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For a large class of proteins called sandwich-like proteins (SPs), the
secondary structures consist of two �-sheets packed face-to-face,
with each �-sheet consisting typically of three to five �-strands. An
important step in the prediction of the three-dimensional structure
of a SP is the prediction of its supersecondary structure, namely the
prediction of the arrangement of the �-strands in the two �-sheets.
Recently, significant progress in this direction was made, where it
was shown that 91% of observed SPs form what we here call
‘‘canonical motifs.’’ Here, we show that all canonical motifs can be
constructed in a simple manner that is based on thermodynamic
considerations and uses certain geometric structures. The number
of these structures is much smaller than the number of possible
strand arrangements. For instance, whereas for SPs consisting of
six strands there exist a priori 900 possible strand arrangements,
there exist only five geometric structures. Furthermore, the few
motifs that are noncanonial can be constructed from canonical
motifs by a simple procedure.

protein secondary structure � protein structure prediction � supersecondary
structure

Predicting the secondary structures (�-helices and �-strands)
from a given amino acid sequence has now become a routine

procedure, although its accuracy is only �80% (1–4). For
�-proteins, i.e., for proteins whose secondary structure consists
of only �-sheets, predicting the arrangement of the strands in
space (supersecondary structure) remains an important open
problem. To address this problem, structural biologists have used
the fact that �-protein structures exhibit a number of regularities
(5–12), for example the ubiquitous occurrence of Richardson’s
Greek key. Furthermore, they have used several different algo-
rithms, some of which are based on neural networks and on
hidden Markov models (13–19).

For sandwich-like proteins (SPs), we suggest that the above
problem can be solved in two steps: (i) Given a number of strands
n, where n is typically between 6 and 11, construct all canonical
motifs. (ii) Given the amino acid sequence of n strands, identify
a single motif among the motifs constructed in step i. In what
follows, we present the solution of step i. Step ii has yet to be
performed.

Canonical motifs are defined as strand arrangements that
satisfy the structural rules of ref. 20 (see also definitions below).
Although this definition can be used in principle for the con-
struction of all canonical motifs with a given number of strands,
the implementation of this construction is complicated. Here, we
will introduce an alternative characterization of canonical motifs
that allows one to construct all canonical motifs with a given
number of strands in a simple manner. Furthermore, our analysis
reveals the existence of certain invariant topological objects,
which are more fundamental than canonical motifs. Indeed, all
canonical motifs are generated from these topological objects
that we call ‘‘geometric structures.’’

An important feature of the above geometric construction is
that it can be explained from biological considerations. Indeed,

the formation of the geometric structures is a consequence of
simple thermodynamic principles.

Materials and Methods
Material Considered. Proteins of 69 superfamilies in 38 protein
folds have been described as SPs [see folds 1.2.1–1.2.38 in
Structure Classification of Proteins Release 1.59 (21, 22)]. Some
SPs, in addition to the ‘‘main’’ sandwich sheets, contain ‘‘aux-
iliary’’ �-sheets. Here, we have analyzed only SPs consisting of
two main sheets. By analyzing the H bonds between main-chain
atoms, we have determined the strands (secondary structure)
and the arrangements of the strands in space (supersecondary
structure). We have analyzed the arrangement of strands of 177
protein domains. Each domain consists of a total of 6–11 strands.
Our analysis has revealed that there are 58 supersecondary
motifs that describe all these domains, see table 1 of ref. 20.
Observed motifs with an even number of strands (i.e., motifs
consisting of 6, 8, or 10 strands), as well as 11 of 13 motifs with
7 strands, 15 of 17 motifs with 9 strands, and 2 of 3 motifs with
11 strands, are canonical. Overall, 53 of the 58 observed motifs
are canonical (91.4%).

Determination of the Supersecondary Structure. The protein of Fig.
1 is a typical SP; it consists of nine strands arranged in two
�-sheets. The supersecondary structure of Fig. 1B can be
represented in the simplified form of Fig. 2A, where each line
denotes a H bond. This canonical motif is actually the most
commonly observed motif of SPs consisting of nine strands (20).

Definitions. We first recall some definitions of ref. 20. Neighbor-
ing strands (NSs) are strands found in the same �-sheet and
connected by H bonds between the main-chain atoms. Each
strand has two NSs unless it occurs at the edge of the sheet (for
example, in Fig. 2 A, strands 7 and 1 are the left and right NSs,
respectively, of strand 3). Two consecutive strands i and i � 1 are
called a jumping pair (JP) if they are in different sheets. If both
i and i � 1 are at the edges of the same side of the two sheets,
then the JP is called an edge JP (EJP); otherwise it is called an
internal JP (IJP) (for example, in Fig. 2 A, strands 2�3, 3�4, 7�8,
and 9�1 are IJPs, whereas strands 1�2 and 5�6 are EJPs).
Throughout this article we assume cyclic ordering, i.e., the first
strand of the domain follows the last strand (for example, in Fig.
2A, strands 9 and 1 are considered consecutive strands; thus 9�1
form an IJP). Two IJPs, i�i � 1 and k�k � 1, form an interlock
(23) if i�k are NSs, if i � 1�k � 1 are also NSs, and if i is to the
left (right) of k and i � 1 is to the right (left) of k � 1 (Fig. 3).
For example, in Fig. 2 A, the pairs of strands 2�3 and 9�1 and the
pairs 3�4 and 7�8 form interlocks.

Abbreviations: SP, sandwich-like protein; NS, neighboring strand; JP, jumping pair; IJP,
internal JP; EJP, edge JP.
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We note that there exist EJPs at both ends of Fig. 2 A;
furthermore, all IJPs appear in the form of interlocks. These are
the manifestations of rules III and I, respectively, of ref. 20. Rule
II of ref. 20 describes the possible arrangements of four con-
secutive strands. We define a canonical motif as any strand
arrangement that obeys Rules I, II, and III.

Observed canonical motifs with six strands involve one inter-
lock, those with seven and eight strands involve one or two in-
terlocks, those with nine strands involve one, two, or three
interlocks, and those with 10 and 11 strands involve two or three
interlocks.

The evolutionary preservation of residues in the strands
forming interlocks has been recently experimentally established
in ref. 22 through the use of protein engineering.

We will denote each strand with a dot and each interlock by
a pair of intersecting line segments connecting the strands of
each JP, as in Fig. 3.

Geometric Structures. All canonical motifs can be obtained by
using what we call geometric structures, which can be con-
structed as follows. Let n be the number of strands. A geometric
structure is a collection of interlocks placed in sequence and of
strands so that the total number of strands is n. Let m be the
number of interlocks. We assume that there is at least one
interlock (i.e., m � 1). The number of interlocks cannot exceed
(n � 2)�2 if n is even or (n � 3)�2 if n is odd. For example, if
n � 9, then m may be equal to 1, 2, or 3. A possible geometric
structure is depicted in Fig. 2B for m � 2.

For a given n, it is straightforward to construct all possible
geometric structures. It turns out that it is sufficient to consider
only structures within an equivalence class, where two structures
are equivalent if one can be obtained from the other by
interchanging either the two sheets or the left with the right sides
or both. For example, if n � 6, m may be equal to 1 or 2 and we
find five distinct geometric structures, those shown in Fig. 4.

Construction of Canonical Motifs from Geometric Structures. Each
geometric structure gives rise to a multitude of canonical motifs
as follows: Place strand number 1 at one of the positions and then
place the remaining strands cyclically observing the definition of
an interlock. After placing strand 1, there exist two choices for
placing strand 2, and each of these choices yields a unique motif.
For example, placing strand 1 at the lower right position of the
structure of Fig. 2B and strand 2 in the upper right position, we
find Fig. 2C, i.e., the canonical motif of Fig. 2 A (the other choice,
as dictated by the interlock, would be to place strand 2 to the left
of the upper right position).

Example: Construction of All Possible Canonical Motifs with Six
Strands. We must use all possible geometric structures for six
strands, i.e., those of Fig. 4. Let us for example show how to
construct the five observed canonical motifs analyzed in ref. 20
and presented in Fig. 5. By placing strand 1 at the upper right
position of Fig. 4A, it follows that one choice is to place strand
2 at the lower right position, and the other choice is to place
strand 2 to the left of strand 1. These two choices yield the first
two canonical motifs of Fig. 5. Similarly, placing strand 1 at the
upper center position of Fig. 4A and placing 2 at the lower center
position (following the IJP), we find the third canonical motif of
Fig. 5. The fourth and the fifth canonical motifs of Fig. 5 are
produced from the geometric structure of Fig. 4B, by placing
strand 1 at the lower right position (respectively at the lower
center position) and strand 2 at the lower center strand (respec-
tively at the lower left). In the same way, one can construct all
possible canonical motifs with six strands.

The geometric structure shown in Fig. 4E does not generate
observed canonical motifs. This structure can be excluded by
requiring the additional restriction that there exist at least two
consecutive strands in at least one sheet. Actually, this restriction
can be adopted in general because it is valid for all observed
canonical motifs of six to 11 strands.

Thermodynamically Motivated Structural Principles and Geometric
Structures. The formation of geometric structures is a conse-
quence of simple thermodynamic considerations. Indeed, if one
postulates that (i) two strands adjacent in the same sheet are
antiparallel (with the possible exception of the case involving the
first and the last strands) and that (ii) loops neither cross nor

Fig. 3. The schematic representation of an interlock.

Fig. 1. The schematic representation of the strands and the arrangement of the strands in the two �-sheets. (A) The strands are consequently numbered starting
from the N-terminal of the chain. (B) Arrangements of the strands in two main �-sheets.

Fig. 2. Different schematic representations of strand arrangements. (A) A
canonical motif. (B) The geometric structure generating the canonical
motif of A. (C) The canonical motif of A is generated from the geometrical
structure of B by placing strands 1 and 2 at the lower and upper right
positions, respectively.
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overlap, then it can be shown that one essentially arrives at the
above geometric structures. These two structural principles,
which have been observed by several authors, have a simple
thermodynamic explanation (24). For principle i, loops connect-
ing parallel and antiparallel strands bend by 2� and �, respec-
tively, and, because the energy of bending is approximately
proportional to the square of the angle of bent, antiparallel
strands are preferred. For principle ii, if loops were to cross or
overlap, then one loop would be forced into the hydrophobic
core of the protein, and, because loops have many potential
groups for forming hydrogen bonds, this would lead to instabil-
ity. The reason for allowing strands that occur at the edges of SP
to be parallel is that such strands can be connected by loops that
do not create overlaps, which, together with cyclic ordering,
implies that there exist two types of interlocks: One type consists
of JPs with only antiparallel strands (like strands 3�4 and 7�8 in
Fig. 1B), and the other type consists of JPs, some of which involve
parallel strands (like strands 9�1 in Fig. 1B).

We now present a brief outline of the (extensive) analysis that
demonstrates that the geometric structures arise from the preceding
principles i and ii. Consider the possible connections between two
consecutive strands in the schematic representation of a canonical
motif, as in the typical case of Fig. 1B. The two consecutive strands
may lie in the same sheet or in different sheets. First note that
principles i and ii imply that there do not exist connections between
the back and front of the two sheets, except possibly in the case of
two strands at the same edge whose connection, being on the side
of the motif, does not cause a loop crossing or overlap. (Thus, in Fig.
1B, the connections from strands 3 to 4, from 6 to 7, and from 8 to
9 lie entirely in the front, and those from 2 to 3, 4 to 5, and 7 to 8
lie entirely in the back; the two edge connections, i.e., from 1 to 2
and from 5 to 6, extend from back to front and from front to back,
respectively.) Next, note that two consecutive strands in the same
sheet are necessarily NSs, otherwise the existence of a strand
between them would cause a loop overlap and a violation of
principle ii. Then, a careful examination of all potential strand
arrangements (and the exclusion of certain cases that do not occur
in observed motifs) lead to the following conclusions. (i) The two
strands at each edge are consecutive (including the case of the last
and first strand); thus, they form an EJP. (ii) The only possible IJPs
occur in pairs and form interlocks (one IJP may involve the last and
first strands). Thus, a canonical motif consists of consecutive strands
in the same sheet, the two EJPs and one or more interlocks.

Noncanonical Motifs. These motifs can be constructed from ca-
nonical motifs simply by changing the order of consecutive
strands in the same sheet. For example, the geometric structure
of Fig. 4D yields canonical motifs with strands 3, 1, 6, and 5 in
one sheet and strands 2 and 4 in the other. By changing the order
of consecutive strands 6 and 5, we find a noncanonical motif with
strands 3, 1, 5, and 6 in one sheet. Proteins with this motif exist,
but they were not analyzed in ref. 20 because they involve
auxiliary sheets (see Note Added in Proof).

Discussion
Geometric structures provide a straightforward and systematic way
of generating all canonical motifs. In addition, their number and the
number of the corresponding canonical motifs is dramatically
smaller than the number of all possible a priori motifs. Moreover,
this number can be further restricted because some of the canonical
motifs can be eliminated on the basis that they violate the require-
ment of the right-handedness (24) and of antiparallelism. Also,
structural rearrangements needed for a protein to progress from a
collapsed chain to the native fold, may eliminate some additional
protein topologies, i.e., some motifs may be eliminated not from
thermodynamic but from kinetic requirements (25).

Noncanonical motifs can be constructed through a simple
modification of canonical motifs.

Current ab initio prediction algorithms are mainly based on
thermodynamic considerations and search for the configuration
with the lowest free energy. Imposing severe topological con-
straints of the type presented here, should have a major impact
on the design of more efficient search algorithms.

The problem of protein engineering (26) can be considered as the
inverse of the problem of protein prediction. Hence, the solution of
the protein prediction problem of SPs should have important
implications for the rational design of protein engineering.

Note Added in Proof. Recently, proteins involving auxiliary sheets have
been analyzed by appropriately embedding them in a two-sheets struc-
ture (Y. S. Chiang and A.E.K., personal communication). The motifs of
these proteins are consistent with our analysis. For example, some of the
proteins with six strands have the motif with strands 1 and 4 in one sheet
and strands 6, 5, 2, and 3 in the other. These proteins can be constructed
from the geometric structure of Fig. 4C and, therefore, were predicted
to exist by our construction.
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Fig. 4. The five canonical geometric structures for six strands.

Fig. 5. Observed SPs with six strands.
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