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Ion Flow in the Bath and Flux Interactions Between Channels
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ABSTRACT We present an exact solution to the linearized Nernst-Planck-Poisson equation for spherically symmetric current
flow. This solution differs from Levitt's solution (Levitt, D. G. 1992. Biophys. J., Eq. A5) by its dependence on an additional
parameter, which is equal to the net ion flux for monovalent ion-selective channels. For ion-selective channels, this solution may
provide better boundary conditions to modelling the flow in the channel pore itself, although only at low salt concentrations. We
use the solution to estimate the effects of flux interaction between closely packed channels.

INTRODUCTION

Modelling the flow of ions through a channel naturally de-
composes into two parts:

1) modelling the flow of ions through the pore itself. One
approach is through a combination of the Nernst-Planck and
Poisson equations (see e.g., Levitt (1991); Chen and Eisen-
berg (1993)). Another approach is through the Eyring for-
malism (see Heinemann and Sigworth (1990); Frehland
(1978)).

2) modelling the flow of ions in the bath. This is the source
of the access resistance (Hille, 1993; Hall, 1975). In the
Nernst-Planck approach, the ion flow in the bath provides
boundary conditions for the more interesting problem of ion
flow in the channel. Levitt (1991) has pointed out that it is
essential to have an accurate model of the bath, since the
influence of the boundary conditions on the solution to the
equations of the flow inside the pore is not yet understood.

In the first part of this work, we present an extension of
Levitt's solution to ion flow in the bath (Levitt, 1991, Ap-
pendix I). The new feature of our solution is an additional
dependence of the access resistance on the ion fluxes.
The above problem leads naturally to another one, namely:

What is the access resistance of several closely packed chan-
nels (Neumcke, 1975; Lauger, 1976)? An open channel can
influence the flux through a neighboring open channel as the
access pathways are partly shared. The current through sev-
eral open channels would not, in this scenario, be an integral
multiple of the current through a single open channel. In a
previous paper on multichannel recordings of gap junction
channels from the earthworm septum (Ramanan and Brink,
1993), we have presented evidence for such nonintegral con-
ductances. Here, we use our model of ion flow in the bath
for one channel together with a simple linear flux interaction
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hypothesis to estimate the magnitude of diffusion limitations
on the conductance of several open packed channels.

RESULTS

Ion flow in the bath

Levitt (1991, Appendix I) has presented a solution to the
combined Nernst-Planck and Poisson equations in the bath
under certain approximations (see also Lauger (1976)). Here
we offer an extension of Levitt's solution. Specifically, we
have linearized the combined Poisson and Nernst-Planck
equations in accordance with the Debye-Huckel prescription.
We present an exact solution to the linearized equation.

It may be noted that the time constant for relaxation to the
steady state current after a transition from open to closed
conformation is -0.1 ns (Neumcke, 1975; Lauiger, 1976).
Here we are interested only in the steady state. We adopt the
following model for flow in the baths:

1) The Nernst-Planck equation is:

J, dC' dv'
2TrrD; + zCii21Tr2Di dr 11 dr- (1)

Here the superscript ' refers to the bath on the side where
the potential is applied, and a similar equation can be writ-
ten to the bath where the reference electrode is placed, re-
ferred to by the superscript ". Ji is the flux of the ith ion
species (ions/s), with valence zi and present in concentra-
tion C, (ions/cm3), with a diffusion coefficient Di (cm2/s).
V is the potential in dimensionless units of RT/F. Note that
V and Ci are dependent (only) on r. In writing Eq. 1, we
are thus assuming that the flux is radially directed in the
bath. Although convenient for analytical manipulations,
this is clearly only a approximation for any real channel
where, close to the channel mouth, the pure radial depen-
dence of the potential (and hence the concentration pro-
files) would be destroyed by image forces from the dielec-
tric and also by any (radially assymetric) fixed charges in
the channel. The specific assumptions underlying the ra-
dial dependence embodied in Eq. 1 are thus the same as
those enumerated in Appendix I of Levitt (1991) (see also
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the discussion after Eq. 4 below). Given these assump-
tions, we write

Vi'= Oi'+f, (2)

where (' is the potential at r = oo, i.e., the applied poten-
tial, we get upon applying the standard integrating factor,

C =C`Ce-Zif+ ezif r ezif. (3)2TND~ r

2) Poisson's equation is:

1 d [ 2dfl 47rF 41Te22 ZC

2drL drJ ERT P EkT E i=xi
(4)

where x2 = 4 rre2/ekT. Here, as in Eq. 1, we are assuming that
the charge distribution is continuous, and ignoring the effects
of finite ion sizes and ion solvation.

Combining the two Eqs. 3 and 4 leads to a nonlinear
integro-differential equation for f. Following the Debye-
Huckel prescription, we linearize this equation by expanding
all the exponentials to first order in f, i.e., e+zf = 1 + zf
This process of linearizing the exponential is a funda-
mental dilemma in the theory of electrolytes, see e.g., Rob-
inson and Stokes (1968). For this approximation to hold,
nevertheless, f must remain "small" up to the mouth of the
channel. Although we do not know if this "smallness" cri-
terion is satisfied beforehand, we can verify that it holds at
the end of the calculation. We apply the model only in cases
where f ' 0.3 (=8 mV). For monovalent ions, the solution
is more accurate as the second order correction itself van-
ishes. As stated above, even for small f, the effects of finite
ion sizes and ion solvation are completely ignored in this
formulation (see e.g., Bockris and Reddy (1977)). These ef-
fects limit the application of the analysis presented here at
high salt concentrations, especially so for nonmonovalent
electrolytes.

Define

K =K 2 = X2 ZiC X (5a)

and the dimensionless parameters

2

J = ji = , zj2Jj/21rDj (5b)

and

x2
I = I ziJi/2,Di.

K i
(Sc)

If the diffusion coefficient Di is the same for all ions, then
I is the total current, and, for univalent ions,J is the total flux,
both scaled by the factor X2/(27rTK'D).

The linearized equation now reads:

ft" + (2/r)f' = K'2f + K'Ilr KJ[flr + fdp/f2] (6)

where primes denote differentiation wrt r, and we have used
fdy/y2 = -l/y. Carrying out an integration by parts reduces
the term in square brackets to fJr f'df/f. Differentiating once
wrt r yields a third order differential equation. We reduce this
equation to a second-order differential equation, consistent
with the fact that there are only two free boundary conditions
(say, the applied potential and the electric field at the channel
mouth). Changing the independent variable to the dimen-
sionless y = 2 K'r, and defining

g = y(df/dy), (7)
we get

d2g 1 0.5J 2-] .5I
dy2 4 y y2g= y.

(8)

Eq. 8 has the same form as Whittaker's equation
(Abramowitz and Stegun, p. 505, Eq. 13.1.31). Using Whit-
taker's functions for the solutions of the homogenous equa-
tion, we may apply the method of variation of parameters to
find the solution of the inhomogenous equation (see, e.g.,
Boyce and DiPrima, p. 124). Write

g = C1MO.51.5 + c2W0.51.55 (9)

where M = Mk,,. and W = Wk,,. are the standard Whittaker
functions (Abramowitz and Stegun, p. 505, Eqs. 13.1.32-
33). Note that c1,2 = c1,2(y) are functions ofy. As g satisfies
Eq. 8, this sets one constraint to be satisfied between cl and
c2. The remaining constraint can be arbitrarily set; choose

c',M + c'W= 0. (10)

Substituting Eq. 9 into Eq. 8, carrying out the necessary dif-
ferentiations, and using the constraint in Eq. 10 yields

I W I M
C> j2y WM'-W'M,' 2y WM'-W'M'

Now (WM' - W'M) is the Wronskian. Using either Abel's
identity or Eq. 13.1.22 in Abramowitz and Stegun (1972), we
find the Wronskian to be F(4)/F(2 - 0.5J), where F is the
standard gamma function (Abramowitz and Stegun, p. 255,
Eq. 6.1.1). Integrating for the c values gives:

= -0.51 F(2 - 0.5J) fy(dz/z)W,. r(4) J (zzW

C2 = -0.51 F(2 -r0.5.) f(dz/z)M,
where a and 3 can be arbitrarily chosen. Changing a and 13
merely changes the coefficients of the homogenous solution.
The solution for g reads:

r(2 - 0.5J)
g=AW-0.5I r(4)

[M I (dz/z)W - W f (dzz)M]Z
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where we have dropped the M term in the homogenous so-
lution as it diverges as y -Xoo (Abramowitz and Stegun, Eq.
13.5.1). This implies that a must be chosen such that Mc1-*
O as y -m oo. Setting a to oo gives the correct asymptotic
behavior (use the limit J = 0 in the above expression, and
the simplified forms forM and W at J = 0 given in the end
of the next paragraph).

Using Eq. 7, and integrating gives the final solution forf:

f(Y) = fhomog + finhomog

ry r(2 - 0.5J)
=A fYdz -0.5I (4) ( 1)

I dz X(z) Jdz'Y(z') - Y(z) idzX(z')1,

where A is arbitrary, and we have set 13 to 1. Here X and Y
are defined byX = MO.50,15/y, Y = WO.5J,1.5/y. The constantA
can be determined if the electric field at the mouth of the
channel is known. The concentration of the ions Ci(r) can
now also be found from Eq. 3. In practice, we prefer to avoid
the double integral corresponding to the inhomogenous so-
lution in Eq. 11. In the Appendix, we derive a perturbation
expansion in J of the inhomogenous solution, which is the
one used in the actual calculations. This approximation is
suitable for nonselective channels, such as the gap junction
channel, where the net ion flux through the channel is small
(J < 0.1). When J = 0, the Whittaker functions take the
following form: M = 12[cosh(y/2) - (2/y)sinh(y/2)], W =
(1 + 21y) exp(-y/2) (Abramowitz and Stegun, Eqs. 13.6.3,
13.6.21, 10.2.13, 10.2.17). The expression (Eq. 11) then re-
duces to Levitt's solution (1991, Appendix I, Eq. A5):

2A 21
f= e-05Y-

y y

The interior of the channel itself is modelled by the equa-
tion (Laiiger, 1976),

- sinh(O.5 zuiB) 0.5 zu
Ji = Pi 0.5 zuiB sinh(0.5 zu)

* [C,'(R)exp(O.5 zu) - C''(R)exp( -0.5 zu)]. (12)

where u is the dimensionless voltage across the channel
(units ofRT/F), B is the number of equi-height barriers, and
Pi is the permeability of the channel to the ith ion species.
In deriving Eq. 12, it is assumed that (a) ion-ion interactions
in the channel can be ignored and (b) the channel can be
represented as a sequence of binding sites and activation-
energy barriers. Assumption a would be violated, e.g., at high
salt concentrations, while assumption b would not hold, e.g.,
in the presence of fixed charges in the channel that cause
long-range fields. A general discussion of the limitations of
the reaction rate theory underlying Eq. 12 as applied to chan-
nel permeation can be found in Levitt (1982). We also tacitly
assume that the binding sites or fixed charges in the channel
do not have influence in the bulk solution, i.e., that Eqs. 11
and 12 which describe the bulk flow and channel flow re-

spectively, are independent of each other. For determining
the constant A in Eq. 11, we assume that the electric field
is constant along the length of the channel (length of the
pore + 2 X radius of mouth); this gives the field at the mouth
of the channel. In a more sophisticated treatment of the chan-
nel (e.g., Levitt, 1991), the equations describing the channel
interior would have the electric field at the mouth as a bound-
ary condition. These equations, together with Eq. 11, would
then self-consistently fix the field at the mouth, and thus the
constantA in Eq. 11. We have chosen Eq. 12 primarily for
its modelling simplicity, and also because it may be appro-
priate to a large poorly selective channel such as the gap
junction channel. Eqs. 11 and 12 provide a complete de-
scription of the channel and its exterior; the current through
the channel can be determined by iterating these equations.
We apply the results to a model of a gap junction channel.

The channel parameters are typical ones for gap junction
channels: radius R = 8 A, length of pore L = 100 A
(Loewenstein, 1981). The number of equi-height barriers B
is fixed to 20, to approximate a large aqueous channel
(Laiiger, 1976). The solutions on both sides consist of 165
mM CsCl. The diffusion coefficients are DCS = D =
2.OX10-5 cm2/s. The relative permeabilities of the ions in
selectivity experiments is given byPcl = 0.55 PcS (Brink and
Fan, 1989). We have arbitrarily fixed this ratio to be the
permeability ratio inside the channel. The absolute perme-
abilities are unknown, however the single-channel conduc-
tance is known to be -100 pS. We have fixed PcS =
1.OX10-13 cm3/s; the resulting single-channel conductance
is =102 pS. The I-V graph for the model is linear for a
+ 100-mV variation in holding potential, as also seen in ex-
periment (Brink and Fan, 1989).
We note that the anion to cation permeability ratio inside

the channel which is arbitrarily chosen can actually be fixed
if the single-channel conductance were known at a variety of
salt concentrations. Due to the paucity of experiments at high
salt concentrations, and also due to complications engen-
dered by the numerous substates exhibited by this channel
(Ramanan and Brink, 1993), we are unable to specify this
ratio precisely. We only note that knowledge of this ratio,
together with the single-channel conductance, would also
determine the actual permeabilities of the ions inside the
channel.

Fig. 1 a shows the variation of the potential and concen-
tration of ions on the side of the channel that faces the applied
potential of + 100 mV for a single channel patch. The inset
of Fig. 1 a is a demagnification of Fig. 1 a for larger dis-
tances, and Fig. 1 b shows the same data in a log-log scale.
At great distances from the mouth where the concentration
of the ions are equal (inset, Fig. 1, a and b), the drops in ion
concentrations and the potential fall off as 1/r as expected for
spherically symmetric current flow. Near the mouth the con-
centrations and the potential are primarily determined by the
field inside the channel (through the integration constant A
in Eq. 11).
As the Eq. 11 describing the flux in the baths is more

complicated than Levitt's solution, involving as it does in-
tegrating Whittaker functions, it is useful to compare the
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FIGURE 1 (a) Drop in potential and the concentratio
Cs' and Cl- from infinity to the mouth of a model gap jui
held at a potential of 100 mV. The parameters for the i

described in the text. The inset of a is an enlargement
20 equi-height barriers are assumed. (b) The same data
The line I/(Kr) is the potential drop expected from a pure
resistance model. The potential drop predicted by the mo

purely resistive model for distances greater than -50 A.

the concentration drops also fall off as llr. See text for

results yielded by the two methods. The poten
mouth of the channel from infinity (f(R), see I
a useful reference; we have computed this val

solution and through the method above wit]

rameters, and computed the percent differenc(
two values off(R). With the parameters usec
0.034 andJ = 0.0096, and is -0.3%, which
given the various approximations already ir

riving the linearized equation. By varying the
and concentrations of the ions, we have cor

range of I and J. We can summarize our resu

range J ' I ' 0.4, is less than the quantity
a monovalent salt at 160 mM, I = 0.4 is e

current of -180 pA. Thus Levitt's solution i
the solution presented above for concentratioi
mM of monovalent salts and for imposed pot
200 mV. For nonmonovalent salts, since the
creases as the square of the valence (see Eq. 5
than for monovalents at a given salt concen

then prove necessary to use the solution givei
the complete nonlinearized Eqs. 1 and 4.
At distances of 100 A, a typical interchann4

inset of Fig. 1 a shows that the concentratior
are reduced from their free concentration. It is

combined with the reduction of the applied voltage by - 1%
that causes the interaction between the fluxes in a closely
packed multichannel patch.

200 300

Channel access resistance interaction

If two channels are close to each other, then the drops of

20 Barriers potential and ion concentrations from infinity to the mouth
of each channel will be influenced by the presence of other

32 40 channels. Stated differently, the access resistances of packed
multichannels will not be an integer multiple of that for a
single channel (Neumcke, 1975; Lauiger, 1976; Weissman,
1978). As an example, we note that gap junction channels are
typically found in plaques in close proximity. It is thus pos-
sible that the nonunitary multichannel conductances ob-
served in this channel (Ramanan and Brink, 1993) are caused
by interaction of the fluxes flowing into neighboring chan-
nels. Wilders and Jongsma (1992) have used this idea to
illustrate the limitations of the double patch-clamp tech-
nique. They conclude that flux interaction can lead to a large
underestimate of the number of channels in a gap junction
plaque. Our estimate, shown below, is a refinement of their
method in that 1) it allows for charge screening, selectivity
of the channel and barriers to ion transit through the channel

ns of the two ions and 2) it uses a more representative model of the bath, as
nction like channel presented above.
model channel are** *moflthemainpnel,a The circumstance that we are interested in is a multichan-
in a log-log scale. nel patch, i.e., an experiment where a single patch contains
ly resistive access- a number of channels which can be simultaneously open. The
idel agrees with the membrane size and other membrane parameters are then
At such distances, fixed. Let m be the total number of active channels in this
discussion. single patch. At a given holding potential, as we look at

different times in the current trace from this patch, we will

itial drop to the see different number of channels (up to a maximum of m)
Eq. 2) provides simultaneously open, as the various channels open and close.
lue for Levitt's An amplitude histogram of the trace from this single patch
h identical pa- will then have (m+1) peaks, the peaks corresponding re-
6 between the spectively to all channels closed, 1 channel open, 2 channels

J in Fig. 1, I = open,..., all m channels open. By reading off the peak
is insignificant maxima (for example), we can find the currents through a
nvolved in de- lone open channel, and also through 2, 3,..., m simulta-
permeabilities neously open channels. When only one channel is open, the
nputed 6 for a situation is that considered in the first section of this paper.
Llts thus: In the Now consider the scenario with two channels simultaneously
100IJ (%). For open. Each channel will deplete and accumulate ions in a
quivalent to a manner similar to that described in Eqs. 1 and 4. If the chan-
s within 5% of nels were far apart, then the current passed by the two si-
ns of up to 500 multaneously open channels would simply be two times the
entials of up to current carried by a lone open channel. If the channel were
quantity J in- close together, however, the fluxes carried by the two chan-

;b), 6 is greater nels would interfere with each other. For a lone open channel,
tration; it may we derived a simplified Eq. 1 by assuming a pure radial
n here, or even dependence for the potential and the concentrations. With

two open channels, even ideally there are no preferred radial
el distance, the (i.e., one-dimensionanl) coordinates, and the situation seems
as of both ions analytically intractable. We hence adopt the following
s this depletion strategy.
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For a lone open channel,f(R) represents the voltage drop
(see Eq. 2) from infinity to the "mouth" of the channel. Let
S be the average interchannel separation, and let n channels
be simultaneously open. As noted above, n will vary as we
look at different times in the whole trace from the patch, since
at different times one, two, ... channels will be simulta-
neously open. The plan is then: set f(R) + (n - 1)f(S)
and (C (R) - C + (n - 1)(C (S) - COO) to be, respec-
tively, the voltage drop and concentration drop from infinity
to the mouth of any of the n open channels. We may then
iterate with Eqs. 11 and 12 to find the current through any
one of the n open channels. Repeating this procedure for
n = 2, 3,..., m yields the current through a single open
channel when (n-1) of its neighbors are simultaneously
open.
The essence of the simplification above for treating mul-

tichannels is therefore the assumption of linearity in channel
flux and field interaction, as represented algebraically by the
superposition of voltage and concentration drops. An analo-
gous situation arises in electrostatics in the calculation of the
capacitance of two spheres both of radiusR placed a distance
S apart; a linear approximation is accurate there to third order
as long as RIS < 1/3 (Mason and Weaver, p. 115). Yet another
analogue can be found in the theory of chemoreceptor ad-
sorption (Berg and Purcell (1977), see especially Appendix
A); here again the second order effects can be ignored if R
is small compared to S. A similar hypothesis was also as-
sumed by Wildsma and Jongers (1992) in their treatment of
flux interaction among gap junction channels.
A less serious approximation is that all open channels are

at a distance S from one another. While this is (trivially) true
for 2 open channels, and may be (nongenerically) true for 3
open channels, it cannot hold geometrically for n > 3, where
n is the number of simultaneously open channels in a given
multichannel patch. This last restriction can be removed ifwe
know the geometrical arrangement of channels in the given
patch. In the absence of such information, the parameter S
represents the average interchannel separation in the given
patch. Even then, the essential nonlinear dependence of Eq.
11 on the radial variable (r or y) implies that the parameter
S can be regarded only as an approximate measure of the true
average interchannel separation.

Fig. 2 presents the results of calculation of flux interaction
between several gap junction channels. The single channel
parameters are as in Fig. 1; the average interchannel sep-
aration is fixed at 100 A (Makowski, 1988). Let gn be
the calculated conductance when n channels are simulta-
neously open, and define Agn = ng, - gn. In the absence of
flux interaction, Agn is zero for all n. In Fig. 2 a, we have
plotted the relative reduction in conductance Agn/gn against
(n-1), where n is the number of open channels. A total of 10
active channels were assumed, and the number of barriers
(the parameter B in Eq. 12) was set to 2. Note that the graph
is linear at all potentials. This permits us to present our results
in a condensed form based on the following observation:
If there is a (pipette) resistance in series, we can show
(Ramanan and Brink, 1993) that Agn/gn = (n - 1)/(1 + T),
where T is the ratio of series conductance to channel con-
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FIGURE 2 (a) Plot of the relative reduction Agn/gn in the current per open
channel against (n - 1), where n is the number of simultaneously open
channels in a single patch. The number n of simultaneously open channels
will vary as we look at different times in the trace. Panel a is for a collection
of model gap junction channels with parameters described in the text and
an average interchannel separation of 100 A. The slope of the line can be
expressed in terms of an equivalent resistance in series with the channel.
This equivalent series resistance for the model is shown in b for differing
number of equi-height barriers in the channel. (c) Plot similar to b for
experimental data from a single multichannel patch at various potentials (see
also Ramanan and Brink (1993)). The channels in the patch are gap junction
channels found in the earthworm septum. Although the equivalent series
resistance in the model (b) increases with voltage in a manner similar to that
seen in the experimental data (c), it is too small (by almost an order of
magnitude) to explain the data.

ductance. Although the Agn in our model are caused solely
by flux interaction, and we do not assume any pipette re-
sistance, the linearity of the graph of Agn/gn against (n-1) as
shown in Fig. 2 a permits us to rephrase the effects of flux
interaction in terms of an equivalent series resistance. Such
an equivalent series resistance is plotted in Fig. 2 b for simu-
lations of a patch with 10 open channels and 1, 2, and 20
barriers. Fig. 2 b shows that the equivalent series resistance
varies with potential. Such a dependence on the holding po-
tential is also found in experimental data from multichannel
recordings from the gap junction channel (Ramanan and
Brink, 1993). We have replotted the data from Fig. 7 of this
last reference in terms of an equivalent series resistance in
Fig. 2 c; this series resistance increases with increasing ap-
plied voltage. However, the ratios of equivalent series re-
sistance to channel resistance in the model (0.2-0.5%) are an
order of magnitude lower than that in the data (typically

I
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1-6%). Clearly, flux interactions are only a small component
of experimentally observed nonunitary multichannel con-
ductances.

With the parameters given, the flux interactions in the
model result in a -2-4% increase reduction in the current
when 10 channels are simultaneously open. For a 100-pS
channel, this would mean a reduction of the theoretical cur-
rent from 100 to 96-98 pA with ten simultaneously open
channels. This is at the limits of observeability, especially as
the accompanying open-channel noise increases with the
number of open channels. For gap junction channels, the
situation is further complicated in practice by a significant
presence of substates (Ramanan and Brink, 1993).
The resistive model of flux interaction (Wilders and

Jongsma, 1992) assumes that the access resistance to a single
channel increases by p/(2-7rS) in the presence of an adjacent
open channel, where p is the resistivity of the bathing so-
lution and S is the interchannel separation. In our modelling,
however, the net change in the channel current produced by
superposition of flux interaction from adjacent channels will
depend on the sensitivity of the single-channel current to
changes in the potential and the ion concentration at the
mouth [AI AAu(dI/du) + ACQ(dI/dCV)] caused by a nearby
open channel. This dependence is implicit in Eqs. 11 and 12.
Note that the change in the single-channel current due to flux
interaction is thus not directly related to the slope of the
single channel I-V curve. Thus a change in any of the free
single-channel parameters, namely: 1) the relative perme-
abilities of anion to cation; 2) the channel mouth radius; 3)
the number of barriers B, will change the equivalent access
resistance in our model (by a factor of 50-200%). However,
the access resistance formula (p/27TS) serves as a good order-
of-magnitude estimate. From Fig. 2, the equivalent access
resistance (for 20 barriers) is =20 Mfl, as compared to
p/(2irS) -25 MQl.
The flux interaction resistance estimate (p/2-ir) will be

good at salt concentrations where the Debye length is much
smaller than the average interchannel separation S. At low
salt concentrations, where the Debye length becomes com-
parable to S, use of the method presented here would yield
more accurate results. This remark is based on the observa-
tion that the screening term (the homogenous term in Eq. 11)
falls off near-exponentially with a length constant - the
Debye length. At distances much greater than the Debye
length, the inhomogenous term dominates; this term, which
falls off as l/r, accounts for the (p/21rTS) part of the access
resistance. This can be seen in Fig. 1, where the potential and
concentration drops from infinity go as llr for large distances
(>> Kr).

CONCLUSION

We have presented an exact solution to the linearized Nernst-
Planck-Poisson equation for ion flow in the bath. A new
element of the solution is the dependence of the equivalent
access resistance on an additional parameter J, which is the
ion flux for monovalents. For nonselective or poorly-

selective channels, such as the gap junction, the parameter J
(see Eq. 5) is small as the fluxes of anion and cation are
oppositely directed. This enabled us to use a perturbation
expansion in J for the model of the gap junction channel.
However, for ion-selective channels, such as K+ or Na+
channels, the magnitude of the flux J will be comparable to
the current I. Even then, the errors in the perturbation ex-
pansion Eq. A2 are only of the order of I.P, and hence it
would be accurate to =1% for I < 0.2. We also note that,
in the normal physiological range of concentrations for
monovalent salts, Levitt's solution (1991) is very close to the
solution given here, and should preferably be used as it com-
putes far more easily.
The parameterJ (Eq. 5) varies as the square of the valence

of the permeant ion. This indicates that, in modelling the flow
of multivalents through ion-selective channels, the parameter
J may be as significant as the current I in determining the
flow through the bath. However, the limited applicability of
the Debye-Huckel approximation for multivalent ionic spe-
cies may render the use of the nonlinear equation (Eqs. 3 and
4) necessary at high salt concentrations. Even for low mul-
tivalent salt concentrations, the perturbation expansion Eq.
A2 will no longer be valid for large J, and it may prove
necessary to use the full nonperturbative Eq. 11 for deriving
the boundary conditions at the channel mouth.
The net predicted effect of flux interactions is much

weaker than is often observed in multichannel recordings
from gap junctions. The model of interacting fluxes also
shows a dependence of nonunitary multichannel conduc-
tances on the applied voltage. Such a dependence, although
far greater in magnitude, is seen in the experimental data. It
is possible that the channels are closer to each other than
assumed (-100 A) in the calculation of flux interaction, or
that their mouths are shaped differently from circular re-
gions. For our calculations, the channels would have to be
packed to within 60 A (center to center) to account for the
nonunitary conductances observed in the data. This seems
reasonable for, as seen in Fig. 1, it is till distances of -50
A that the charge screening effects are in effect at the salt
concentrations used in the experiment. However, a packing
distance of 60 A is less by a factor of -2 than the spacing
seen in x-ray diffraction data for crystallized gap junctions,
although from a different preparation (liver cells (Makowski
et al., 1984)). We note that the flux-interaction model can be
independently tested by, e.g., 1) changing the viscosity of the
bath solutions by substituting D20 for water or 2) increasing
the concentration of the bathing solutions, as these have pre-
dictable effects. Ramanan and Brink (1993) have offered
other explanations for these nonunitary multichannel con-
ductances, such as long-lived substates. Since the number
and probability of occurrence of these substates in the 100-pS
channel are highly variable from patch to patch, and often
from channel to channel in the same patch, it is hard to
isolate the effects of flux-interaction from that of substates.
On the whole, it seems likely that flux interaction is only
one component of such nonunitary conductances in the
100-pS channel.
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If nonintegral conductances are partially due to flux in-
teraction between neighboring channels, the relation be-
tween macroscopic properties and single-channel properties
may be complicated by factors such as the geometry of chan-
nel plaques. The observation of nonintegral multichannel
conductances may therefore be another indicator of channel
clustering (Wang and Thompson, 1992).

APPENDIX
Assume that the solution gn for Eq. 11 is known to order Jn. The gn+j
satisfies the following equation:

d2g.+, F 1 21 0.5J
(l

dy2 [-4 yiJgn+l= -
+ gI (Al)

We use this formula to get the inhomogenous term for g correct to O(J2).
The result for f correct to the same order follows after some tedious ma-
nipulation. This is given by:

2! JI
finhomog = - -- [cosh(y/2)El (y12) + exp(-y/2)Chi(y/2)], (A2)

y y

where E1 and Chi are the exponential integral and hyperbolic cosine inte-
grals, respectively (Abramowitz and Stegun, Chap. 5). Programs for com-
puting these integrals can be found in Moshier (1989, pp. 355 and 370).

fhomog is itself an integral involving a Whittaker function. This is most
conveniently calculated by using the representation given in Abramowitz
and Stegun (Eq. 13.2.5). Inserting this gives

F(2 -OSJ)fhomog = A J dz e-5zz J dt e-zttlo05J(l + t)l+05J.

Interchanging the order of integration, and integrating wrt z yields

fhmg= -Aexp( -y12) dt~ep yt10) 1+ )~
homog =-Ar(2 - 0.5 J) Adtexp(-yt) (0.5 + t)2

[1 + (0.5 + t)y], (A3)
which is a form suited for computation.

The concentrations Ci can be calculated to first order by noting that

C(y) =1 - z;f(y)-2Ji[ -f-4 +0 (f2) (A4)

and

Jxy dy J[ y y]

where the primes are differentiation wrt y.
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