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ABSTRACT

In order to establish a range of reference
values for any characteristic one can use
Gaussian or nonparametric techniques, which-
ever are most appropriate. One has the choice
of calculating tolerance intervals or percentile
intervals. A tolerance interval is said to con-
tain, say 95% of the population with prob-
ability, say 0.90. A percentile interval simply
calculates the values between which 95% of
the observations fall. If the data can be said
to have a Gaussian distribution, the same pre-
cision can be obtained with smaller sample
sizes than using the nonparametric techniques.
In some cases, data which are not Gaussian
can be transformed into a Gaussian form and
hence make use of the more efficient Gaussian
techniques. In both cases, the data should be
checked for outliers or rogue observations and
these should be eliminated if the testing proce-
dure fails to imply that they are an integral
part of the data.

RESUM1,

Lorsqu'on veut tracer une courbe de valeurs
de reference, quelle que soit la caracteristique
dont il s'agit, on peut utiliser les techniques
non parametriques ou celles de Gauss, en
choisissant celles qui semblent les mieux ap-
propriees. On a aussi le choix de calculer les
intervalles de tolerance ou ceux des centiles.
On dit qu'un intervalle de tolerance contient,
v.g. 95% d'une population avec probabilite,
v.g. 0.90. Un intervalle de centile calcule sim-
plement les valeurs entre lesquelles se situent
95% des observations. Si on peut affirmer que
les donnees possedent une distribution equiva-
lente a celle de Gauss, il est possible d'obtenir
la meme precision, avec un echantillonnage
moins considerable, que donneraient les tech-
niques non parametriques. Dans certains cas

'Department of Pathology (Lumsden) and Department
of Mathematics and Statistics (Mullen), University of
Guelph, Guelph, Ontario NIG 2W1.

Submitted June 6, 1977.

on peut transformer des donnees de facon a
les rendre equivalentes a celles de Gauss et de
ce fait recourir 'a ses techniques, reconnues
comme plus efficaces. Dans un cas comme
dans l'autre, il faut verifier les donnees et en
eliminer les trompeuses, si la technique qu'on
emploie ne les reconnait pas comme partie in-
tegrante de l'ensemble des donnees.

INTRODUCTION

A commonly recurring problem of a
veterinary diagnostic laboratory is to
establish reference values for a particular
characteristic. By reference intervals one
means a range of probable values of that
characteristic for healthy animals. Values
outside of this range are suggestive of a
lack of good health. Generally one assumes
that if the animals are healthy, then their
values of, the characteristic will have a
particular distribution, whereas the values
of nonhealthy animals will have another
different distribution. This concept is
somewhat limiting because although a
healthy animal is one without disease, a
nonhealthy one can occur in many different
ways due, for example to many possible
different diseases, each one presumably
leading to another distribution of values.
A clinician would prefer to know the
probability of a certain disease being
present given a test result in the referent
value. Referent values vary by test, by
population, by devise and by the predictive
value desired. In human medicine where
only one species is involved, determination
of referent values is in the developmental
phase. In veterinary medicine when there
are many species and breeds, universal
agreement on referent values must be re-
garded only as a future goal. It seems
reasonable and necessary therefore at this
time to at least try to establish the distri-
bution for healthy animals with each
methodology.
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The approach taken in this article is to
establish the distribution of values for clin-
ically healthy animals and from this to
calculate reference intervals or a normal
range. This normal range is usually a pair
of numbers within which, for example,
95% of the values can be expected to lie.
This implies that 5% or one in 20 healthy
animals will have values outside the normal
range. One could calculate a pair of num-
bers which contain 99% of the population,
leaving only 1% of healthy animals outside
of the range but naturally such a range
would be wider than the 95% limits,
making it more likely to include the values
for unhealthy animals (false negatives).
For this reason and because 95% limits
are widely accepted in human medicine, we
shall deal with limits which contain 95%
of the healthy values.
The whole concept of reference values

and the normal range is controversial and
summarized by Henry and Reed (5). De-
spite the controversy however, there is still
a definite need for a range of normal or
reference values. This article discusses
some of the more important approaches to
its establishment and the attendant prob-
lems involved.

GAUSSIAN VERSUS NONPARAMETRIC
RANGES

Early in the use of statistical techniques
to establish reference values, especially for
human medicine, it was usual to assume
that the sample data came from a Gaussian
distribution. Later, after it was realized
that many populations did not have a Gaus-
sian shape, it was argued that it was un-
necessary to make the Gaussian assump-
tion and that nonparametric techniques
were more than adequate for estimation
purposes. Using the Gaussian approach one
simply gave x ± 2s as an approximate
normal range and this rule was blindly
applied to all data, regardless of whether
they were Gaussian or not. The reaction
away from Gaussian techniques was equally
severe and some writers, notably Read et al
(5), argue that the nonparametric techni-
ques are always equally good. Although the
results obtained in nonparametric cases
could be applied to Gaussian cases as well,
it would not be satisfactory to do so, since
for the parametric cases, methods having
greater efficiency can be devised by taking

into account the available information re-
garding the functional form of the distri-
bution (16). Further, as we shall discuss
below, the sample sizes required to obtain
adequate figures using nonparametric
techniques are often much larger than
those required assuming a Gaussian distri-
bution. We shall argue that, when it is safe
to assume a Gaussian distribution or when
the data can be transformed to have a
Gaussian distribution, then Gaussian tech-
niques should be used. In other cases, the
use of nonparametric techniques will be
recommended.
The sequence of discussion is

(a) identifying the outliers and eliminat-
ing them.

(b) establishing whether the distribution
is Gaussian or not.

(c) presenting one of the four following
techniques for estimating the normal
ranges:

(i) Gaussian tolerance interval
estimates

(ii) Nonparametric tolerance interval
estimates

(iii) Gaussian percentile estimates
(iv) Nonparametric percentile

estimates.
For purposes of illustration we include

three examples. One of these is data for
bovine hemoglobin on 42 clinically healthy
cattle in the age group two weeks to six
months. The second is platelet counts on
41 cattle in the same age group. The third
is serum iron measurements on 43 healthy
calves in the age group one day to 14 days.
The data are presented (from smallest to
largest) in Tables Ia, Ib and Ic.

TABLE Ia. Hemoglobin Measurements (gm/
dl) on 42 Healthy Cattle in the Age Group two
weeks to six months (arranged in ascending
order)

8.4
9.1
9.2
9.3
9.4
9.6
9.8
9.9
10.1

10.1
10.4
10.4
10.4
10.4
10.5
10.6
10.8
10.8

10.9
11.0
11.2
11.3
11.3
11.4
11.4
11.5
11.8

11.8
12.0
12.2
12.3
12.4
12.5
12.5
12.8
12.9

13.0
13.2
13.3
13.5
13.5
14.0

TREATMENT OF OUTLIERS

If the number of observations is not
large, then as we shall subsequently see,
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TABLE Ib. Platelet Counts (X 103/g1) no 41
Healthy Cattle in the Age Group two weeks
to six months, (arranged in ascending order)

280 415
320 420
330 430
340 460
380 465
380 500
400 500

510
510
520
550
550
560
565

580 650
590 700
590 720
600 740
600 770
630 800
640 800

830
870
970
970
1000
1270

TABLE Ic. Serum Iron Measurements (mg/dl)
on 43 Healthy Calves in the Age Group one
day to 14 days (arranged in ascending order)

sample of observations as Xi, X2, ... x. and
the same sample but in ordered form (from
smallest to largest as in Table Ia, Ib and
Ic) as X(i), X(2), ... X(n). In general the
smallest observation, X(1), or the largest ob-
servation, X(n), will be the suspected value.
Henry and Reed (5) recommend Dixon's r
statistics denoted by r10, as follows:

(a) if X(n) is suspepted, rio = X(n) - X(n-1)
X(n) - X(1)

(b) if x(i) is suspected, rlo X(2) - X(1)
X(n) - X(1)

27 45 63 78 102 156 The table of critical values of rio is given
28 45 65 82 106 161 in reference (1). If r10 is larger than the
37 50 67 95 121 164 critical value then the suspected value is
38 50 69 95 135 193 eliminated.
45 52 75 100 136 200 A second test of outliers due to Grubbs

283 (4), sometimes known as Grubbs T-statis-
tic, which was shown by Ferguson (3) to
have a greater probability of detecting

the nonparametric methods provide estim-
ates which are functions of the few largest
or smallest observations. Thus it is impor-
tant that the experimenter satisfy himself
that these observations are not contamin-
ated by, for instance, blunders, technical or
clerical errors or accidents. An outlier (or
rogue observation), which is undetected
and hence used in the calculation of the
normal range, will in general cause that
range to be wider than it should be and
hence weaken the sensitivity of such a
range as a predictor of unhealthiness. On
the other hand one wishes to avoid the
subjective elimination and discarding of
data which do in fact belong to the healthy
population. Since almost all criteria for
outliers are based on an assumed under-
lying Gaussian distribution and since at
this stage we have not tested to see if the
data came from a Gaussian distribution,
the experimenter is in a quiandary. Henry
and Reed (5) resolve this problem by
avoiding the word outlier and ensuring
simply that the data form a homogeneous
group, using the ratio

X(n) - X(n-1)
X(n) - X(1)

If this ratio is greater than 1/3, eliminate
X(n).

If the data are believed a priori to be
Gaussian, then below we discuss two of the
more important tests for outliers and treat
the data of Tables Ia, Ib and Ic with them.
For purposes of notation, we denote our

true outliers is as follows:

(a) if x(n) is suspected, T. = x() - X

(b) if x(l) is suspected, T, X - X(i)

(where s is the sample standard deviation).
One rejects the suspected value if T. or T,
is greater than its critical value given in
reference (4).

For the data of Table Ia, if the first ob-
servation is suspected, then using Dixon's
statistic, rio = (9.1-8.4)/(14.0-8.4) = 0.125
which is smaller than the critical value and
thus we do not eliminate the value 8.4. The
same conclusion is reached with Grubbs T-
statistic. For the data of Table Ib, if 1270 is
suspected then from Dixon's statistic we get
rio = (1270-1000) /(1270-280) = 0.27 and we
do not reject the value. Using Grubbs statistic
however, with i = 602.56, s = 212.63

(where s = ix2 nx2), the value of

T, is 3.1389, which is larger than the critical
value. Thus the value 1270 should be re-
jected as an outlier. If the largest (smallest)
observation is rejected, repeat the process
with the new largest (smallest) value.

In general, we recommend the application
of Grubb's T-statistic at a low level of
significance (ai) so that good observations
will rarely be rejected. For the data of
Tables Ia, Ib and Ic, with the level of
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significance of 1% we conclude:
Ia: no outlier (as seen later, these data

are Gaussian).
Ib: 1270 is an outlier (as seen later,

these data are Gaussian).
Ic: no outlier (as seen later, these data

are not Gaussian).

TESTING FOR GAUSSIAN DISTRIBUTION

Perhaps the two most frequently used
tests to ascertain that data came from a
Gaussian distribution are

(a) The chi-squared goodness of fit test
(b) The Kolmogorov-Smirnov test.

In the chi-squared test, the data are
changed into k classes, their observed and
expected values for each class compared
using the chi-squared distribution, whose
degrees of freedom are adjusted to allow
for the estimation of the mean and vari-
ance of the original population (see refer-
ence (12), chapter 9). The data in Table II
have x = 585.875, s = 186.1894, X2 =
2.8817 which with 4-1-2 = 1 degrees of
freedom is not significant at 5% level.

TABLE II. Frequency Distribution of the 40
Platelet Counts for Healthy Cattle in Age
Group two Weeks to six Months

Expected
Class Class limit Class frequency Frequency

1
2
3
4
S

Total

280 - 450
450 - 620
620 - 790
790 - 960
960- 1130

10 9.3404
16 13.4264
7 11.7146
4 4.5168
3 0.9100
40 39.9982

The second method to examine the data
for Gaussian distribution is the Kolmo-
gorov-Smirnov test. A discussion of this
test is given in (6). The critical values of
the test statistic D, when the mean and
variance are unknown and must be estim-
ated from the data, is given by Lilliefors
(7). He gives the 10%, 5% and 1% signif-
icance points which are reproduced below
(Table III).

The test statistic is
D = maxIS.(x) - F(x)j

where F(x) is the theoretical distribution
function of x and S. (x) is the sample dis-
tribution function. (S. (x) is calculated as
1/42, 2/42, 3/42, etc. We illustrate the

calculation of F(x) for x = 8.4. The value
of x and s for the data of Table Ia is 11.25
and 1.40 respectively. Thus the standard-
ized normal value of x = 8.4 is z = (8.4-
11.25)/1.40 = -2.04. The probability of a
standardized normal value less than -2.04,
for normal tables in reference (12) is
0.0207. Other values are found similarly).
In Table IV we show the calculations of D
for the data of Table Ia. Since in Table
IV, the largest difference (marked with an
asterisk) is less than the 5% critical value
of .13671 (.886/x/42), we conclude that
the data do not depart significantly from
the Gaussian shape. For the data of Table
Ib, the value of D was calculated and

TABLE III.

Level of significance (a)
Sample
Size (n) a = 0.10 a = 0.05 a = 0.01

5 0.315
10 0.239
15 0.201
20 0.174
25 0.165
30 0.144

over 30 0.805/V4i

0.337
0.258
0.220
0.190
0.180
0.161
0.886/Vni

0.405
0.294
0.257
0.231
0.203
0.187
1.031/v'W

found to be less than the 5% critical value
of 0.14008 (0.886/'40). Thus we conclude
that the original population is Gaussian.
But for the data of Table Ic the largest
value of D is greater than the 5% critical
value of 0.13511 (0.886/N'-) and hence
we conclude that data of Table Ic is non-
Gaussian. The observations declared as
outliers are not considered while testing
for normality.

Since the discriminating ability of the
Kolmogorov-Smirnov test is generally
greater than that of the chi-squared test
(8) and also since the test statistic does
not depend on the data's being grouped, we
recommend the Kolmogorov-Smirnov test
as the appropriate test of Gaussian distri-
bution.

GAUSSIAN TOLERANCE INTERVALS

If the data prove to come from a Gaus-
sian distribution then we may calculate
the tolerance interval (an interval which
has probability 0.90 of containing 95% of
the population) as follows. If L1 and I.
are the lower and upper limits of the
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interval then

Li = x - ks, L2 = x + ks

where values of k, which have been com-
posed from the paper by Weissberg-Beatty
(17) are given below for a few values
of n.

Sample size n K
10 .......................... 3.0183
20 ............................. 2.5642
30 .......................... 2.4130
40 ............................. 2.3336
50 ............................. 2.2834
60 ............................. 2.2485
70 ............................. 2.2222
80 ............................. 2.2018
90 ............................. 2.1852
100 ............................. 2.1716

For sample sizes other than shown here,
one can obtain the exact values of k
directly from reference (17) but good prac-
tical results (differing at worst in the
second decimal place) can be obtained by
linearly interpolating in the accompanying
table. Thus for n = 38, the interpolated
figure is 2.3495, whereas the exact figure
is 2.3465. For the data of Table Ia, Ib and
Ic we have

of observations, is greater than 80. If the
value of n is less than 80, then either the
probability is less than 0.9 or the percen-
age of the population included is less than
95%. Because of the importance of the
lowest and highest values, duplicate anal-
ysis for these values are recommended.

If one thinks that the smallest and larg-
est observations are not very reliable, then
he might prefer to use the second smallest
and second largest (call these s5 and sn
respectively). Then in order to be able to
say that the probability is 0.9 that 95% of
the population lies between si and s., he
needs a sample of at least 140 observa-
tions. For the data of Table Ia and Ib
which are Gaussian, it is preferable to cal-
culate the tolerance intervals using Gaus-
sian techniques. For the data of Table Ic,
we must use nonGaussian techniques. In
that case, from the work and table of
Somerville (15), the probability is only
0.636 that 95% of the population lies be-
tween 11 (=27) and In (=283). This is a
universal problem of nonparametric inter-
vals, namely, that they require larger
sample sizes than if Gaussian for similar

n x s k Li L2
Table Ia .......... 42 11.25 1.396 2.322 8.01 14.49
Table lb 40 585.88 186.189 2.334 151.31 1020.45
Table Ic .......... 43 96.26 58.657 2.316 - 39.59 232.11

Note that the data of Table Ic are not
Gaussian and hence should not use the
above technique. We have included it here
to illustrate that the improper use of this
technique leads to absurd results (a
negative lower limit).

NONGAUSSIAN TOLERANCE INTERVALS

If the data prove to be nonGaussian,
then the tolerance intervals are based on
the ordered data, that is, on the data
ranked from smallest to largest Wilks (18).
Now however, the number of observations
is much more important. If we call 1h and
ln the smallest and the largest observation
respectively, then we can say that the
probability is 0.9 that 95% of the popul-
ation lies between 11 and In if n, the number

coverage, or put another way, they give
less coverage for equal sample sizes.

GAUSSIAN PERCENTILE ESTIMATES

The p th percentile P is the point on the
distribution below which p percent of the
observations lie. Our interest centres on the
2.5th percentile and the 97.5th percentile
(having 95% of the distribution between
them). If the distribution is Gaussian with
known mean ,u and known variance o,
then, calling L and U the 2.5th and 97.5th
percentiles respectively,

L =L - 1.96
U = I + 1.96a

Since ,u and a- are unknown, they may be
replaced by x and s. Because s is a biased
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estimator of cr (see the appendix), then
a- must be replaced by cs, where c -is a
number which depends on the sample size.
If L and U are the estimates of L and U
then

t=x-ks-k
0 x+ ks }where k = 1.96c .

Sahney (14) has shown how to calculate
confidence interval estimates for U and L.
95% confidence intervals for U are given
by:

U i ts 1 + k2T
n

where t is the upper 97.5 percentage point
of the t-distribution with n-1 degrees of
freedom, s is the sample estimate of the
standard deviation and k and T are as
given in the appendix.
For the data of Tables Ia and lb we have

the following results:

the previous paragraph, but that not much
error will be incurred if percentile estim-
ates are used.

NONPARAMETRIC PERCENTILE ESTIMATES

If the data do not have a Gaussian dis-
tribution, then one estimates the population
values of L and U using the sample 2.5th
and 97.5th values.
To estimate the pth percentile one uses the

(n+l)p/100 order statistic which is easily
obtained from the given data. For p = 2.5
and n = 43 (as in Table Ic) (n+l)p/100
= 1.1. In Table Ic, the first order statistic
is 27 and the second is 28. Linearly inter-
polating gives an estimate of the 1.lth to
be 27.1. Similarly since the largest ob-
servation is 283 and the second largest is
224 and (n+1) (97.5)/100 = 41.9, the
estimate of the 97.5 percentile is 277.1. For
the data of Tables Ia, Ib and Ic the follow-
ing results are obtained:

UCL for LCL for UCL for LCL for
Table L U L L U U
Ia ............ 8.500 14.000 9.251 7.744 14.751 13.249
Ib ............ 218.598 953.153 321.209 115.987 1055.763 850.541

UCL = upper 95% confidence limit. LCL
= 95% confidence limit. We see immediat-
ely that the estimates of the 2.5th and 97.5th
percentiles are not the same as the 95%
tolerance intervals and there is no reason
why they should be. They are essentially
two different approaches to the same
problem. The tolerance interval establishes
an interval which contains a prescribed
portion of the population with a definite
probability, 0,90, whereas the percentile
estimates form an interval which contains
the same portion of the population but
with no probability attached. That is why
when one calculates the percentile estim-
ates, he needs also to calculate a confidence
interval about them. In general the toler-
ance intervals will be further apart than
the percentile estimates, but that is be-
cause they give more information, namely,
the associated probability.

Although we are more interested in com-
paring Gaussian versus nonGaussian tech-
niques in this paper than in recommending
tolerance intervals or percentile estimates,
we may note that tolerance intervals are
probably preferable for the reason given in

Table Ia: (8.453, 13.963)
Table Ib: (281.000, 999.250)
Table Ic: (27.1, 277.1)
Confidence intervals for the population

percentiles have been calculated and given
(5). In general for n less than 120, it is
not possible to obtain two-sided confidence
intervals. Thus for the data of Tables Ia,
lb and Ic no confidence intervals can be
calculated. Henry and Reed consider a
larger sample size example and use their
table to calculate a 90% two-sided con-
fidence interval for the nonparametric
estimates of the 2.5 and 97.5 percentiles.
We see again, in the comparison of

Gaussian versus nonparametric percentile
estimation that the Gaussian methods give
usable results for smaller sample sizes than
the nonparametric methods. This alone is a
major factor in favor of using the Gaus-
sian methods if they are applicable.

USE OF TRANSFORMATIONS

If the evidence indicates that the data
do not come from a Gaussian population,
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two courses of action are open to us. One
of these, the use of nonparametric tech-
niques has already been discussed. A second
approach is to transform the data in such a
way that the resulting transformed data are

TABLE IV. Calculation of D, the Kolmogorov-
Smirnov Statistics for the Data of Table Ia

x

1. 8.4
2. 9.1
3. 9.2
4. 9.3
5. 9.4
6. 9.6
7. 9.8
8. 9.9
9. 10.1

10. 10.1
11. 10.2
12. 10.4
13. 10.4
14. 10.4
15. 10.5
16. 10.6
17. 10.8
18. 10.8
19. 10.9
20. 11.0
21. 11.2
22. 11.3
23. 11.3
24. 11.4
25. 11.4
26. 11.5
27. 11.8
28. 11.8
29. 12.0
30. 12.2
31. 12.3
32. 12.4
33. 12.5
34. 12.8
35. 12.8
36. 12.9
37. 13.0
38. 13.2
39. 13.3
40. 13.5
41. 13.5
42. 14.0

Sn(x)

0.0238
0.0476
0.0714
0.0952
0.1190
0.1429
0.1667
0.1905
0.2143
0.2381
0.2619
0.3857
0.3095
0.3333
0.3571
0.3809
0.4048
0.4286
0.4524
0.4762
0.5000
0.5238
0.5476
0.5714
0.5952
0.6190
0.6429
0.6667
0.6905
0.7143
0.7381
0.7619
0.7857
0.8095
0.8333
0.8571
0.8810
0.9048
0.9286
0.9524
0.9762
1.0000

F(x)

0.0207
0.0618
0.0721
0.0823
0.0934
0.1190
0.1492
0.1685
0.2061
0.2061
0.2266
0.2709
0.2709
0.2709
0.2946
0.3228
0.3745
0.3745
0.4013
0.4286
0.4840
0.5159
0.5159
0.5438
0.5438
0.5714
0.6517
0.6517
0.7054
0.7517
0.7734
0.7939
0.8133
0.8133
0.8665
0.8810
0.8943
0.9177
0.9278
0.9463
0 9463
0.9750

Critical value from Table III

J/X1 = Sn(x)-F(x)

0.0031
0.0142
0.0007
0.0129
0.0256
0.0239
0.0175
0.2200
0.0082
0.0320
0.0353
0.0148
0.0386
0.0624
0.0625*
0.0581
0.0303
0.0541
0.0511
0.0476
0.0160
0.0079
0.0317
0.0276
0.0514
0.0476
0.0088
0.0150
0.0149
0.0374
0.0353
0.0320
0.0276
0.0038
0.0332
0.0239
0.0133
0.0129
0.0008
0.0061
0.0299
0.0250

= 0.13671

Gaussian distributed (or approximately so).
This being so, the tolerance limits or
percentiles can be calculated for the trans-
formed Gaussian data and by using the
inverse of the transformation, the toler-
ance limits or percentiles can be found for
the original data. This will be illustrated
subsequently.
Before proceeding with the technique of

transforming data, let us try to allay some
of the misgivings that seem to accompany

the transforming of data. Firstly, the use
of transformations in the biological, chem-
ical, medical and veterinary sciences is not
new. Thus pH values use logarithms, while
dilution levels in microbiological titrations
are reciprocals.

In some cases the transformation needed
to make the data Gaussian is known a
priori. For instance data whose distribu-
tion is skewed to the left can be made
Gaussian by taking the logarithm of each
observation. In most cases, however the
"proper" transformation is selected based
on experience or trial and error.
Three common transformations are: (a)

logarithmic (b) square root and (c) recip-
rocal. For data expressed as a percentage
the arc-sine transformation may be ap-
propriate.
We illustrate the use of transformation

for the data of Table Ic, with the log-
arithmic transformation. First we show
the transformed data (using the natural
logarithm transformation), in ordered
form.

The data of Table IC, transformed using the
natural logarithm transformation

3.30
3.33
3.56
3.61
3.64
3.81
3.81
3.81
3.81
3.85
3.91
3.91
3.95
3.97
4.14

4.16
4.17
4.20
4.23
4.32
4.34
4.36
4.41
4.42
4.55
4.55
4.61
4.62
4.62
4.66

4.80
4.84
4.91
4.91
4.96
5.05
5.08
5.10
5.18
5.26
5.30
5.41
5.65

For these data x = 4.3972, s = 0.5904,
Tn = 2.12. In terms of the transformed
data ln 283 = 5.65 is not considered to be
an outlier. The Kolmogorov-Smirnov test
leads us to conclude that the transformed
data are Gaussian.
To calculate the Gaussian tolerance in-

terval, k = 2.319.

x + ks = (3.028, 5.766)

The inverse transformation (ex) gives as a
95% tolerance interval the values (20.66,
319.26).
The 2.5th and 97.5th percentile estimates

are found by looking up k in the appendix
(k = 1.9718 for n = 43) then
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C = 4.3972 - (1.9718) (.5904) = 3.23

0 = 4.3972 + (1.9718) (.5904) = 5.56

which when inverse-transformed give as
percentile estimates (25.36, 260.17). For
the original data the values of U, L and
their 95% confidence intervals are given
below.

UCL LCL UCL LCL
J% ^ for for for for
L U L L U U

25.36 260.17 28.32 15.12 436.46 232.97

SUMMARY

In order to use data to establish refer-
ence values, care must be taken to ensure
that the techniques being used are valid
and appropriate. Thus one first tries to
identify outliers which are then eliminated.
Grubbs T-statistic is the suggested method
here, although it does assume that the data
are Gaussian. If this assumption is impos-
sible to make then X(n) can be tested by
comparing the ratio (X(n)-X(n)) / (X(n)X(l))
to 1/3.

Once the data have been purified of out-
liers, they can be tested for Gaussianness
using the Kolmogorov-Smirnov test and
compared to the significance values in
Table III.

If the data are Gaussian, one can cal-
culate tolerance intervals, or percentile
estimates (using the values of k given in
the appendix).

If the data are nonGaussian, one can
calculate the tolerance intervals (using
Somerville's tables ([15]), but note should
be made that for small samples, the desired
probability of 0.9 may be impossible to
obtain, and for moderate samples, the
values of X(ci and x(n) will be the indicated
ones. If one uses nonparametric percentile
estimates, then reference (5) will be needed
to calculate confidence intervals for them
and these cannot be calculated for sample
sizes of less than 120.
An alternative method is to use a trans-

formation to a Gaussian form and then use
Gaussian tolerance intervals or percentile
estimates.

APPENDIX

The 2.5th and 97.5th percentiles L and U
of a Gaussian distribution are

L = p. - 1.96a
U = I. + 1.96a

If u and C- are estimated by x and s, the
sample mean and standard deviation in a
sample of size n, then, writing E for ex-
pected value we know that Ex = ,u, E (s)
#, a-. In fact, we can calculate a number c,
depending on n, the sample size, so that
E (cs) = c-. Thus if L and U are unbiased
estimates of L and U respectively, then

t = x - ks
=x- + ks

where k = 1.96c

L and U are approximately Gaussian distri-
buted for large sample sizes with expectations
L and U and variance - + k22T where

n
T depends on the sample size n. [See reference
[141. If t is the value from the student's t-
distribution exceeded with probability 0.025,
then a 95% confidence interval for L is

Lfits 1 + k2T

Values of c, k, T and t are given below
n c k T t

30 1.00866 1.97697 0.01709 2.045
35 1.00738 1.97446 0.01460 2.032
40 1.00643 1.97260 0.01274 2.023
45 1.00570 1.97117 0.01130 2.015
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