than C3) is designated as C;. We want the ratio C4/C; to be
only slightly larger than unity; this situation corresponds to
the almost flat local concentration profile that defines the
“reaction-limit.” In steady state, both C; and C5 are constant
in time and the flow rate F3 into one hemisphere (corre-
sponding to the target surface facing out from the membrane)
has the form:

_ 2mD;R,(C} — C,)
37 1-(RJR,)

(A1)

This flow rate can also be described by a kinetic formula
analogous to Eq. 6 (except modified for the area of a hemi-
sphere instead of a disk):

Fy = 3mx,R2D,C,/ (5} (A2)

Setting these two expressions equal, noting that R,/R, < 1,
and solving for y; gives:

o= (5)E-)R)

If, for example, we demand that the proximal and more distal
local concentrations C; and C3 differ by no more than 10%,
then C3/C; = 1.1. For reasonable values of o3 ( = .15 X
1078 cm) and R, (= 5 X 1078 cm), we then conclude that
X3 must be =.002 for a maximum of 10% inaccuracy in
the zero local depletion zone assumption.

Likewise in 2D, we model the target domain as a circular
source at r = R,, maintained at a steady state concentration
of C;, surrounding a partial sink of radius = R, with a
concentration of C; at its circumference. In this simplified
geometry, one can easily show from the diffusion equation
that:

(A3)

_2mD,(C;, — C,)
27 In(R,/R,)

The kinetic expression for F, analogous to that of Eq. 7 is:
F, = 8x,R,D,C,/0, (AS)
Equating these two expressions and solving for C, gives:

o () mar(2-1)(2) e

a

(A4
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Reasonable values for the reciprocal log term would extend
from about 2 to about 1/9, thereby covering a wide range
(eight orders of magnitude) of target concentrations. Sub-
stituting in o, (= .15 X 108 cm), R, (= 5 X 1078 cm),
and R, = 1000 R,, we conclude that a maximum of 10%
inaccuracy in the 2D local zero depletion zone asumption
requires that x; < .001.

In the actual RD enhancement problem, the 2D and 3D
regimes interact via the nonspecific reversible adsorption
route. But if we choose both x, and x; to equal the lesser of
the x» 3 values estimated here (.001), it can be shown (by an
electric resistor network circuit analogy, unpublished) that
“turning on” the 2D/3D interaction depletion zone will not
significantly deepen the local 3D depletion zone beyond 10%
while somewhat filling the 2D depletion zone.

The simplified model above also overestimates local
depletion zones because it places the sources for new solute
exclusively at Ry, far from each target. A model more rep-
resentative of the actual RD enhancement problem would
spatially distribute the sources over the whole ring area be-
tween R, and R,, corresponding to 3D diffusion from distal
regions and adsorption onto the surface.

APPENDIX B
Boundary conditions

Perfect sink model: what happens if reactions can only
occur from 3D?

An actual membrane receptor probably binds ligands which
approach the active site from within some limited solid angle.
In one interesting limit, the active site might be viewed as a
target that only accepts ligands approaching from 3D, and not
directly from 2D at all. For a reaction-limited model in a such
a situation, we have shown that a 2D reaction rate enhance-
ment does not occur. But for a diffusion-limited model, the
effect is different. The local 3D depletion zone will give rise
(through nonspecific adsorption kinetics) to a local 2D deple-
tion zone, through which 2D-adsorbed ligands can flow to-
ward the target in steady state. For a reaction to occur, de-
sorption near the target is required; this will tend to partially
fill the local 3D depletion zone and thereby enhance reaction
rates over what they would have been in the absence of non-
specific adsorption and/or surface diffusion. Even so, one
would not expect this mode of approach to make any dif-
ference if the adsorption/desorption rates k, and k4 are (a) so
very fast that the bulk and the surface are essentially in equi-
librium; or (b) so very slow that desorption near the target
can only negligibly augment 3D diffusion toward the target.
But for intermediate kinetic rates (presumably for k4 rates
comparable to the rate of 3D diffusion through the 3D deple-
tion zone), 2D enhancement might occur.

We have tested this hypothesis using the same steady-state
perfect sink program as in Wang et al. (1992) but with
one change: the 2D perfect sink boundary condition
Cx(r = R,) = O is here replaced with a 2D perfect reflecting
boundary condition dC/or(r = R,) = 0. The result confirms
that RD enhancement can occur, but (for the same input
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parameters as in the solid curve of Fig. 3 b), it does not
become significant (>1.2) until k4 is greater than 1 X 106571,
a very high desorption rate constant. Therefore, in most situ-
ations, 2D enhancement is much more likely to be important
if the target can capture ligands directly from 2D. The great
sensitivity in the results to this detail concerning the ligand’s
final direction of approach should be studied in less extreme
and effectively intermediate models; e.g., in which a graded
potential attracts ligands to a zone near the surface through
which ligands diffuse in 3D but with a bias toward remaining
near the surface.

The most general approach

The perfect 2D sink diffusion boundary [Cx(r = R,) = 0],
the perfect 2D reflecting diffusion boundary [dC,/or
(r = R,) = 0], and the reaction-limit approximation [C, in-
dependent of r] used here are all special cases of the general
Collins and Kimball (1949) partial reflection boundary
[D20Co/or(r = R,) = kC(r = R,), where k is an intrinsic rate
of specific binding such that k = (4/m)(xD2/0>) in our no-
tation]. (Analogous expressions for 3D can be easily written.)
For a perfect sink in pure diffusion, x = 1 and 0, — 0 so
k — . For the perfect reflecting boundary in pure diffusion,
x = 0 and o, — 0 so k = 0. For the reaction-limit, y — 0
so k— 0, which forces dC,/dr(r = R,) — 0 and thereby yields
an increasingly flat C, almost independent of . A completely
general (numerical) solution of the RD enhancement prob-
lem should start with the Collins and Kimball condition.
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