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T-cell immunity is critical for survival of hosts infected with Toxoplasma gondii. Among the cells in the T-cell
population, CD8* T cells are considered the major effector cells against this parasite. It is believed that CD4™
T cells may be crucial for induction of the CD8*-T-cell response against 7. gondii. In the present study, CD4~/~
mice were used to evaluate the role of conventional CD4™ T cells in the immune response against T. gondii
infection. CD4~'~ mice infected with T. gondii exhibited lower gamma interferon (IFN-y) messages in the
majority of their tissues. As a result, mortality due to a hyperinflammatory response was prevented in these
animals. Interestingly, 7. gondii infection induced a normal antigen-specific CD8*-T-cell immune response in
CD4~/~ mice. No difference in generation of precursor cytotoxic T lymphocytes (pCTL) or in IFN-y production
by the CD8"-T-cell populations from the knockout and wild-type animals was observed. However, the mutant
mice were not able to sustain CD8*-T-cell immunity. At 180 days after infection, the CD8*-T-cell response in
the knockout mice was depressed, as determined by pCTL and IFN-y assays. Loss of CD8"-T-cell immunity
at this time was confirmed by adoptive transfer experiments. Purified CD8* T cells from CD4~'~ donors that
had been immunized 180 days earlier failed to protect the recipient mice against a lethal infection. Our study
demonstrated that although CD8*-T-cell immunity can be induced in the absence of conventional CD4™* T

cells, it cannot be maintained without such cells.

Toxoplasma gondii induces a strong humoral and cellular
immune response in an infected host (25, 36, 42). However, it
has been demonstrated that cell-mediated immunity is a major
factor responsible for resistance against this parasite (13). The
importance of cellular immunity against 7. gondii is shown by
the high incidence of toxoplasmosis in the human immunode-
ficiency virus-infected population before highly active antiret-
rovirus therapy was introduced (29). Similarly, nude mice that
lack T cells do not develop resistance against 7. gondii, and
transfer of immune T cells to these animals protects them from
infection (11).

During acute toxoplasma infection, before adaptive immu-
nity is established, NK cells are important for restraining the
infection (7, 15). However, antigen-specific T cells are critical
for long-term survival of the host (16). Among the cells in the
T-cell population, CD8" T cells are considered the major
effector cells against 7. gondii infection, and CD4™" T cells play
a synergistic role (12, 20). This has been confirmed by adoptive
transfer studies, which have demonstrated that CD8" T cells
are the principal mediators of protective immunity against 7.
gondii (20, 39).

Although CD4™" T cells are considered important, their role
in the maintenance of CD8"-T-cell effector immunity against
T. gondii is not well defined. Various studies have suggested
that CD4™ T cells may be essential for priming of CD8*-T-cell
effector immunity against 7. gondii (4, 13). In the present study,
we used gene knockout mice to evaluate the importance of
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CD4" T cells in induction and maintenance of the CD8"-T-
cell response against 7. gondii infection. Although primary
CD8*-T-cell immunity in CD4 /" mice after oral infection
could be induced, these animals did not sustain a long-term
memory CD8"-T-cell response. Over time, CD8"-T-cell im-
munity in CD4 '~ mice was dampened, and the mice became
susceptible to 7. gondii challenge.

MATERIALS AND METHODS

Mice, infection, and challenge. CD4/~ mice with a C57BL/6 background
were obtained from Jackson Laboratory (Bar Harbor, Maine). Age- and sex-
matched parental wild-type mice were used as controls. Mice were challenged
perorally with 20 to 100 cysts of T. gondii strain 76K (kindly provided by Daniel
Bout, Tours, France). This strain is maintained by continuous oral passage of
cysts. Tachyzoites of T. gondii strain PLK were used for the challenge experi-
ments.

Quantitation of parasite burden. Tissues (guts, spleens, livers, lungs, and
brains) were recovered from mice that had been infected 7 days previously with
T. gondii. DNA was extracted from tissues with a QIAamp tissue kit (Qiagen,
Chatsworth, Calif.), and 400 ng of each sample was analyzed by PCR. Parasite
DNA was amplified by using primers specific for the toxoplasma B1 gene (5'-
GGAACTGCATCCGTTCATGAG-3" and 5'-TCTTTAAAGCTTCGTGGTC-
3"), a 35-fold repetitive sequence found in all known parasite strains (2). A
134-bp competitive internal standard containing the same primer template se-
quences as the 194-bp B1 PCR fragment was generated and used (23). These two
segments were amplified in a 50-ul reaction mixture containing 1.25 U of Am-
plitag DNA polymerase, 1X buffer (Perkin-Elmer), 0.2 mM (each) dGTP, dATP,
dTTP, and dCTP, and each of the B1 primers at a concentration of 0.4 .M. For
each reaction, a known amount of DNA from tissue was amplified with different
amounts of the internal standard. The parasite load was estimated by comparison
with the internal control. To determine the parasite loads for the infected tissues,
PCR was performed by using the same conditions and a known number of
parasites. The level of the internal control was calculated per parasite (23).

Determination of 7. gondii cysts in mouse brains. Groups of five CD4 /" and
wild-type mice were challenged orally with 15 cysts of T. gondii 76K. The animals
were sacrificed on day 45 postinfection (p.i.), and the brains were removed. Each
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entire brain was ground in 2 ml of phosphate-buffered saline (PBS) by using a
Dounce homogenizer. The mean number of cysts was then determined by count-
ing the numbers of cysts in six samples (10 pl each) by light microscopy.

Histopathological analysis. Tissues (guts and livers) from the infected CD4 ™/~
and parental control animals were fixed in 10% buffered formalin and processed
to obtain 5-um histological sections, which were placed on slides and stained with
hematoxylin and eosin stain. The slides were examined and photographed by
using an Olympus Van Ox microscope and Kodak Elite 100 film. Images were
digitized with a Polaroid Sprint scanner, and a figure was assembled with Adobe
Photoshop software.

Detection of IFN-y. Messages for gamma interferon (IFN-vy) in the tissues of
CD4 '~ mice were analyzed by quantitative PCR. Tissues (guts, spleens, livers,
lungs, and brains) from knockout and wild-type mice were collected on day 7 p.i.
RNAs were collected from the tissues by using Trizol (Gibco BRL, Gaithersburg,
Md.) as recommended by the manufacturer. Reverse transcription was per-
formed by using Moloney murine leukemia virus reverse transcriptase (Gibco
BRL) and random hexamer primers (Promega, Madison, Wis.). IFN-y mRNA
levels were determined by quantitative PCR using the PQRS quantitative
method (35). The tissues from uninfected mice were used to establish a baseline
value of 1.0, and this value was used to determine the levels of cytokine message
in the test mice.

CD8" T cells from infected animals were assayed for IFN-y production at
various times after 7. gondii infection. CD8" T cells from the infected animals
were separated by positive selection by using antibody-coated microbeads (Milte-
nyl Biotech, Auburn, Calif.) as reccommended by the manufacturer. The purity of
the cells was >95%, as determined by fluorescence-activated cell sorter analysis.
The purified CD8" T cells were stimulated in vitro with toxoplasma lysate
antigen (TLA) and irradiated feeder cells in a 24-well plate. TLA was prepared
by using a previously described protocol (19). After 72 h of incubation, the
cultures were harvested, and supernatants were collected, centrifuged, and
stored at —80°C until they were used. The supernatants were assayed for IFN-y
production by an enzyme-linked immunosorbent assay. The assay was performed
with cytokine-specific CytoSets according to instructions of the manufacturer
(Biosource Int., Camarillo, Calif.).

Adoptive transfer of CD8* T cells. Parental C57BL/6 mice and CD4 '~ mice
were infected orally with 20 cysts of T. gondii. At 90 and 180 days p.i. the mice
were sacrificed and splenectomized, and CD8™ T cells (>95% pure) were adop-
tively transferred to naive C57BL/6 mice via intravenous tail vein inoculation.
Then 24 h after the adoptive transfer of immune cells, each of the mice was
challenged with 5 x10* tachyzoites of strain PLK.

Estimation of pCTL frequency. The frequency of antigen-specific CD8* T
cells was determined by performing a precursor cytotoxic T lymphocyte (pCTL)
analysis by a standard technique (9). CD8" T cells from the infected animals
were separated as described above. Purified CD8* T cells were cultured by the
limiting dilution assay method in 96-well round-bottom plates. The cells were
grown in RPMI 1640 medium containing appropriate growth factors, including
15 U of recombinant interleukin-2 (IL-2) (R&D Chemicals, Minneapolis, Minn.)
per ml, and irradiated strain PLK tachyzoites (5 X 10? tachyzoites/well, irradi-
ated at 15,000 rads). A total of 2 X 10° syngeneic splenocytes irradiated at 3,000
rads were added to each well as feeder cells. Purified CD8" T cells were serially
diluted to obtain concentrations ranging from 3,125 to 50,000 cells/well. Control
wells contained only irradiated parasites and feeder cells. After 1 week, the cells
were harvested and incubated with >!Cr-labeled parasite-infected and uninfected
macrophages. The macrophages were collected and labeled as described else-
where (20). Briefly, mouse peritoneal macrophages were obtained by lavage 2
days after intraperitoneal inoculation with 1 ml of thioglycolate. The macro-
phages were washed three times in PBS and dispensed at a concentration of 2 X
10* cells/well into 96-well U-bottom tissue culture plates. After overnight incu-
bation, they were radiolabeled with >'Cr (0.5 p.Ci/well; New England Nuclear
Research Products, Boston, Mass.) for 3 h at 37°C. After several washes in PBS,
the macrophages were infected with 2 X 10* freshly obtained PLK parasites. The
next morning, the spontaneous lysis caused by overnight parasite infection was
measured, and all wells exhibiting >250 cpm in the supernatant were excluded
from the experiment. Macrophages were washed in PBS and incubated with
CD8"-T-cell cultures. The amount of radioisotope released was measured fol-
lowing 4 h of incubation. Wells were considered positive for lytic activity if the
total amount of radioactivity released by effector cells plus target cells was more
than 3 standard deviations greater than the amount observed for the control
wells (the mean amount of radioactivity released by the target cells incubated
with antigen-presenting cells and irradiated parasites alone). The pCTL frequen-
cies were calculated by using x? analysis as described by Taswell (41) and a
computer program kindly provided by William R. Green of Dartmouth Medical
School.
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FIG. 1. Survival of CD4™/~ (A) and wild-type (B) mice infected
with different doses of 7. gondii. Female CD4 '~ mice and parental
C57BL/6 mice that were 5 to 6 weeks old were challenged perorally
with 20, 50, or 100 cysts of T. gondii 76K. Survival of animals was
monitored daily. There were six animals per group, and the experiment
was performed twice with similar results. The data shown are the data
from one of the two experiments.

Statistical analysis. Statistical analysis of the data was performed by using
Student’s ¢ test (32).

RESULTS

CD4~'~ mice survived oral infection with T. gondii. To de-
termine if a lack of CD4™ T cells can alter the outcome of
acute toxoplasma infection, CD4~/~ and parental controls
were infected with 20 to 100 cysts of T. gondii 76K. As shown
in Fig. 1A, CD4~/~ animals survived a high dose of T. gondii.
No early mortality was observed in such animals that received
infective doses of up to 50 cysts. When the inoculum was
increased to 100 cysts, two of the six mice died between days 19
and 21 p.i. In comparison, all of the wild-type mice died by day
9 p.i when they were infected orally with 50 to 100 cysts (Fig.
1B). The level of mortality observed with wild-type mice in-
fected with 20 cysts was 33%, while none of the knockout mice
that received this dose died. However, two of six CD4~/~ mice
that were infected with 50 cysts died between 80 and 100 days
p.i. (Fig. 1A). Similarly, two animals belonging to the knockout
group that received a challenge dose of 100 cysts died between
100 and 110 days p.i. (Fig. 1A). The level of mortality remained
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FIG. 2. IFN-y mRNA expression following 7. gondii infection in CD4~/~ and parental wild-type (WT) mice. Mice were infected orally with 20
cysts of 7. gondii as described in the text. On day 7 p.i., tissues from both infected (Inf.) and uninfected (Uninf.) controls (three mice per group)
were harvested and pooled. Expression of mRNA for IFN-y was assayed by reverse transcriptase PCR. The transcriptional levels for the genes are
expressed relative to the transcriptional level in uninfected mice (defined as 1). The cDNA concentration examined at each time was standardized
to the hypoxanthine phosphoribosyltransferase mRNA level (data not shown).

the same until 180 days p.i., when the experiments were ter-
minated.

Analysis of the cytokine message in response to 7. gondii
infection. As CD4" T cells have been reported to be an im-
portant source of IFN-y production during 7. gondii infection
(6), the levels of the cytokine message in the various tissues of
the infected animals were determined by quantitative PCR. All
of the tissues from infected CD4 /" mice except the brain
tissue (Fig. 2D) showed decreased upregulation of the IFN-y
message compared to the tissues from the control wild-type
animals. It has been suggested recently that non-T cells are
involved in the production of IFN-y in the brains of 7. gondii-
infected mice (18). As shown in Fig. 2, 10- to 20-fold decreases

in the IFN-y message were observed for the lungs (Fig. 2B)
and the guts (Fig. 2E) of CD4™/~ mice. Similarly, the livers
(Fig. 2A) and spleens (Fig. 2C) of CD4 '~ mice expressed
three- to fivefold-lower IFN-y messages than the livers and
spleens of the parental C57BL/6 mice expressed.

Histological analysis. Sections of small intestines and livers
from CD4~/~ and parental C57BL/6 mice that had been in-
fected perorally with 50 cysts of T. gondii 76K were subjected
to a histopathological analysis on day 7 p.i. The distal small
bowels from the C57BL/6 mice were extensively necrotic, with
full thickness inflammation and ulceration (Fig. 3B). In con-
trast, no necrosis was observed in the distal small bowels of
CD4~'~ mice (Fig. 3A). Similarly, the livers of wild-type mice
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FIG. 3. (A and B) Ilea from CD4 "/~ (A) and wild-type control (B) mice on day 7 p.i. In the CD4 /" ileum (magnification, X 10) the architecture
of the villi was normal for the most part, although there was increased cellular infiltrate in the lamina propria. In the wild-type control infected
mouse there was severe blunting and necrosis of the villi and a high level of lymphocyte infiltration. (C and D) Livers from CD4 '~ (C) and
wild-type control (D) mice on day 7 p.i. In the CD4 /" liver there was remodeled hepatocyte architecture with little fatty cell degeneration, but
focal lymphocytic nodules (arrow) provided evidence of acute toxoplasma infection. In the wild-type control infected mouse there was extensive
fatty cell degeneration (left of arrow). (E and F) Brains from CD4 '~ (E) and wild-type control (F) mice on day 7 p.i. In the CD4 ™/~ mouse there
was necrotic encephalitis associated with 7. gondii tachyzoites (arrow). In the wild-type C57BL/6 mice there were occasional focal cellular infiltrates
(arrow).
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FIG. 4. Numbers of parasites per 0.4 microgram of tissue DNA in the organs of CD4~/~ mice (dotted bars) and parental C57BL/6 mice (striped
bars) infected with 7. gondii. Mice (three mice per group) were infected orally with 20 cysts of 7. gondii. On days 7 and 30 p.i., the organs were
collected from both wild-type and knockout mice, and the parasite loads in the tissues were determined by competitive DNA PCR. This experiment

was performed twice, and similar results were obtained both times.

exhibited extensive fatty cell degeneration (Fig. 3D) compared
to the livers of CD4~/~ mice (Fig. 3C). The analysis of brains
showed that CD4 '~ mice had necrotic encephalitis with mod-
erate severity in the cerebral cortex together with a small
number of 7. gondii cysts and tachyzoites scattered in the
lesions (Fig. 3E). Additionally, there was mild infiltration of
lymphocytic cells in the perivascular space and thickening of
the small blood vessel walls. The meninges exhibited moderate
hypercellularity consisting mainly of mononuclear cells in some
affected areas. The lesions in a wild-type C57BL/6 mouse were
much milder, and no focal necrosis or 7. gondii organisms were
observed (Fig. 3F)

CD4~/~ mice had a higher parasite burden in their tissues.
The parasite loads in tissues from both CD4~/~ and parental

C57BL/6 mice that had been infected with 20 cysts of the 76K
stain were evaluated to determine the levels of parasite mul-
tiplication in the knockout animals. The relative abundance of
the B1 gene, a genetic marker for 7. gondii, was determined on
days 7 and 30 p.i. On day 7 p.i., all of the organs (spleens, livers,
guts, and brains) from knockout mice exhibited two- to four-
fold greater parasite burdens than the organs of the parental
C57BL/6 mice (Fig. 4). By day 30 p.i., however, the parasite
loads in the spleens, livers, and guts of the knockout mice were
similar to those in the tissues of the C57BL/6 mice at the same
time. Compared to the livers of the parental mice, there was a
minor increase in the parasite numbers in the livers of knock-
out animals. The brains of the CD4 '~ mice did have signifi-
cantly greater parasite loads than the brains of the parental
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C57BL/6 mice (P = 0.003). These findings were confirmed by
determining the numbers of cysts in the brains of the knockout
and wild-type mice on day 45 p.i. The average number of cysts
in the brains of wild-type C57BL/6 mice was 560 * 104, and the
number of cysts in the brains of knockout mice was fourfold
higher (2,233 = 516). While the number of cysts in the wild-
type animals decreased 6 months p.i. (230 £ 87), the number
of cysts in the CD4 /" mice increased at this time (5,336 =
976). Interestingly, this increase coincided with the decrease in
the immune CD8"-T-cell function in the infected hosts.

CD4~'~ mice exhibited a decreased long-term CD8* pCTL
response. 7. gondii is known to generate an antigen-specific
CD8*-T-cell response in an infected host (14, 38). No differ-
ence in the absolute number of CD8" T cells in the spleens of
wild-type and knockout mice was observed on day 7 p.i (data
not shown). Based on our experience, the sizes of the spleens
of infected animals return to normal by day 14 to 21 p.i. Hence,
the differences in the antigen-specific CD8" T cells at later
times were estimated by the pCTL assay. The frequencies of
pCTLs in the knockout and C57BL/6 mice were determined on
days 30, 90, and 180 p.i. There was not a significant difference
in the number of antigen-specific CD8* T cells based on pCTL
analysis between the wild-type and CD4 '~ mice on days 30
and 90 p.i (Fig. SA and B). However, on day 180 p.i. (Fig. 5C)
the pCTL frequency for the knockout mice (1/88,453) was less
than the pCTL frequency for the wild-type C57BL/6 mice
(1/10,814) (P = 0.08).

In addition to their cytotoxicity, CD8" T cells are also
known to be an important source of IFN-y during certain
microbial infections (1, 3, 24). IFN-y production after anti-
genic restimulation is an important characteristic of memory/
effector T cells (40). To further evaluate the long-term CD8™ -
T-cell immunity against 7. gondii in the CD4~/~ mice, the
kinetics of IFN-y production by CD8" T cells from the knock-
out mice at different times p.i. were determined. As shown in
Table 1, CD8™ T cells from both CD4~/~ and wild-type mice,
isolated on days 30 and 90 p.i., released almost equal amounts
of IFN-y when they were stimulated with TLA. However,
IFN-vy production by CD8™ T cells from knockout mice started
to decline on day 135 p.i. (Table 1). Similar to the results of the
pCTL assays, on day 180 p.i. CD8" T cells from the mutant
mice produced significantly less (P = 0.02) IFN-y than control
CDS8" T cells from the wild-type mice produced.

CD4~/~ immune mice were not able to prevent T. gondii
challenge in the long term. The experiments described above
demonstrated that CD8"-T-cell immunity in the CD4 '~ mice
was significantly compromised after 180 days of infection.
Next, the protective immunity of CD4 /"~ mice against lethal T.
gondii challenge was evaluated. CD4/~ and wild-type
C57BL/6 mice were challenged 90 and 180 days p.i. All of the
mice challenged on day 90 p.i. were able to resolve the infec-
tion, and none of them died until termination of the experi-
ment (Fig. 6). In contrast, when the mice were challenged with
T. gondii 180 days p.i., the majority of the mice (five of six
mice) succumbed to infection. No mortality was observed in
the immune wild-type controls at any of the times tested (data
not shown).

CDS8* T cells from CD4~'~ mice that had been infected 180
days earlier were not able to protect naive animals. To confirm
the loss of long-term CD8"-T-cell immunity in the CD4~/~
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FIG. 5. pCTL frequency in CD4 ™/~ mice infected orally with 7.
gondii. CD4~'~ and wild-type (WT) C57BL/6 mice were infected orally
with 20 cysts of T. gondii. At different times (days 30, 60, and 180 p.i.)
the total spleen cell populations from infected animals (three mice per
group) were collected, and CD8™" T cells were isolated and cultured by
a limiting dilution assay method as described in Materials and Meth-
ods. After 1 week, the pCTL frequency of the CD8" effector cells
cultured in the presence of antigen was determined based on a com-
parison with the results obtained with negative cultures to which no
effector cells were added. The data are representative of the data
obtained in one of the two experiments performed.

mice, adoptive transfer studies were performed. Affinity-puri-
fied CD8" T cells were transferred to naive C57BL/6 mice,
which were subsequently challenged with a lethal toxoplasma
infection. CD8" T cells from both CD4/~ and parental
C57BL/6 mice that had been infected 90 days earlier were able
to protect the naive animals against 7. gondii infection. (Fig. 7).
However, when the adoptive transfer was performed 180 days
p.i., the CD8™" T cells from the CD4 /" mice were not able to
protect the naive mice (Fig. 7). In contrast, the CD8" T cells
from the wild type continued to protect the nonimmune ani-
mals against a lethal toxoplasma infection.

DISCUSSION

In the present study, the role of CD4" T cells during acute
and long-term 7. gondii infections was studied. Our data dem-
onstrate that CD4™ T cells are important for early IFN-y
production during 7. gondii infection and that a lack of such
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TABLE 1. IFN-y production by CD8" T cells

IFN-vy production (pg/ml)*

Days p.i. Wild-type cells CD47/~ cells
Unstimulated Stimulated Unstimulated Stimulated
0 ND 13+2.6 ND 9.7+19
30 164 = 14 1,348 £ 82.5 164 = 18 1291 = 96
120 130.5 £ 185 1,322 = 47 117 £ 19 1,143 = 105
135 90.3 179 1,185.7£65.1> 903 =18.9 602 = 147.4°
180 122 = 16 1,268 = 116” 65.5+20.5 190.5 = 54.5°

@ CD4 "/~ and parental control mice were infected perorally with 20 cysts of T.
gondii 76K. On days 30, 60, 90, and 180 p.i., the mice (three mice per group) were
sacrificed, and splenocytes were isolated and pooled. CD8* T cells were purified
as described in Materials and Methods. A total of 1 X 10° purified CD87 T cells
(>95% pure) were cultured in 24-well plates and stimulated with 15 pg of TLA
per ml in the presence of 5 X 107 irradiated feeder cells. After 72 h of incubation
the supernatants were collected, centrifuged, and stored at —70°C. The super-
natants were assayed for IFN-y production by an enzyme-linked immunosorbent
assay. ND not detected.

b P < 0.02, as determined by Student’s  test. (Comparison is between antigen-
stimulated CD8™" T cells from CD4 ™/~ mice and those from wild-type mice.)

cells leads to increased parasite multiplication in the tissues.
However, no mortality as a result of an acute 7. gondii infec-
tion was observed in the knockout mice. On the contrary,
CD4~'~ mice survived higher doses of toxoplasma than wild-
type mice, which died from a hyperimmune inflammatory re-
sponse. These observations confirm previous findings obtained
with major histocompatibility complex class II-deficient mice
(26), which lack conventional CD4™ T cells. As expected, tis-
sues from CD4 '~ mice did not show gut necrosis or acute
liver pathology like the tissues from the parental C57BL/6
animals. Nevertheless, as indicated above, CD4/~ mice did
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exhibit increased parasite burdens in the tissues, especially the
brain, which could have been a result of an overall decrease in
IFN-vy production. These findings are in agreement with pre-
vious studies, which demonstrated that among the cells in the
T-cell population, CD4™ T cells are the major source of IFN-y
production during 7. gondii infection (4, 12). Although the
majority of CD4 '~ mice survived the early 7. gondii infection
due to a decreased inflammatory response, some of these an-
imals did succumb to infection later (80 to 100 days p.i.). This
finding is somewhat different from the findings obtained in
previous studies, in which combined antibody depletion of
CD4" and CD8™" T cells resulted in 100% mortality in chron-
ically infected animals (12). The reason for this could be that
although the long-term CD8*-T-cell response in the CD4-
deficient mice is weakened, it might be still enough to limit the
chronic infection. Alternatively, knockout mice may contain
chronic toxoplasma infections by some unidentified redundant
mechanism(s).

The interesting feature of the present findings is that they
demonstrate that CD4™ T cells have an important role in the
maintenance of CD8™-T-cell immunity against 7. gondii. As in
parental C57BL/6 mice, primary CD8"-T-cell immunity in the
CD4~'~ mice could be induced, but unlike the parental con-
trols, long-term CD8"-T-cell immunity in the absence of
CD4™" T cells was not sustained. Compared to CD8" T cells
from the wild-type animals, CD8" T cells from the CD4 /"~
mice exhibited lower pCTL frequency and decreased IFN-y
production in response to antigenic restimulation 180 days
after the primary infection.

The role of T-cell immunity in 7. gondii infections has been
studied very well (6, 16, 39). The majority of the studies have
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FIG. 6. Long-term survival of immune CD4~/~ mice challenged with a lethal dose of T. gondii. Female CD4 ™'~ mice and wild-type C57BL/6
animals that were 5 to 6 weeks old were infected orally with 20 cysts of 7. gondii 76K. The immune animals were challenged intraperitoneally with
1 X 10* tachyzoites of strain PLK at 90 or 180 days p.i. Survival of the challenged animals was monitored daily until the end of the experiment.
The data are representative of the data obtained in one of the two experiments performed.
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FIG. 7. Adoptive transfer of immune CD8" T cells from CD4 ™'~ mice to naive recipients. CD4~/~ and wild-type C57BL/6 mice were infected
orally with 15 cysts of T. gondii. The infected mice (four mice per group) were sacrificed on days 90 and 180 p.i., and the spleens were collected
and pooled. CD8" T cells were separated from the spleen cells by affinity purification. The purified CD8* T cells (5 X 10° cells/mouse) were
injected into naive C57BL/6 mice (five mice per group) intravenously. The recipients were challenged intraperitoneally with 5 X 10 tachyzoites
24 h after transfer, and survival was monitored daily. Symbols: ¢, knockout mice 90 days p.i.; [J, wild-type mice 90 days p.i.; A, knockout mice

180 days p.i.; X, wild-type mice 180 days p.i.

suggested that both CD4*- and CD8"-T-cell subtypes are im-
portant for protection against 7. gondii infection, with the
CD8™" T cells playing a primary effector role and the CD4" T
cells having a synergistic effect (12, 34). This hypothesis is
supported by the findings of Gazzinelli et al., who demon-
strated that depletion of CD4™ T cells prior to vaccination did
not protect the mice against a lethal 7. gondii challenge (13).
However, in our study, we found that a normal CD8"-T-cell
response can be induced in the absence of CD4 " T cells. The
difference between our findings and those of Gazzinelli et al.
could be due to the fact that CD8"-T-cell priming in the
CD4~/~ mice may occur via redundant mechanisms known to
exist in the knockout animals (5). Another major difference
between the findings of Gazzinelli et al. and our findings is that
depletion of the CD4 ™" T cells after vaccination in the study of
Gazzinelli et al. had no effect on the survival of the immune
animals. In contrast, in our study CD8"-T-cell immunity could
not be maintained in the absence of CD4" T cells. These
differences could be attributed to a number of things. While
the study of Gazzinelli et al. was carried out with a mutant
parasite, we used a natural cyst-forming strain of 7. gondii.
Moreover, the effect of CD4" depletion in the study of
Gazzinelli et al. was determined for only 30 days after vacci-
nation, and the long-term consequences of the lack of CD4™ T
cells were not evaluated.

The role of conventional CD4™" T cells in induction of the
CD8"-T-cell response has been studied in other infectious
disease models (30, 44). During an infection with lymphocytic
choriomeningitis virus, mice lacking CD4™" T cells exhibited a
significantly lower pCTL response than wild-type controls (30).
As a result, CD4 ™" -T-cell-deficient mice were not able to clear
the virus. Coordinated interaction between CD4* and CD8" T
cells was required to resolve an infection with the intracellular
bacterium Listeria monocytogenes (44). However, the absence
of CD4" T cells did not affect the CD8"-T-cell response
against an Encephalitozoon cuniculi infection (31). Similar to
these findings, our findings showed that a CD8"-T-cell im-
mune response against T. gondii could be induced in CD4~/~
mice. Recent studies with Plasmodium yoelii showed that prim-
ing of the CD8"-T-cell response against the parasite was de-
pendent on IL-12 and NK cells (8). Very strong induction of an
IL-12-dependent NK cell response during acute 7. gondii in-
fection has also been reported (13, 22). Thus, it is possible that
as in P. yoelli infection, the early CD8"-T-cell response against
T. gondii is regulated by IFN-y-producing NK cells. This pos-
sibility is supported by recent reports from our laboratory
which showed that induction of the CD8"-T-cell response
against 7. gondii in p40~'~ mice, which are not able to produce
IL-12, was significantly compromised due to a severe defect in
IFN-vy production in these animals (9). Moreover, recent stud-
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ies performed in our laboratory have demonstrated that spleen
cells of CD4™/~ mice contain higher numbers of NK cells
during 7. gondii infection than spleen cells of parental controls
(Duvand and Khan, unpublished observations).

Based on our observations, we hypothesize that 7. gondii
infection results in early IL-12 production in an infected host.
Release of IL-12 causes NK cell proliferation and subsequent
polarization of CD4™" T cells toward IFN-y production. IFN-vy
release by both NK cells and CD4™ T cells is important for
reduction of the parasite burden in the host. An absence of
CD4" T cells causes a decline in IFN-y production, which
results in increased parasite numbers in the tissues of knockout
animals. At the same time, a decrease in IFN-y production
protects the knockout mice from mortality due to a hyperim-
mune response, without any obvious effect on induction of the
CD8*-T-cell response against the parasite. However, our find-
ings raise two very important questions. First, how does opti-
mal CD8*-T-cell priming take place in the absence of IL-2-
producing CD4" T cells? This question gains further
importance because of observations of Denkers et al., who
reported that IL-2 release by CD4" T cells is important for
induction of a CD8"-T-cell response in T. gondii-infected hosts
(4). This could happen through one of two mechanisms. First,
in the knockout mice certain other cell types, like CD4™~ CD8™
double-negative T cells or y8 T cells, may compensate for
regular CD4" T cells in priming of effector CD8"-T-cell im-
munity. Development of functional double-negative helper T
cells against Leishmania major infection in CD4~/~ mice has
been reported (27). The role of y8 T cells in the regulation of
both CD4"- and CD8™"-T-cell immune responses in microbial
infections has been described previously (10, 33). However,
neither of these T-cell subsets is known to be a major source of
IL-2 production (17, 43). Alternatively, CD8"-T-cell priming
against T. gondii infection in CD4~/~ mice may take place via
an IL-2-independent mechanism. Generation of normal
CD8"-T-cell responses in IL-2-deficient mice against tumor
cells has been reported (37). The second and most important
question is, why are CD4™" T cells required for sustaining the
long-term CD8"-T-cell response? It is possible that IL-2 may
be important for maintenance of an expanded pool of memory
cells against recurrent or challenge 7. gondii infections. How-
ever, recent studies have suggested that maintenance of mem-
ory CD8" T cells is dependent on IL-15 (21, 28, 46), which is
produced by a wide variety of cell types, such as macrophages
and dendritic cells (45). It is very likely that IFN-y-producing
CD4" T cells are required for keeping the antigen-presenting
cells in an activated state so that they constantly restimulate
memory CD8" T cells. Ongoing studies in our laboratory
should resolve these issues.
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