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Theory for Establishing Proximity Relations in Biological Membranes by
Excitation Energy Transfer Measurements

Juan Yguerabide
Department of Biology, University of California, San Diego, La Jolla, California 92093 USA

ABSTRACT In a previous publication (Shaklai et al., 1 977a) the present author developed a theory for evaluating proximity
relations and surface densities cr in biological membranes by measurements of excitation energy transfer from a donor attached
to a specific site of a membrane protein and an acceptor attached to a specific carbon on a membrane lipid. It was assumed
that the protein and lipid are randomly distributed in the plane of the membrane and that the donor and acceptor groups are
confined to different planes in the membrane separated by a distance Rp. In this article several aspects of the theory presented
in the previous paper are clarified, especially noting that the previous theoretical expressions for the time-dependent and steady
state fluorescence intensities assumed that the labeled protein molecule is cylindrically symmetric with the symmetry axis
perpendicular to the plane of the membrane and that the donor is positioned on the symmetry axis of the protein. This assumption
is also implicitly or explicitly made in subsequent formulations by other investigators. In this article we generalize the theory to
include the case where the donor is not on the symmetry axis of the labeled protein. Equations for calculating the time-dependent
and steady state fluorescence intensities for this more general case are presented, and methods for applying these theoretical
expressions to the analysis of steady state fluorescence intensity data and evaluation of proximity parameters are discussed.
It is also shown in this article that the linear relation 1/1O = 1 + Kqa previously derived for simple analysis of excitation transfer
data for the condition r/RO 1 can be modified to apply to almost all practical ranges of r/RO without much affecting its simplicity
in the analysis of experimental data.

INTRODUCTION

Several years ago, the present author developed a theory for
establishing proximity relations in biological membranes by
fluorescence intensity measurements of dipole-dipole exci-
tation energy transfer between appropriately positioned do-
nor and acceptor groups, and together with Shaklai and
Ranney used this theory to characterize experimentally the
interactions of hemoglobin with the red cell membrane
(Shaklai et al., 1977a, b). The theory was developed for do-
nor and acceptor groups that, in general, are each randomly
distributed in separate (or same) planes parallel to the mem-
brane surface as exemplified in Fig. 1. In this figure the donor
is attached to a specific site on a membrane protein, and the
acceptor is covalently attached to a specific site on a mem-
brane lipid. The lipid and protein are assumed to be randomly
distributed in their longitudinal planes. The donor could
equally well be on the lipid and the acceptor on the protein
without affecting the theory.
The theoretical expressions that were derived in Shaklai

et al. (1977a) allow the distance between the donor and ac-
ceptor groups to be evaluated from experimental measure-
ments of the fluorescence intensity of the donor at different
acceptor concentrations (surface densities) in the membrane.
More specifically, one can evaluate the closest distance rc to
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which acceptor molecules can approach a donor molecule in
the membrane. This distance of closest approach is deter-
mined by geometrical factors related to the size and mem-
brane positions of the labeled membrane protein and lipid
and, thus, gives information on these important parameters.
The theory also allows the surface density of acceptors to be
determined by fluorescence intensity measurements with a
donor-labeled lipid.
The general theory developed in Shaklai et al. (1977a)

relates fluorescence intensity I of the donor to rc and surface
density or of the acceptor through an integral expression.
However, for the case rc Ro (where Ro is the distance
between donor and acceptor at which transfer efficiency is
50%), it was shown that the fluorescence intensity can be
described by the simple linear relation IO/I = 1 + Kqc where
Kq depends on rc/RO (see Eqs. 15-17 in the present text). This
relation greatly simplifies the analysis of experimental data.
It allows rc to be simply determined from the slope of a plot
of IO/I vs. or. It can also be used to determine experimentally
the surface density a of acceptor (using a donor-labeled lipid
incorporated into the membrane and a value for Kq). The
latter capability allows one to determine, for example, mem-
brane binding affinities of donor-labeled proteins as we dem-
onstrated for hemoglobin binding to the red cell membrane
using a donor-labeled fatty acid (Shaklai et al., 1977a, b).

Other investigators have examined various aspects of our
original theoretical formulation, especially to derive analyti-
cal relations for fluorescence intensity vs. cr that apply in
different ranges of rc/RO. Fung and Stryer (1978) investigated
the effects of membrane curvature, which is important for
lipid vesicles with very small diameters, and further tested
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FIGURE 1 Schematic representation of the membrane excitation energy
transfer model in which excitation energy transfer groups are confined to
the plane DP and the acceptor groups to the plane AP. The planes DP and
AP are parallel to the membrane surface. The model is exemplified here with
the donor attached to a protein molecule (ellipse) and the acceptor to a lipid
molecule. Although only one donor and one acceptor group are shown, many
acceptors are assumed to be randomly distributed in the AP plane around
the donor.

the ability of the technique to measure the surface density of
donor molecules using donor- and acceptor-labeled lipids.
Wolber and Hudson (1979) derived an analytical expression
for I vs. oa that applies for rc << Ro. Dewey and Hammes
(1980) derived a corresponding expression that applies in the
range rc/RO > 0.7. The expressions of these investigators,
however, are not as simple to use as our original linear re-
lation. In this report, we show that our linear relation can be
modified to apply to almost all ranges of rc/RO encountered
in practice without much affecting its easiness of use. More
specifically, we present the modified relation I/IO = 1 +
yKqoc, where y is a factor that depends rc/Ro, and show how
to use it in practice.
We also note in this report that our original formulation,

as well as other formulation that have followed, implicitly
assumed that the donor (or acceptor) is positioned along the
symmetry axis of the labeled protein (see Figs. 1 and 2 in this
report). This assumption is especially problematic when, for
example, the donor (or acceptor)-labeled protein penetrates
into the plane of the acceptor (or donor) as explained in a later
section. In our studies of hemoglobin this was not a problem
because the donor hemoglobin molecule was not expected to
penetrate into the acceptor plane. In this article we generalize
our original formulation to now cover the case where the
acceptor (or donor) on a labeled protein is not on the sym-
metry axis of the protein and discuss how to apply the new
formulation to experimental results. In an accompanying ar-
ticle, we apply this new formulation to establish proximity
relations in the membrane-associated acetylcholine receptor.

Other pertinent publications are Baird et al. (1979), Doody
et al. (1983), Eisinger and Flores (1982), Fleming et al.
(1979), Gutierrez-Merino (1981a, b), Hammes (1981),
Holowka and Baird (1983a, b), Issacs et al. (1986), Koppel
et al. (1979), Sklar et al. (1980), Estep and Thompson (1979),
Van der Werf and Ullman (1979). Previous applications of
excitation energy transfer in membranes are Cantley and
Hammes (1976), Tweet et al. (1964), Vanderkooi et al.
(1977), and Veatch and Stryer (1977).
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FIGURE 2 On-axis excitation energy transfer model in which the donor
D is positioned at a specific point on the symmetry axis S of a cylindrically
symmetric protein and the acceptor A is attached to a lipid (the lipid at-
tachment is not shown in the figure). The symmetry axis is perpendicular
to the membrane surface, and DP and AP are the planes, respectively, in
which the donor and acceptor groups are confined. Rp is the perpendicular
distance between the donor and acceptor planes. r is the distance between
D and a given acceptor group A. R is the distance between D' and A where
D' is the perpendicular projection of D onto the acceptor plane.

THEORY
Theoretical model
To reduce the abstractness of the theoretical presentation, it
is convenient to discuss the theory in terms of specific mod-
els. Some specific models of interest are: (1) the donor and
acceptor groups are confined to the same lipid monolayer of
the membrane, and there are no donor or acceptor groups in
the other monolayer; (2) the donor groups are confined to one
monolayer of the membrane and the acceptor groups to the
other monolayer; (3) both monolayers contain donor and ac-
ceptor groups, but the donors in each monolayer interact only
with acceptors in that monolayer; and (4) both monolayers
contain donor and acceptor groups, and the donor group in
one monolayer interacts with acceptor groups in both mono-
layers. For simplicity, we will present the theory in terms of
a model in which the donor and acceptor groups are ran-
domly distributed in different planes in the same monolayer
of the membrane as exemplified in Fig. 1 and that the other
monolayer does not contain any donor and acceptor groups.
However, as discussed in the last section of this article, the
expressions derived with this model actually apply to cases
1-3 above and can easily be generalized to apply to case 4
as well as other cases not listed here. The theory also applies
when the donor and acceptor groups are in the same plane.
Furthermore, although the expressions that are derived in the
following sections are written with the donor attached to a
protein and the acceptor attached to a lipid, the donor and
acceptor groups can actually be interchanged in these ex-
pressions, that is, the expressions also apply when the donor
is on the lipid and the acceptor is on the protein or both on
lipids. They also apply when the donor and acceptor are both
on proteins. We will assume that the protein has cylindrical
symmetry about an axisperpendicular to the membrane. The
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assumption that the donor and acceptor groups are confined
to specific planes is not strictly correct because bending and
rotational motions of the lipid and protein change the verticle
positions of the donor and acceptor groups relative to the
membrane surface. However, the assumption is acceptable
within the other assumptions of the theory. It is also assumed
that: (1) donor and acceptor molecules do not move laterally
during the lifetime of the donor, and (2) the density of the
excited donor molecules produced by the light beam is ex-
ceedingly small compared to the density of the acceptor mol-
ecules. The latter assumption allows one to derive all the
necessary expressions from a consideration of the interac-
tions of one single excited donor molecule with the acceptor
molecules in its vicinity.

If the donor-labeled protein penetrates into the acceptor
plane, then the distance of closest approach is determined not
only by the perpendicular distance Rp between the donor and
acceptor planes but also by the size of the donor-labeled
protein and acceptor-labeled lipid (or protein) molecules (see
Fig. 2). The simplest case to treat theoretically is the one in
which the donor is positioned at a specific point on the sym-
metry axis of the protein (On-Axis case). A more general
case is one in which the donor is positioned at a site not on
the symmetry axis (Off-Axis case). These two cases are
treated in this paper.

Donor is positioned on the symmetry axis of a
cylindrically symmetric protein: On-Axis model
Fig. 2 exemplifies the case in which the donor group is po-
sitioned at a specific point on the symmetry axis and also
shows the coordinate system that we will use to describe
proximity relations between donor and acceptor groups in the
membrane. Rp is the perpendicular distance between the
planes in which the donor and acceptor groups reside. r is the
distance between a given acceptor groupA and a given donor
group D in the membrane, andR is the distance between these
groups projected onto the plane of the acceptor groups. These
three distances are related by the expression

r2 R2 R2 (1)

as shown in Shaklai et al. (1977a), then the decay of fluo-
rescence intensity is given by

I(t) = I(O)e t/Toe-M(') (3)
where t is time in s, TO is the lifetime of excited D in s in the
absence of acceptor, o- is the density of acceptor molecules
in the membrane in units of molecules per cm2, and M(t) is
given by

Me

M(t)= (1- e-k(r)')2wzr dr (4)

M(t) has units of cm2. k(fQ, r) k(r) is the specific rate for
dipole-dipole excitation transfer from a donor to an acceptor
group separated by the distance r and according to Forster is
given by the expression

k(fl, r)= - (5)

where fl refers to the orientations of the donor emission and
acceptor dipole absorption moments. k(fQ, r) has units of s-1.
To is related to fundamental kinetic parameters by the ex-

pression

1

TO
= ke + kI (6)

where ke is the specific rate of emission and k1 is the specific
rate for all other deactivating process of excited donor mol-
ecules in absence of the acceptor. Ro (in angstrom units) is
given by

R = (8.7 X 1023JK2keTOn-4)1/6 (7)
where n is the refractive index of the medium between the
donor and acceptor groups. Note that the value for Ro cal-
culated with Eq. 7 must be converted to cm when used in Eq.
5. The overlap integral J is defined by the expression

f FD (k)EA()4d
f FD(A) dA (8)

The value ofR has a lower limit or minimal value that is the
distance of closest approach in the plane of the acceptor. As
mentioned, this value is determined by geometrical factors
that include the size of the protein and lipid to which the
donor and acceptor groups are attached. We designate this
distance of closest approach in the acceptor plane by the
symbol Rc. The distance of closest approach can also be
expressed in terms of the distance r, which we designate as
rc. Rc and rc are related by the expression

r2 = R2+ R (2)

All distances are in cm unless stated otherwise.
Consider now a cuvette containing a membrane suspen-

sion with donor and acceptor groups incorporated in the
membrane in a manner that satisfies the model being con-

sidered here. If the donor is excited by a fast pulse of light,

where FD(A) is the relative intensity in the emission spectrum
of the donor (plotted as photons versus wavelength in cm),
EA(X) is the molar decadic extinction coefficient in M-1 cm-',
and A is wavelength in cm. J has units of cm6 mmole'1.
K is an orientation factor that depends on the orientations,
fl, of the emission and absorption moments of the donor
and acceptor groups, respectively, and is defined by the
expression

K = COS ODA - COS ODCoS OA (9)
where ODA iS the angle between the donor emission and ac-
ceptor absorption moments, OD is the angle between the do-
nor emission and the line /joining the donor and acceptor
groups, and OA is the angle between the acceptor and the line
/§As indicated by the above expressions, at any distance r,
the rate of excitation transfer depends not only on r but also
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on the relative orientations of the donor emission and
acceptor absorption moments. Here we will assume for sim-
plicity that K is the same for all donor-acceptor pairs in the
membrane.
The steady state donor fluorescence intensity I for the

donor-acceptor systems described in the preceding sections
is in general related to I(t) by the expression

00

I = a I(t) dt (10)

where a is a constant of proportionality.
In order to obtain explicit analytical expressions for I(t)

and the steady state intensity I of Eqs. 3 and 10, respectively,
it is necessary first to integrate Eq. 4. As indicated in Shaklai
et al. (1977a), the integral of Eq. 4 cannot be evaluated ana-
lytically in general. However, in the special case where rc
Ro it is shown in Shaklai et al. (1977a) that the integration
can be done analytically (by power series expansion of exp-
[-(k(r)t)] in Eq. 4 and retention of the first two terms of the
expansion) and the integration yields

rR~ R(
MW = II t (11)2ToM rc2 \r1)

Introducing Eq. 11 into Eq. 3 we get

I(t) = I(0)exp - + kqOr)t (12)

where

k = (tR ) (13)

kq has units of cm2/s. Recall that o has units of molecules/
cm2. Introducing Eq. 12 into Eq. 10 and integrating gives the
following expression for the steady state fluorescence
intensity

a
1 + Kqo (14)

which can be rearranged to the form

IO
= 1 + K CJ (15)I

where

Kq= Tokq (16)

(17)
2 (rc )(7

Io is in the steady state fluorescence intensity in the ab-
sence of acceptor (a = 0), and Kq is the steady state
quenching constant. Kq has units of reciprocal density
(cm2/molecule). Note that Eq. 15 has the form of the
Stern-Volmer equation.

The above expressions can be used to evaluate rc from
experimental measurements of donor steady state fluores-
cence intensity at different acceptor densities or. If rc Ro,
the evaluation can be easily done with Eq. 15. According to
Eq. 15, the slope of an experimental plot of IO/I vs. a- gives
the value of Kq. rc can thus be evaluated from the value of
the slope and Eq. 17 using the appropriate value for Ro. This
was the method used in Shaklai et al. (1977a) to determine
the distance of the heme groups of hemoglobin from the
membrane surface where the condition rc > Ro almost pre-
vails. However, when the condition r, Ro does not apply,
Eqs. 4 and 10 may have to be integrated numerically to obtain
plots of Ia/I vs. a- for different values of rc. These plots can
then be compared with the experimental plots to determine
which value of rc best fits the experimental plot.
To avoid numerical integrations, other investigators have

since developed analytical expressions that apply to ranges
other than rc/RO 1. Thus, Wolber and Hudson (1979) have
derived an expression for I/I0 vs. a- that applies for the case
rc/RO << 1. It should be noted that I/Ib vs. oC becomes some-
what insensitive to r, when rc/RO << 1 and the expression of
Wolber and Hudson contains Ro but not r,. Dewey and
Hammes (1980) have used a rapid power series expansion in
Eq. 4 to obtain approximant expressions for III vs a-Rl,
which apply over the range rc/RO 2 0.67. The latter expres-
sions, however, are not as easy to use as Eq. 15. In the fol-
lowing paragraphs we show that the range of applicability of
Eq. 15 can be extended to cover most practical ranges of
rc/RO without much affecting the simplicity of its use in the
analysis of experimental data.
To develop a method that increases the range of applica-

bility of Eq. 15, we first consider the nature of the deviations
of plots of I/I vs a- calculated with Eq. 15 from the correct
plots calculated by numerical integration of Eq. 4 for dif-
ferent values of rJ/RO. The deviations can be most readily
seen by comparing plots of Ia/I vs o-rR(Ir/2)(RO/rc)4 for dif-
ferent values of rJ/RO calculated with Eqs. 15-17 with those
calculated with Eqs. 3, 4, and 10 by numerical integration.
According to Eqs. 15-17, a plot I4Ij vs aR-(R7r/2)(RO/rc)4 is
a straight line with slope equal to 1 for all values of rc/RO.
The correct plots obtained by numerical integration are
shown in Fig. 3 for values of r,/RO in the range 0.5-2. Several
important points are revealed by Fig. 3. First, the correct plot
for rJ/RO = 2 coincides with the plot of Eq. 15 (straight line
with slope of 1) as expected for rc Ro. However, for rJ/RO
< 1.7, the correct plots do not coincide with the plot of Eq.
15 and depend on the value of rJ/RO. Second, the plots for
rI/Ro < 1.7 are not straight lines. However, for any value of
rc/RO < 1.7, the deviations from straight lines are not very
large for values of III in the range 1 to at least 1.8. Fur-
thermore, the deviations from a straight line are within the
experimental errors or noise that is usually present in ex-
perimental plots of III vs ar. Thus, from a practical point of
view we can assume that the plots of Fig. 3 are practically
straight lines for all values rJ/RO and values I/I up to at least
1.8. Third, the slopes of the practical straight lines decrease
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2 Consider now an experimental plot of I/Il vs a that can
be represented by a straight line and has a slope S. If we
analyze the plot with Eqs. 15-17 we can calculate an ap-
parent rc, which we represent as rc,app, with the expression
rc,app = Ro(QR'/2S)114 (this relation is obtained by solving
Eq. (17) for rc with Kq = S). If we analyze the plot
with the Eqs.(18), (16) and (17) we can calculate the true
or correct rc with the expression rc = Ro(,ywrR2/2s)1/4).
From the ratio of these expressions for rc and rc,app we
can write

rc =rc,appY1/4

0 0.5 1

x
FIGURE 3 Plots of IO/I vs. x = oR'(*/2)(Ro/r,)4 for different values of
r,/RO (values shown next to the plots). The plots were calculated with Eqs.
3-5 and 10 and demonstrate the deviations from the predictions of the
approximate Eqs. 15-17 when rc is not much greater than Ro.

with decreasing value of rJ/RO. In summary, the major de-
viation from predictions of Eqs. 15-17 is that the slopes of
the practically straight line plots of Fig. 3 are smaller than
1 when rc is not much greater than Ro, and the slopes depend
on the value of rJ/RO.
The observation that the correct plots of Fig. 3 can be

regarded as straight lines with slopes that depend on rc/RO
indicates that experimental plots ofI vs o can be represented,
in general, by the expression

I0Iy=l+^YKqO* (18)

where Kq is still defined by Eqs. 16 and 17 and y is a cor-
rection factor that depends on the value of rclRO (-y accounts
for the dependence of slope on rc/RO in Fig. 3). Table 1 gives
values of y for a several values ofRo/rc. The values of -y were
obtained from the slopes of best fitting straight lines drawn
through the plots in Fig. 3 using values of Ia/I in the range
1 to -1.7.

rcIRo y 1/4 rc,app/Ro

0.25 0.01 0.32 0.77
0.33 0.03 0.41 0.8
0.50 0.13 0.60 0.83
0.67 0.36 0.77 0.87
0.75 0.48 0.83 0.90
1 0.79 0.93 1.08
1.67 0.97 0.99 1.69
2 1 1 2

* The values for y were calculated from the slopes of best straight lines
drawn through plots of Fig. 3 (not all of the plots used to obtain Table 1 are
shown in Fig. 3). Values for rc,app/Ro were calculated with Eq. 19.

for the relation between r, and rc,app. Table 1 shows values
of rc,app/Ro for different values of rJR0 evaluated with
Eq.19 and values of y from Table 1. Because y has a
value s1, it follows that rc < rc,app. A plot of the correc-
tion factor y1/4 vs rc,app/Ro shows that 'y1/4 drops gradually
from a value of 1 at rc,app/R = 2 to 0.77 at rc,app/Ro = 0.87
(rc/RO = 0.67) after which it drops much faster down to
0.32 at rc,app/Ro = 0.77 (rJ/RO = 0.25).
From the discussion in the preceding paragraphs, we pro-

pose the following simple procedure for evaluating the cor-
rected rc from experimental data for any value of rc/RO. Draw
a straight line through the experimental plot of IIl vs a- and
evaluate the slope S. Calculate rc,app using the expression
rc,app = Ro(nR /2S)114 or calculate rc,app/Ro using the ex-
pression rc,app/Ro = (-nrR2/2S)'/4. For the calculated value of
rc,app/Ro, look up in Table 1 the corresponding value for rJ/RO
in column 1. The correct rc can then be calculated by mul-
tiplying the latter value for rc/ROby Ro. If intermediate values
of rc,app/Ro are needed, use the data of Table 1 to make a plot
of rc/RO vs rc,app/Ro and use this plot to find the intermediate
values.

Because y appears as a fourth root in 19, the effect of -y
on rc is not as large as expected from the value of y. Thus,
for rJ/RO = 1, y = 0.778, y1/4 = 0.93, and rc,app and rc differ
only by a factor of 0.93, an error (rc - rcapp)/rc of 7%.
However, at rJlRO = 0.667 the factor is 0.77 for an error
of about 23%, and for rc/RO = 0.333 the factor is 0.414
for an error of about 60%. A plot of rc,app/R vs rc/Ro shows
that rc,app/Ro decreases almost linearly with decreasing
values of rc/RO from 2 to about 0.8 and then becomes rela-
tively less sensitive to the value of rJ/RO for rJ/RO < 0.7, as
expected from the relative insensitivity of I/I vs of to the
value of rc/RO for rc/RO << 1.

It is often convenient to plot experimental data as IhjI vs
orR2 instead of I/I vs oa. oc has values in the range 0 to 1013
mol/cm2, whereas o-R2 has the more convenient range of 0
to -1. The slope of a graph IO/I vsuR2 is according to Eqs.
15-17 given by the expression

slope = -()

When the experimental data are plotted as IIl vs o-R', pro-

ceed as follows to evaluate the true or correct value of rc. Let
S' be the slope of the experimental plotIIo vs (rR'. Calculate

2

% 1.5

I

(19)

TABLE I
of rJIRO

Values of y,* y14, and rc,.pp/RO for different values

(20)
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rc,app using the expression rc,app/Ro = (,rr/25')114. Using this
value find the corresponding value in Table 1 for rJ/RO, and
multiply the latter by Ro to obtain the correct value for rc.
The range of applicability of the simple procedure de-

scribed above for analysis of experimental data depends on
the experimental range of o-R2. The smaller the range the
better the approximation. In general, if the experimental plot
of I/I vs cr or I/I vs oRR2 can be adequately represented by
a straight line (does not show curvature), within the noise in
the plot, then the simple procedure gives satisfactory results.
If the precision of the data and range of oR2 values are such
that a clear curvature is seen in the experimental plot, then
a more sophisticated method of analysis may have to be used.
However, even in the latter case the simple procedure can be
used if the analysis is restricted to the range of values of
c-R2 where the plot is linear.
As an example of the application of the simple method of

analysis proposed above, we reanalyze the data of Shaklai
et al. (1977a) where the acceptor is hemoglobin bound to the
inner surface of the red cell membrane and the donor is 12-
(9-anthroyl)stearic acid embedded in the outer lipid mono-
layer of the red cell membrane. Ro for this donor-acceptor
pair is 46 A. The slope of the experimental plot of IO/I vs a
yields a value for rc,app of 42 A or rc,app/Ro = 0.91. Using
this value, we find from Table 1 that rJRO = 0.75, and the
true or correct value of rc is 0.75 X 46 = 34.5 A. It should
be noted that Dewey and Hammes (1980) have also reana-
lyzed the data of Shaklai et al. (1977a) by their method of
approximants and obtain a value for rc of 34 A, which agrees
very well with the value obtained by our simple procedure.
As another example, we analyze the data of Fung and Stryer
(1978) for energy transfer between two labeled lipids in a
lipid vesicle, namely N-(2-dimethylaminonaphthalene-5-
sulfonyl)phosphatidylethanolamine as donor and N-eosin-
N'-phosphatidylethanolaminothiourea as acceptor with Ro =
50 A and rc - 10 A. This is an extreme example with a very
small value of rc/RO. A plot of I/I vs oc of the data of Fung
and Stryer can be very well represented by a straight line (in
the range Ia/I = 1 to 2) with slope equal to 1.2 X 10-12
cm2/molecule. From this slope and Ro = 50 A we calculate
rc,app/Ro = 0.77. From the latter value and Table 1 we get
rc/RO - 0.25, from which we calculate rc = 12.5 A. This
value for rc agrees very well with the value of 10 A given
by Fung and Stryer.
The linear expression of Eq. 18 is also very useful for

evaluating the binding affinity of an acceptor-labeled protein
or ligand to a membrane containing an acceptor-labeled lipid,
as demonstrated by Shaklai et al. (1977a) for the binding of
hemoglobin to the red cell ghost membrane containing the
donor 12-(9-anthroyl)stearic acid. For details see Shaklai
et al. (1977a), but basically the procedure is as follows. First,
measure I/Ib for different concentrations of donor-labeled
ligand or protein and a high membrane concentration where
all of the donor-labeled ligand or protein added to the mem-
brane suspension is bound to the membrane (stoichiometric
conditions). From the concentrations of the labeled ligand or
protein and membrane phospholipid, calculate or for each

concentration of ligand or protein (using 70 A2 for the area
per membrane phospholipid molecule). Plot I/Ib vs a, and
from the slope of the latter plot calculate yKq (see Eq. 18).
Next, measure I/Ib for different concentrations of donor-
labeled ligand at low membrane concentration (equilibrium
conditions) where not all of the ligand is bound, and from
these values of I/Ib and the value of yKq, calculate oa vs
concentration of added ligand with Eq. 18. The values of a

give the amount of bound ligand vs concentration of ligand
from which the dissociation constant can be calculated. Eq.
18 can also be used to evaluate the surface density o- of
acceptor-labeled lipid in a membrane. The procedure is as
follows. Add a small amount of donor-labeled lipid to the
membrane and measure I/Ib. Calculate Kq using the ap-
propriate Ro value for the donor and acceptor pair used in
the experiment and rc = 10 A. Calculate oa with Eq. 18
using y = 0.01.

Finally, it should be noted that the experiments and analy-
sis described above yield values of rc , but not of Rp and RC
(see Eq. 2 and Fig. 2). Some of the derivations in the lit-
erature, for example Wolber and Hudson (1979), assume that
when the donor group is in a different plane than the acceptor
group, rc is equal to the distance between the planes. As
already noted this not true for acceptor-labeled proteins that
penetrate into the acceptor plane as shown in Fig. 2. It is also
untrue if the head group of the acceptor (or donor)-labeled
lipid is obstructed by the bulk of the protein in the polar head
region of the membrane. In general, from the value of rc
alone, we can only state that the donor is somewhere on the
surface of a sphere of radius rc centered on any chosen point
in the acceptor plane. More precise localization of the donor
group requires values of Rp and RC. In principle, values for
these parameters can be obtained by evaluating rc for the
acceptor positioned at two different depths in the mem-
brane by attaching the acceptor to different carbons on the
hydrocarbon chain of a lipid. The theory of this method
will be presented elsewhere. In some cases it might be
possible to assign a value to Rp from other considerations
and calculate Rc with Eq. 2 or vice versa. Thus, in the case
of hemoglobin bound to the red cell, Rc was assigned a
value of zero based on physical considerations. In the lat-
ter case rc = Rp.

Donor is not positioned on the symmetry axis of
the cylindrically symmetric membrane protein:
Off-Axis model
Fig. 4 exemplifies the case where the donor is off axis. The
figure shows a cross section of the membrane taken through
a plane that contains the symmetry axis of the protein and the
point at which the donor is located. The position of the donor
is given in this plane by the perpendicular distance 8 from
the symmetry axis and the perpendicular distance Rp of the
donor from the plane of the acceptor. Because of the off-axis
position of the donor, the distance of closest approach de-
pends on the direction from which the acceptor approaches
the donor-labeled protein. In this case, Eq. 4 does not apply
because the equation assumes that r, is independent of di-
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S

n- _ _ _

el U-1,e-

DONOR

DP

- _-- AP

FIGURE 4 Schematic representation of the Off-Axis membrane excita-
tion energy transfer model in which the donor D is positioned at a point that
is not on the symmetry axis S of the labeled, cylindrically symmetric protein.
The protein here is depicted as transversing the lipid bilayer. DP and AP are
respectively the planes in which the donor and acceptor groups are randomly
positioned. 8 is the perpendicular distance (displacement) of D from the
symmetry axis of the protein, and Rp is the distance between the donor and
acceptor planes.

rection. To derive the appropriate equation for the Off-Axis
case, we introduce the coordinate system of Fig. 5 a, which
is drawn in the plane AP of the acceptor. The circle shown
in Fig. 5 a represents the distance of closest approach to
the center of the circle in the acceptor plane and has a ra-

dius a. The center of the circle is located at the point
where the symmetry axis of the protein intercepts the ac-

ceptor plane. The point D' is the perpendicular projection
of the position D of the donor onto the acceptor plane as

shown in Fig. 4, and 8 is the distance (displacement) of D'
from the center of the circle. We describe the angular po-
sition of any acceptor group A by means of the angle 0,
which is defined as the angle between the lines CD' and
D'A in Fig. 5. The distance in the acceptor plane between
a give donor and acceptor is specified by R, which is the
distance between the points D' and A. The distance of
closest approach of an acceptor to the point D' in the ac-

ceptor plane is described by RJ(O), which depends on 0.
An acceptor positioned at RJ(O) has a distance a from the
center of the circle. Finally, we define rc(O), not shown in
Fig. 5, as the distance from the donor positioned at D (see
Fig. 4) to the acceptor positioned at RJ(O).

Using the coordinate system described above, it can be
shown that for the present Off-Axis case, the time-
dependent and steady state fluorescence intensities are

given by Eqs. 3 and 10, but M(t) is now given by the
expression

fiT

M(t) = 2 (1-e -k(r)t)R dO dR (21)

which includes an integration over the angle 0. It should
be noted that the lower limit of integration RJ(0) depends
on 0. To integrate Eq. 21, we must insert the expression
for k(r) (Eq. 5) into Eq. 21. However, the r that appears in
Eq. 5 is the distance from the donor to a given acceptor,
whereas the R in the integrand of Eq. 21 is the distance be-
tween the donor and acceptor measured from D' as shown

S
D

(c)

FIGURE 5 Schematic representation of the coordinate system used in the
acceptor plane AP to describe the position of an acceptor group relative to
the donor group in the Off-Axis membrane excitation energy transfer model.
(a) and (b) are drawn completely in the acceptor plane. The radius a of the
circles in (a) and (b) is the distance of closest approach of an acceptor A
to center of the circle C. The center is the point where the transverse sym-
metry axis S of the cylindrically symmetric protein intercepts the acceptor
plane. D' is the transverse projection of the point D (position of donor) onto
the acceptor plane as shown in Figs. 4 and 5 c. 8 is the distance of the point
D from the symmetry axis S or the distance of D' from the center of the
circle. (a) The position of A with respect to D' in the acceptor plane is
described by the distanceR and angle 0. 0 is the angle between the lines CD'
and D'A. (b) Coordinate system that is used to establish the relations shown
in Eqs. 25-29. The coordinate system is the same as in (a) except that the
acceptor is on the circle of radius a, distance of closest approach with respect
to the center of the circle, at the angle 0. Rc is the distance of closest approach
to the point D' in the acceptor plane and depends on 0. (c) Coordinate system
that is used to define the distance r from the donor D to the acceptor A. The
lines D'-AP and D'-A are in the acceptor plane. R is the distance between
D' andA as in (a) and (b). The periphery of the protein defmes a circle where
protein intercepts the acceptor plane. The circle has a radius equal to the
longitudinal radius of the protein at the level of the acceptor plane. In gen-

eral, the value of a is greater than or equal to the value of 13 because the
value of ai is influenced not only by the size of the protein but also by
the dimensions of the acceptor-labeled lipid and other steric and repulsive
factors.

in Fig. 5. To integrate Eq. 21 we must have a relation be-
tween r and R. This relation is provided by the following

(a)

A

(b)
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expressions

r2 =R2 +R2

rdr = RdR

From the above three equations we can write

M(t) = 2 f () (1 e-kr)')rdOdr

where

rc(0)2= R + R(0)

where r, = r,(0i) and rN = NAr. The value of r#(0j), the value
(22) of r for the first term in the sum, is calculated with the equa-
(22) tions (from Eqs. 25 and 29)
(23)

(24)

Finally, to perform the integration of Eq. 24 we must have
a relation that shows explicitly how rc(0) depends on 0 in
terms of the fundamental proximity parameters Rp, a, and
8. We can obtain this relation from Fig. 5 b. From the ge-
ometry shown in Fig. 5 b and the law of cosines for ob-
lique triangles we can write

a2 = 82 + RC(0)2 - 28R,(O)cos(180- 0) (26)

= 82 + R (0)2 + 28Rc(0)cos(0) (27)
Rearranging Eq. 27 we get

RC(0)2 + 28RJ(0)cos 0 + (82 - a2) = 0 (28)
The above equation is a quadratic equation and has the
solution

RC(0) =-8cos 0 + 82cos2 0 + (a2 - 82) (29)
Inserting Eq. 29 into Eq. 25 gives the equation that relates
rc(O) to 0 in terms of the the fundamental proximity pa-
rameter Rp, 8, and a.
The above expressions can be used to analyze experimen-

tal data consisting of a graph of steady state fluorescence
intensity I vs aR2 for the case where the donor is believed
or known to be Off-Axis. The analysis requires numerical
integration of Eqs. 24 and 10 in order to obtain graphs of IO/I
vs oR2 for comparison with experimental data. The numeri-
cal integration can be performed by the following procedure.

1. First, we assign values to Ro, a, 8, Rp, and T, which
are the input parameters for the integration. These values are
used where required in the following steps 2 and 3.

2. We initiate the integration by integrating over r in
Eq. 24. To do this we assign specific values to 0 and t, which
we designate as Oi and tk. Using the latter values we nu-
merically evaluate the following integral using the trapezoi-
dal or Simpson rule

s(tk, 0) = 11 (1 - e-k(r)tk)rdr (30)
rc(Oi)

The numerical integration can be represented by the expres-
sion

N

s(tk, O) -2 (1 - e-k(r)tk)rjAr
j=l

RC(0i) = -8 Cos Oi + 82 cO1 -(82- a2)

For the upper limit of integration we use a value of rma =
gRo - rT(0i) where the value of g is in the range 5-20. The
increment Ar is equal to rma,/N, where N is the number of
values of r used in the integration over r. N is in the range
50- 150. The calculation is usually first done with g = 5 and
N = 50. The calculation is then repeated with larger values
of g and N. If the results change on increasing g and N, the
calculation is repeated with larger values of g and N until a
stable result is obtained.

Step 2 is repeated for other values of Oi and the same tk to
generate values of S(tk, 0j) in the range Oi = 0 to ir, with a
A0i of, say, one degree. This procedure essentially evaluates
the integral of Eq. 24 over dr.

3. We next use the values for s(tk, Oj) generated in step 2
to evaluate the integral numerically

The numerical integration procedure can be represented by
the expression

where the limits of summation in terms of 0 are 01 = 0 and
Omax 0m = f1. Values form and AO are chosen as described
above for N and Ar.

4. Steps 2 and 3 are repeated using different values of tk
to generate values for M(tk) at different tk. Values of M(tk)
are calculated for tk in the time range 0 to bTo with b ' 5 and
At = bro/nT. nT is the number values of tk at which M(tk) is
calculated and is in the range 50-150.

5. The values of step 4 are next used to evaluate I(tk) with
Eq. 3 for a given value of cr and the values of tk of step 4.
Because only relative intensity is of interest, we let I(0) equal
to any convenient value, say, the value 100.

6. Finally, using the values of I(tk) of step 5, we calculate
the steady state intensity for the value of cr used in step S by
numerical integration of Eq. 10. The numerical integration
can be represented by the expression

nT

I= 1I(tk)At
i=l

where the first term in the sum, I(tj), is for t1 = 0 and the
(31) last term is tnT = Tmaxc = 5T0. This step gives the steady state

fluorescence intensity I for the assigned value of o.

rc(0i) = + RC(0i) (32)

(33)

I0

M(tk)= 2 s(tk, 0) do (34)

m

M(tk) -2 2 s(tk, Oi)A0
k=l

(35)

(36)
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7. We repeat steps 6 and 7 for different values of a in the
range 0 to some upper value that give values of I vs a- in the
range of at least Io/I = 1 to at least 2.

Fig. 6 shows graphs that demonstrate the effects of 8 on
a plot of IO/I vs cR2. The plots were calculated by the nu-
merical procedure described above. There are two important
features to be noted from these plots. First, 8 has very sig-
nificant effects on the sensitivity of IOlI to a. For the values
of a, Rp, and Ro used in Fig. 6, I/I is not very sensitive to
a- when 8 = 0, but the sensitivity increases considerably for
values of 8 2 50 A.

It should be noted that 8 can have values greater than a.
This is demonstrated in Fig. 7. However, Eq. 21 does not
apply as it stands when 8 > a. The required modifications
can be seen by reference to Fig. 8, which shows the appro-
priate geometry in the acceptor plane when 8 > a. It can
be seen from this figure that when 8 > a any acceptor mol-
ecule can enter the point D', which is the projection of the
position of D onto the acceptor plane. Because D' is at a
distance Rp from the donor molecule, the distance of clos-
est approach is now rc = Rp and is independent of the
angle 0 (recall from Fig. 5 that 0 is the angle between the
line CD' and the line D'A and the D'A drawn from D' to
a given acceptor). However, for values of 0 > o (w is the
angle between CD' and the line D'L, which is tangent to
the circle in Fig. 8), there is an area defined by the circle
in Fig. 8 where acceptor molecules are excluded by the
bulk of the labeled protein and lipid. To account for this
exclusion area, the integral of Eq. 21 must be broken into
parts. The first part, which we call Ml(t), accounts for in-
tegration in the angular range 0 = 0 to w and is given by
the expression
M(

Ml (t) = 2o) r i( e-k(r)t)r dr
R

(37)

Consider now a line drawn from D' to infinity at an angle
in the range 0 = c to ir. This line intersects the circle at
two points. Call these two points rl(O) and r2(0). The
second part of the integration M2(t) is then given by the

s
DONOR

!~~~~~~./.

---DP

aAflW ° Rp

--AP

FIGURE 7 Schematic representation of a case in which 8 is greater than
at. The part of the protein embedded in the lipid bilayer is a thin cylinder,
whereas the part of the protein in which the donorD is embedded is stretched
out on the surface of the membrane. S is the symmetry axis of the cylin-
drically symmetric protein, and AP is the acceptor plane.

L
.

FIGURE 8 Graph showing the coordinate system used to describe the
geometry in the plane of the acceptor for the case where 8 > a. w is the angle
between the line drawn through C (point where the transverse symmetry axis
of the donor-labeled protein crosses the acceptor plane) and D' (D' is the
transverse projection of donor position onto the acceptor plane), and the line
that starts at D' and is tangent to the circle. a is the radius of the circle, and
8 is the distance between C and D' as defined in Fig. 5. The circle is an area
in the acceptor plane where acceptors are excluded due to stereohinderance
between the donor-labeled protein and the acceptor-labeled lipid.

expression

M2(t) = 2 f ( (1 - e-,(r)')rdr
@ o ~~~~~~~~~(39)

+ (1- e-k(r)')rdr dO
r(0)/1.7
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FIGURE 6 Plots of Io/I vs. x = o-RI for the Off-Axis case demonstrating
the effects of changing values of 8 on this type of plots. The plots were

obtained by numerical integration using Eqs. 3, 10, and 24 with Ro = 40
A, a = 60 A, Rp = 20 A, and the values of 8 shown next to each plot.

The total integral is M(t) = M1(t) + M2(t). Further details
of the case 8 > a will be presented in another publication.
The analysis of experimental data by the Off-Axis model

can be conducted by calculating plots of IO/I vs o-R2 for
different values of at, 8, and Rp as described above and com-
paring these plots with the experimental plot for goodness of
fit. However, this procedure does not yield unique values for
a, 8, and Rp because there are many sets of values for these
parameters that fit the experimental data equally well. Recall
that in the On-Axis case, one can determine the value of r,
but cannot obtain unique values for Rc and Rp from one ex-
perimental plot of IO/I vs aR2 alone because there are many
values Rc and Rp that give the same value for rc (see Eq. 2).
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In principle, a, 8, and Rp can be evaluated from measure-
ments of IO/I vs oR' with acceptor positioned at different
depths in the membrane by attaching the acceptor to different
positions on the hydrocarbon chain of a lipid molecule. The
complex theory for this approach will be presented else-
where. However, there are important applications where val-
ues for two of the three parameters a, 6, and Rp may be
known from other types of experiments, in which case only
one parameter is unknown. The single unknown parameter
can be evaluated from a plot of IO/I vs oR'. For example,
suppose that the position of the donor group in the protein
and the diameter of the protein is known from other experi-
ments and that this information can be used to assign to
values to a and 8. Then the unknown parameter is Rp, which
gives information on the vertical or transverse position of the
protein in the membrane. In this case, the values assigned to
a and 8 can be used in the numerical calculation of IO/I vs
crR' for different values of Rp. The value ofRp that gives the
best fit to the experimental data is the best value for Rp. This
procedure is used in the accompanying article to evaluate the
transverse position of the acetylcholine binding sites on its
membrane-associated receptor. Rp gives the depth of the pro-
tein in terms of the transverse distance of the donor group
from the acceptor plane. The transverse distance of the ac-
ceptor plane with respect to the center of the membrane is
known from the known position of the acceptor on the la-
beled lipid. The transverse distance of the donor from the
center of the membrane can then be calculated from the val-
ues of Rp and the depth of the acceptor plane.

GENERALITY OF THE THEORETICAL
EXPRESSION

As indicated in the introductory sections of this article, in
order to reduce the abstractness of the presentation, we have
used a model in which acceptor and donor groups are located
on only one of the monolayers of a biological membrane, and
in which the donor is on a protein and the acceptor is on a
lipid. However, the expressions presented for this model ac-
tually apply as they stand if (1) the donor is in one monolayer
and the acceptor is in the other monolayer, (2) acceptor and
donors are in the two monolayers, but the two monolayers
are identical and donors and acceptors in different mono-
layers do not interact with each other, and (3) the donor is
on the lipid and the acceptor on the protein. It should be noted
that in Shaklai et al. (1977a) the theory was formulated in
terms of the donor on the lipid and the acceptor on the pro-
tein, and the resulting expressions have the same form as, for
example, Eq. 15 of this article. The model also applies if the
donor and acceptor are in the same plane (Rp = 0).
More general cases can easily be treated by simple modi-

fications of the expressions presented for the Off-Axis
model. Consider, for example, the case where both mono-
layers of the membrane contain donor and acceptor mol-
ecules but the two monolayers are not identical. Then each
monolayer will have its own values of a and Rp and the same
value of 6. The fluorescence intensity from this system, as-

suming that the donor and acceptor groups in different mono-
layers do not interact with other, is given by the sum of two
expressions of the form of Eq. 10, with one expression having
the values of a1 and Rp1 for one monolayer and the other
expression having the values of a2 and Rp2 for the other
monolayer.

In practice the reason for using excitation energy transfer
to establish proximity relations in membranes is often to
determine the position of an interesting site on a membrane
protein with respect to, say, the center or surface of the mem-
brane (transverse position). To do this, a donor (or acceptor)
is attached to the protein site of interest, and a lipid labeled
with the acceptor (or donor) attached to a specific site on the
lipid is then partitioned into the membrane. In the case of
natural membranes, the membrane proteins are vectorially
oriented in the membrane, and the labeled site on the protein
will usually be only on one side of the membrane, that is, the
donor (or acceptor) is in only one monolayer of the mem-
brane. The labeled lipid, however, is expected to be on both
monolayers, although not necessarily with equal densities,
because the vectorial orientation of lipids in natural mem-
branes is not absolute. In natural membranes we thus expect
that the case that prevails in general is one in which the donor
is restricted to one monolayer, the acceptor is in both mono-
layers, and the donor can transfer excitation energy to ac-
ceptor groups in both monolayers. In this case the funda-
mental equation for I(t), Eq. 3, has the following modified
form.

I(t) = I(0)exp( - t/Toexp{- [urMl (t) + o2M(t)]}) (39)

where subscript 1 refers to the monolayer in which the donor
is positioned and subscript 2 refers to the opposite mono-
layer. M1(t) and M2(t) are given by Eq. 24 with aland Rpl
for Ml(t) and a2and Rp2 for M2(t). a, and (2 account for the
different densities of the acceptor in the two monolayers of
the membrane. Equation 10 still applies. In general, the num-
ber of proximity parameters that appear in Eq. 39 makes the
equation somewhat unwieldy for analysis of experimental
data. However, the situation can be simplified by introducing
restrictive information that can be readily obtained. For ex-
ample, Rp1 and Rp2 are usually not independent. Because the
acceptor-labeled lipid is the same in both monolayers, the
position of the acceptor from the center of the membrane is
known for both monolayers. This information can be used to
express Rp2 in terms of Rpl, thus reducing the number of
fitting parameters. Moreover, if the donor is far removed
from the center of the membrane, and if the acceptors are not
close to the center of the membrane, it is likely that the
interaction of the donor with the acceptors on the opposite
monolayer can be ignored (because of the llr6 dependence
of dipole-dipole excitation energy transfer (see Eq. 5). In this
case, Eq. 3 can be used without modification. The conditions
under which interaction with acceptors on the opposite
monolayer can be ignored can be determined by simulations
with Eq. 39. In general, it is best to use a labeled lipid in
which the acceptor is so positioned that interactions with the
opposite monolayer can be ignored.
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In summary, Eqs. 3, 24, and 10 describe the time-
dependent and steady state fluorescence intensities of the
case where the donor is not on the symmetry axis of the
cylindrically symmetric, labeled membrane protein. These
equations are actually more general than the model used to
derive them and apply to many other cases or can easily be
modified for more general cases as discussed in the above
sections. When 8 = 0, the Off-Axis case reduces to the On-
Axis case. More specifically, when 8 = 0, Eq. 24 reduces to
Eq. 4. Equations 3 and 10 are the same for both cases. In
practice the analysis of experimental data with Eqs. 3, 24, and
10 in order to obtain values for the proximity parameters is
done by comparing the experimentalIO1 vs. aR2 with graphs
calculated with these equations. The calculation of a theo-
retical plot requires assignment of values to at least five pa-
rameters, namely, TO, Ro0 a, S, and Rp. To and Ro are not
actually independent parameters that are to be adjusted for
best fit, because the value of o is determined experimentally
by lifetime measurements of the donor in the absence of
acceptor and Ro is calculated from spectroscopic data by Eq.
7. Thus, a, 8, and Rp are the three proximity parameters
(assuming that the donor transfers energy to acceptors in only
one plane) whose values are adjusted for best fit of the theo-
retical expressions to the experimental data and that yield the
interesting information on how the donor label and labeled
protein are positioned in the membrane. If the donor can
transfer energy to acceptors in both monolayers of a mem-
brane then there are more than three proximity parameters to
be fitted as discussed for Eq. 39. It is best to set up the
experiments to avoid this situation. However, even in the
case where there are only three proximity parameters to be
evaluated by comparison of experimental and theoretical
graphs, unique values for these parameters cannot be ob-
tained from one experimental graph alone because there are
different sets of values for the parameters that fit the data
equally well. This can be most clearly seen from Eqs. 15-17
for the On-Axis case, which shows that in this case one can
obtain a unique value for rc, but not unique values for Rc and
Rp, because any values of Rc and Rp that satisfy the relation
r2 = R + Rp fit the data equally well. There are several ways
to approach the problem of determining unique values for the
fundamental proximity parameters. One is to assign values
to two of the parameters from other types of experiments.
This then leaves only one fitting parameter that can then be
evaluated uniquely from the experimental data.

Analytical solutions for the Off-Axis case are being de-
veloped and will be presented elsewhere.

I thank Evangelina E. Yguerabide for assistance with the graphs and draw-
ings and Dr. David A. Johnson and Dr. Jose Maria Alvarez for reading the
manuscript and providing useful comments.

REFERENCES
Armstrong, S. A, E. J. Husten, C. T. Esmon, and A. E. Johnson. 1990. The

active site of membrane-bound meizothrombin. A fluorescence deter-
mination of its distance from the phospholipid surface and its confor-
mational sensitivity to calcium and factor Va. J. Biol. Chem. 265:
6210-6218.

Baird, B., U. Pick, and G. G. Hammes. 1979. Structural investigation
of reconstituted chloroplast ATPase with fluorescence measurements,
J. Bio. Chem. 254:3818-3825.

Cantley, L. C., and G. G. Hammes. 1976. Investigation of quercetin binding
sites on chloroplast coupling factor 1. Biochemistry. 15:1-8.

Dewey, T. G., and G. G. Hammes. 1980. Calculation of fluorescence reso-
nance energy transfer on surfaces. Biophys. J. 32:1023-1035.

Doody, M. C., L. A. Skalar, H. J. Pownall, J. T. Sparrow, A. M. Gotto, and
L. C. Smith. 1983. A simplified approach to resonance energy transfer in
membranes, lipoproteins, and spatially restricted systems. Biophys.
Chem. 17:139-152.

Eisinger, J., and J. Flores. 1982. The relative locations of intramembrane
fluorescent probes and the cytosol hemoglobin in erythrocytes, studied by
transverse resonance energy transfer. Biophys. J. 37:6-7.

Estep, T. N., and T. E. Thompson. 1979. Energy transfer in lipid bilaryers.
Biophys. J. 26:195a. (Abstr.).

Fernandez, S. M., and R. D. Berlin. 1976. Cell surface distribution of lectin
receptors determined by resonance energy transfer. Nature (Lond.). 264:
411a. (Abstr.).

Fleming, P. J., D. E. Koppel, A. L. Y. Lau, and P. Strittmatter. 1979. In-
tramembrane position of the fluorescent tyrptophanyl residue in the
membrane-bound cytochrome b5. Biochemistry. 18:5458-5464.

Fung, B. K. K., and L. Stryer. 1978. Surface density of determination in
membranes by fluorescence energy transfer. Biochemistry. 17:5241-5248

Gutierrez-Merino, C. 1981a. Quantitation of the Forster energy transfer for
two-dimensional systems. I. Lateral phase separation in unilamellar
vesicles formed by binary phospholipid mixtures. Biophys. Chem. 14:
247-257.

Gutierrez-Merino, C. 1981b. Quantitation of the Forster energy transfer for
two-dimensional systems. II. Protein distribution and aggregation state in
biological membranes. Biophys. Chem. 14:259-266.

Hammes, G. G. 1981. Fluorescence Methods. In Protein-Protein Inter-
actions. C. Frieden and L. W. Nichol, editors. Wiley Interscience,
New York. 257-287.

Holowka, D., and B. Baird. 1983a. Structural studies on the membrane-
bound immunoglobulin E-receptor complex 1. Characterization of large
plasma membrane vesicles from rat basophilic leukemia cells and inser-
tion of amphipathic fluorescent probes. Biochemistry. 22:3466-3474.

Holowka, D., and B. Baird. 1983b. Structural studies on the membrane-
bound immunoglobulin E-receptor complex 2. Mapping the distance
between sites on IgE and the membrane surface. Biochemistry.
22:3475-3484.

Isaacs, B. S., E. J. Husten, C. T. Esmon, and A. E. Johnson. 1986. A domain
of membrane-bound coagulation factor Va is located far from the phos-
pholipid surface. A fluorescence energy transfer measurement. Biochem-
istry. 25:4958-4969.

Koppel, D. E., P. J. Fleming, and P. Strittmatter. 1979. Intramembrane
positions of membrane-bound chromophores determined by excitation
energy transfer. Biochemistry. 18:5450-5457.

Shaklai, N., J. Yguerabide, and H. M. Ranney. 1977a. Interaction of he-
moglobin with red blood cell membranes as shown by a fluorescent chro-
mophore. Biochemistry. 16:5585-5592.

Shaklai, N., J. Yguerabide, and H. M. Ranney, H. M. 1977b. Classification
and location of hemoglobin binding sites on red blood cell membranes.
Biochemistry. 16:5593-5597.

Sklar, L. A., M. C. Doody, A. M. Gotto, and H. J. Pownall. 1980. Serum
lipoprotein structure: resonance energy transfer localization of fluores-
cent probes. Biochemistry. 19:1294-1301.

Tweet, A. G., W. D. Bellamy, and G. L. Gaines. 1964. Fluorescence quench-
ing and energy transfer in monomolecular films containing chlorophyll.
J. Chem. Phys. 41:2068.

Van Der Werf, P., and E. F. Ullman. 1979. Measurement of liposome fusion
by energy transfer measurements. Fed. Proc. 38:459a. (Abstr.).

Vanderkooi, J. M., A. lerokomas, H. Nakamura, and A. Martonosi. 1977.
Fluorescence energy transfer between Ca2+ transport ATPase molecules
in artificial membranes. Biochemistry. 16:1262-1267.

Veatch W., and L. Stryer. 1977. The dimeric nature of the Gramicidin A
transmembrane channel: conductance and fluorescence energy transfer
studies of hybrid channels. J. Mol. Biol. 113:89-102.

Wolber, P. K., and B. S. Hudson. 1979. An analytic solution to the Forster
energy transfer problem in two dimensions. Biophys. J. 28:197-210.


