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Interpretation of empirical results based on a taxa’s lifetime dis-
tribution shows apparently conflicting results. Species’ lifetime is
reported to be exponentially distributed, whereas higher-order
taxa, such as families or genera, follow a broader distribution,
compatible with power-law decay. We show that both forms of
evidence are consistent with a simple evolutionary model that
does not require specific assumptions on species interaction. The
model provides a zero-order description of the dynamics of eco-
logical communities, and its species lifetime distribution can be
computed exactly. Different behaviors are found as follows: an
initial t�3/2 power law, emerging from a random walk type of
dynamics, which crosses over to a steeper t�2 branching process-
like regime and finally is cut off by an exponential decay that
becomes weaker and weaker as the total population increases.
Sampling effects also can be taken into account and shown to be
relevant. If species in the fossil record were sampled according to
the Fisher log-series distribution, lifetime should be distributed
according to a t�1 power law. Such variability of behaviors in a
simple model, combined with the scarcity of data available, casts
serious doubt on the possibility of validating theories of evolution
on the basis of species lifetime data.

biodiversity � birth and death equations � branching processes �
fossils analysis � stochastic processes

Ecosystems have become paradigmatic examples of complex
systems, showing organization and collective dynamics

across very different time and spatial scales (1). These features
are captured by nontrivial relationships among measurable
quantities, which take forms familiar to statistical physics. Well-
known examples include the species-area scaling relationship (2,
3), allometric relations (4–7), and the occurrence of power laws
in the distributions of species lifetime and size of extinction
events (8–10). These statistical laws have been measured over
many orders of magnitude and exhibit similar patterns across
very different living ecosystems and also in different quantitative
studies of fossil records (11). The ubiquity of these patterns (12)
suggests that they may be amenable to be studied in a general and
aspecific framework.

In this work, we will address the issue of species (or more
general taxa) lifetime distribution. Although the analysis of fossil
records has recently highlighted several patterns in the evolution
of biodiversity, and motivated the proposition of different
mechanisms that may have caused these patterns, the functional
form of the species lifetime distribution remains a debated issue.
According to several studies (13), species lifetime seems to be
exponentially distributed. Others have found evidence of power-
law behavior with exponent close to �2 if genera, and therefore
longer time scales, are considered (ref. 12; see also ref. 11 and
references therein). Keitt and Stanley (14) analyzed data sets
from the North American Breeding Bird Survey (www.pwrc.
usgs.gov�bbs) finding a power-law distribution for species life-
time (in their study defined as the time between colonization and
local extinction) with an exponent close to �3�2. In fact, the
detailed analysis of Newman and Sibani (15) of the data by Raup

and Sepkoski (16) has shown how both these hypotheses con-
sistently fit the data, and, when a power-law fit is applied, an
exponent between �3�2 and �2 is estimated.

On the theoretical side, these different, not to say contrasting,
findings have been invoked to support different macroecological
theories. The power-law behavior with exponent �2 is to be
expected when species dynamics can be regarded as a critical
branching process (17) where two or more species can originate
at a random moment from a common ancestor and, also
randomly, become extinct. An exponential behavior in the
lifetime distribution is often referred to as Van Valen’s law (18).
The mechanism proposed by Van Valen in support of this view
is commonly known as the Red Queen effect: there may not be
enough time for a species to gain evolutionary advantage over
competing species before the rapidly changing environment
completely redraws the fitness landscape. As a consequence, the
extinction probability of any species does not depend on time,
and an exponential behavior for lifetime distribution easily
follows. Several data sets support these conclusions (refs. 19–22;
see also ref. 23 for further analysis of the same data). More
recently, the occurrence of power-law distributions with non-
trivial exponents has attracted particular attention because of an
ongoing debate on whether the observed patterns are caused by
a self-organized critical dynamics (8–10) that would naturally
lead to the notion of punctuated equilibrium (24). In this
framework, an ecosystem is depicted as a system of interacting
species whose dynamics converges spontaneously close to a
critical point (12); the extinction of a given species may trigger
a cascade of extinction events starting from the species that
depend on, or directly interact with, the species just extinct and
leading to fluctuations of any size in the number of extinction
occurrences that may contiguously take place.

The aim of the present work is to show that all of the behaviors
mentioned above for the lifetime distribution are captured by a
simple model of noninteracting species. We conclude, therefore,
that it may be problematic, if not inappropriate, to discriminate
between existing macroecological theories on the basis of exis-
tent data sets. The framework we adopt here is inspired by the
ecological neutral theory proposed by Hubbell (25) and there-
after extended and analytically studied in refs. 26–30. This class
of models assumes that individuals in an ecological community
are fully equivalent and that the population of a species is
essentially subject to a birth and death process. Then, each
species undergoes the same dynamics: the reproductive success
of each individual depends only on the species population size
and not on the particular species considered. Competition
among species is taken into account explicitly only through a
constraint on the total population of the community and im-
plicitly through averages of birth and death rates.
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From the point of view of evolutionary theory, the hypothesis
of species equivalence may be still justified by a Red Queen
effect (18), which is able to forbid the acquisition of a large
evolutionary advantage (i.e., a significantly higher fitness level)
of a species over its competitors. In the framework of population
dynamics, this hypothesis implies that demographic stochasticity
is the main driving force for the assembly of ecological commu-
nities, meaning that its effect is overwhelmingly strong compared
with that of fitness differences among species, which, although
present, may be neglected. It is worthwhile to stress that, in
principle, complex ecological mechanisms acting on long time
scales are not ruled out by these stochastic models, as far as they
can be included in effective birth and death rates. This consid-
eration opens the issue of determining whether these theories
are able to assess realistic predictions on large time and geo-
graphical scales, such as those relevant for the fossil observa-
tions. It is widely believed (1) that statistical physics may provide
the tools to bridge these very different scales. In this perspective,
it is encouraging that Conette and Lieberman (31), based on the
studies of the biodiversity time series compiled by Sepkoski and
coworkers (32, 33), recently concluded that a random-walk-like
model is not inconsistent with the observed biodiversity time
patterns.

The model we consider here is analytically solvable and is
introduced in the next section. The resulting lifetime distri-
bution interpolates, through a scaling function, between the
behaviors of two well-known stochastic processes: exit time
problem for the one-dimensional random walk (34) and the
critical Galton–Watson branching process (17). Our results
show that, even in a simple model in which interactions among
species are included only in an averaged way, a variety of
different behaviors for the distribution of extinction time are
possible. In particular, depending on the relevant time scales,
we find an exponential, or a power-law, behavior. The latter
can either occur with exponent �2, typical of branching
processes (17), or, for shorter time scales, with a random-
walk-like exponent �3�2. In addition, if we assume that the
abundance of species is distributed according to a Fisher
log-series (35), in the Galton–Watson case, we find a power-
law distribution of extinction times with exponent �1.

As we will discuss in the conclusion, these results stress the
importance of time scales and sampling effects in the analysis of
lifetime distributions. This theory also can easily accommodate
the contrasting empirical observations of refs. 11–13 and 15 by
assuming that, whereas species lifetimes probe the exponential
regime of the theory, genera lifetimes fall in the power-law
range. The fact that power laws arise in an ‘‘effective’’ single-
species theory, combined with the sparseness of available em-
pirical data, suggests that it may not be possible to validate (or
discard) ecological or evolutionary mechanisms like self-
organized critical dynamics (12) on the basis of an observed
nonexponential behavior in the lifetime distributions.

Description of the Model
According to the assumption of neutrality (25, 26), the dynamics
of our model is uniquely specified by the effective birth and
death rates b(n) and d(n) that depend exclusively on the popula-
tion size n.

We refer to the functions b(n) and d(n) as effective because they
may embody, in a cumulative way, a variety of ecological causes
that may, in principle, influence the increase�decrease over time
of the number of individuals in a species or, more generally, in
a given taxon. The framework is therefore ample enough to
describe a population dynamics that is not simply dominated by
demographic stochasticity, but also, for example, by immigra-
tion, emigration, or niche assembly. We can safely assume that
b(n)�n and d(n)�n, the birth and death rates per individuals, can

be expanded in a power series in 1�n around their asymptotic
values b1 and d1 (28)

b�n��n � b1 � b0�n � b�1�n2 � . . .
d�n��n � d1 � d0�n � d�1�n2 � . . . [1]

The nonzero coefficient in this Taylor series can be generally
related to various kind of ecological effects giving advantages
(or disadvantages) to a less abundant species with respect to a
more abundant one. In Hubbell’s theory (25, 26), the terms b0
and d0 may be interpreted as the result of an immigration�
emigration mechanism that couples the community to a meta-
community living on a larger geographical scale. The mech-
anisms described by higher power in 1�n in Eq. 1 are relevant
only for small population sizes, and they are unable, reason-
ably, to affect properties observed on large spatial scales and
long time scales. In the following, therefore, we will study the
dynamics described only by the first two terms in the expansion
of Eq. 1:

b�n� � b0 � b1n
[2]

d�n� � d0 � d1n,

for all n � 1. Despite the simple form of the birth and death rates,
and the simplicity of the assumptions, this class of models is able
to provide very good fits of species abundance relations (26–28),
which can be related to the probability Pn of having species with
population size n. This probability, Pn, evolves with time accord-
ing to a birth and death master equation

d
dt

Pn�t� � b�n�1�Pn�1�t� � d�n�1�Pn�1�t� � �d�n� � b�n��Pn�t�.

[3]

We impose b1 � d1, ensuring that the average number of
individuals is finite and there is no ‘‘demographic explosion.’’
The ratio � � b1�d1 fixes, in fact, the average population per
species (27, 28).

To study the lifetime distribution, we consider an absorbing
barrier at n � 0, imposing b(0) � d(0) � 0. The initial condition
is that the new species at time t � 0 has just one individual

Pn�0� � �n,1. [4]

Making these assumptions, P0(t) represents the probability of
being already extinct at time t, and the lifetime probability
distribution function (or exit time distribution), p(t), is just the
time derivative of P0(t)

p�t� �
d
dt

P0�t�. [5]

We will first examine the two limit cases b1 � d1 � 0 and b0 �
d0 � 0 and then move to the general case.

Results
When b1 � d1 � 0, the number of individuals belonging to a
given species undergoes a random walk in n space where b0 (d0)
is the probability per unit time to jump one step to the right
(left). A species lifetime therefore would correspond to the
time it takes for the random walk to reach n � 0, i.e., to exit
the positive axis. The problem of exit time distribution for a
random-walk process has been widely studied in the literature
(see, for example, ref. 34). In particular, it is well known that
in the critical case b0 � d0 the lifetime follows a distribution
of the form p(t) � t�3/2. Indeed, it is easy to verify that the
solution of Eq. 3, in the present case, is
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P0�t� � 1 � exp��2 t��I0�2 t� � I1�2 t��
[6]

Pk�t� � exp��2 t��Ik�1�2 t� � Ik�1�2 t�� k � 0,

where Ik(z) � (1��) �0
� exp(z cos(	)) cos(k	)d	 are modified

Bessel functions of integer order, and the unit of time has been
chosen such that b0 � d0 � 1. Since for large z, I0(z) 	 ez�
z,
from Eqs. 5 and 6, it follows that p(t) � t�3/2 asymptotically.

Let us now analyze the case b0 � d0 � 0. This limiting case is
interesting from an ecological point of view because the d0 and
b0 terms happen to be small when one looks on a very large scale
(such as a continental scale). The dynamics is equivalent to a
Galton–Watson process in continuous time (17): the asymptotic
behavior of the lifetime distribution is a classic result of the
theory of critical branching processes (36).

Also in this case, the birth and death equation can be
analytically solved; defining the characteristic function G(x, t) �
¥n�0

� Pn(t)xn, the birth and death equation can be transformed
into a first-order partial differential equation for the function G,
which can be integrated by the characteristics method. In the
following, without loss of generality, we set d1 � 1, and the initial
condition in Eq. 4 translates in G(x, 0) � x. As shown in detail
in Supporting Text, which is published as supporting information
on the PNAS web site, the exact solution is

p�t� � � 1 � �

e�1���t � �
�2

e�1���t. [7]

This distribution has an exponential-like shape when (d1 � b1)
(or 1 � �) is not too small. On the other hand, when b1
approaches d1, the distribution has a power-law behavior with
exponent �2 and a characteristic time scale t* � 1�(1 � �). The
distribution p(t) can be cast in a more appealing form by using
the language of critical phenomena in statistical mechanics. For
large t and t�t* fixed, it follows, from Eq. 7, that

p�t� �
1
t2 f� t

t*�, [8]

where f(x) � [x�(1 � e�x)]2e�x. Thus, plotting t2p(t) vs. t�t*, one
gets, in the scaling region, a universal curve where all of the
model details are absorbed in the characteristic time scale, t*.
When dealing with observational data, an estimate of t* can be
obtained by the ratio of two consecutive moments, �tk(k �1), of
lifetime probability distribution function.

It also is interesting to investigate the role of the initial
condition on the lifetime p.d.f. Taking into account an effective
speciation rate, one can show, for the particular case at hand,
that the resulting stationary distribution (26) is the celebrated
Fisher log series (35)

Pn � N
�n

n
, [9]

where n � 0 and N is a normalization constant. By using the
result above, it is therefore possible to calculate the expected
extinction time of a species that is chosen at random in the
ecosystem. Setting as initial conditions the characteristic func-
tion associated to the distribution in Eq. 9, G(x, 0) � log(1 �
x�)�log (1 � �), one finds

G�0, t� �
1

log�1 � ��
log� �1 � ��e �1���t

e �1���t � �
� . [10]

In this case, again p(t) � 
G(0, t)�
t � e�t/t* when t �� t*,
whereas p(t) � t�1 when t �� t*, which means that the critical
exponent for the lifetime p.d.f is now �1.

We now discuss, qualitatively first, the solution in the general
case when all of the coefficients are different from zero and b0

� d0, b1 � d1. Heuristically, long-living species typically have a
large number of individuals. For such species, the b0 and d0 terms
can be reasonably neglected. Thus, one expects a crossover from
the t�3/2 to the t�2 behavior at a certain characteristic time and
finally an exponential decay beyond another characteristic time
scale. Numerical simulations do support this hypothesis, as
shown in Fig. 1, and suggest that the crossover time is propor-
tional to the ratio b1�b0.

In Supporting Text, we provide the analytical solution of the
general case, proving rigorously both the asymptotic critical
behaviors and the scaling of the solution with the ratio b0�b1. In
the following, we discuss the main results and their conse-
quences. In terms of the Laplace transform of P0(t), P̃0(s) � �0

�

P0(t)e�ts, the exact solution for the critical case b0 � d0 � r and
b1 � d1 � 1, is given by

sP̃0�s� � 1 �

�
1

� dy
y

e�sy�1 �
1
y�

r

�
1

�

dye�sy�1 �
1
y�

r
�

1

slogN�s , r�

, [11]

where we have defined N(s, r) � �1
� (dy�y)e�sy(1 � (1�y))r. For

small s the function N(s, r) diverges as �c log s, where c depends
only on r; this divergence implies that P̃0(s) behaves as P̃0(s) �
(1�s) � c log s. The Tauberian theorem ensures in this case that
P0(t) behaves like 1 � ct�1 for large t, implying that the lifetime
distribution has a t�2 power-law tail.

To derive the crossover to the t�3/2 behavior, we need to focus
on time scales t �� 1�r for r �� 1. This scale is related to the limit
s 3 0 with rs fixed in the solution, for which one obtains

N�s, r� � �
0

� dx
x

e�	rs�x�
1
x� � 2K0�2	rs�, [12]

Fig. 1. Numerical sample of the lifetime probability distribution function
with parameters d1 � 1, b1 � 1 � 5 � 10�5, b0 � d0 � 10. Notice the crossover
between the two power laws (shown; notice the log–log scale) and the
beginning of the exponential regime.
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where K0 is a modified Bessel function. By using this result and
Eq. 11 one gets that the lifetime distribution obeys the following
scaling form:

p�t� � t�2f�t
r�, [13]

where f(x)3 const when x3 �, leading to the t�2 scaling at large
t, and f(x) � 
x when x3 0, corresponding to the random-walk
scaling t�3/2 at intermediate t. The validity of this scaling law is
numerically confirmed (see Fig. 2).

Discussion
As sketched in the Introduction, the fact that species lifetimes are
usually exponentially distributed is often referred to as Van Valen’s
law (18): Under the assumption that the fitness level is correlated
in some way to the extinction probability, Van Valen states that an
observed exponential lifetime distribution is the fingerprint of an
acting Red Queen mechanism. Later, more detailed analysis (and
data sets) (15) indicated power-law behaviors in genera lifetimes,
while species exponential lifetime distributions have been generally
confirmed. This difference is, to a certain degree, counterintuitive,
because one would expect to see a deviation from criticality as a
finite size effect when looking at long time scales. A possible
explanation, proposed in refs. 11 and 12, is that at longer time scales,
like those relevant for genera extinction, collective events like mass
extinctions play a more important role. The interdependence of
generic taxa in an ecosystem generates stronger correlations in their
probability to survive, and these correlations, in turn, may originate
a power-law behavior in the lifetime distribution (11, 12).

We also have shown, in a simple model, in which every
species undergoes an effective independent dynamics, that a
critical behavior for the lifetimes may occur, with an exponent
that is compatible with the observed value. This critical

behavior is generated only by demographic stochasticity, which
is known to be a very important factor in causing species
extinction (37). Interestingly enough, the hypotheses underly-
ing this model are not so different to those of Van Valen for
an explanation of the exponential species lifetime. Our results
clearly indicate that the presence of a Red Queen effect, i.e.,
the fitness equivalence of all species, does not ensure an
exponential lifetime distribution, as far as one takes into
account the population sizes in an explicit way. In some sense,
in these models the population size acts as a simple ‘‘memory’’
of the evolutionary history of the species.

It is worthwhile to connect our approach with a model
proposed by Raup (38) as a null model for the survivorship
curves of Phanerozoic genera (the lifetime distribution can be
thought of as the derivative of the survivorship curve). This
model, fitting rather well the fossil data, assumes that species
constituting the genera have a constant speciation and extinction
rate. Obviously, the resulting lifetimes distribution is the same as
we recover in a limiting case of our model in Eq. 7. The only
difference is that, in Raup’s case, the branching-like dynamics is
applied at the level of species (not at the level of individuals).
This feature implies that our model is compatible with the data
from the fossil record, with the advantage of being grounded on
more realistic (and testable) hypotheses than the assumption of
constant species immigration and speciation rates.

In our framework, it is also possible to explain why the critical
behavior in the lifetimes is generally observed when studying
higher taxonomic levels. Let us assume that we can neglect the
terms b0 and d0, as far as we are interested in the tail of the
lifetime distribution. By taking the mean value of the distribution
in Eq. 9, the typical population size can be expressed as

�n �
�

�� � 1�

1
log�1 � ��

. [14]

The right-hand side of Eq. 14 diverges when � 3 1�; thus, a
choice of the parameters closer to criticality implies a larger
population size. Since genera lump together the individuals of
many species, the effective value of � for a genera should be
closer to 1 than it is for a species. Therefore, it may not be
possible to observe the power law in the species lifetime because
of the experimental error bars and the presence of the expo-
nential cutoff occurring at t � (1 � �)�1 according to Eq. 7,
which, depending on its value, might mask both scaling regimes,
i.e., t�3/2 and t�2 or only the latter.

Finally, we demonstrated that, although ‘‘local’’ birth and
death terms, i.e., terms that are negligible in the large population
size limit, are known to modify the mean species extinction time
(39, 40), they are unable to affect the long time-scale behavior
of the lifetime distribution. The critical behavior of the distri-
bution, in this class of models, is uniquely determined by the
Galton–Watson part of the dynamics. Given the robustness of
this ‘‘criticality’’ with respect to modification of the dynamics on
a a small scale, we suggest the hypothesis that the observed
power law could be simply a consequence of the branching-like
structure of single population dynamics rather than an effect of
the interactions among different species.
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