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The effect of gamma interferon (IFN-�) on apoptosis due to infection by Chlamydia muridarum (the mouse
pneumonitis strain of Chlamydia trachomatis) was studied in epithelial cells in culture and in the genital tracts
of mice. IFN-� concentrations that induce the formation of aberrant, persistent chlamydiae inhibit apoptosis
due to C. muridarum infection. In cells treated with an IFN-� concentration that leads to the development of
a heterogenous population of normal and aberrant Chlamydia vacuoles, apoptosis was inhibited preferentially
in cells that contained the aberrant vacuoles. The inhibitory effect of IFN-� appears to be due in part to
expression of host cell indoleamine 2,3-dioxygenase activity, since inhibition of apoptosis could be partially
reversed through coincubation with exogenous tryptophan. Apoptotic cells were observed in the genital tracts
of wild-type mice infected with C. muridarum, and a significantly larger number of apoptotic cells was detected
in infected IFN-�-deficient mice. These results suggest that IFN-� may contribute to pathogenesis of persistent
Chlamydia infections in vivo by preventing apoptosis of infected cells.

Chlamydia trachomatis strains include a causative agent of
ocular infection in humans and the most common cause of
sexually transmitted bacterial infections (20, 54). An inflam-
matory response is required for the resolution of primary C.
trachomatis infection, but chronic inflammation is also respon-
sible for the scarring process observed in trachoma and chla-
mydial sexually transmitted disease (2). In addition, the ability
of chlamydiae to persist in the host could be an important
factor in exacerbating pathogenesis (4, 6). The immune mech-
anisms responsible for chronic inflammation are not fully un-
derstood, but it is believed that repeated exposure to chlamyd-
ial antigens contributes to pathogenesis and that bacteria in
persistently infected cells may serve as a source of long-lasting
pathology (5).

Chlamydia muridarum (also known as the mouse pneumo-
nitis strain of C. trachomatis) (14, 48) infects the genital tracts
of mice and has been used to characterize the host immune
response to chlamydial genital tract infection. In C. muridarum
infections of mice, a major role for CD4� T cells secreting
gamma interferon (IFN-�) during clearance of the infection
has been described (25, 31, 42, 52). Thus, studies with IFN-�-
deficient mice have shown that IFN-� is required for preven-
tion of dissemination of genital tract infection (9, 26, 42).
Similarly, administration of anti-IFN-� antibodies or recombi-
nant IFN-� prolongs or resolves the infection, respectively
(45).

Chlamydiae are obligate intracellular bacteria that have a
distinct biphasic infection cycle: the small elementary bodies
are infectious and metabolically inert, and the larger reticulate

bodies (RB) are noninfectious and metabolically active (22, 32,
56). A persistent state of chlamydiae can be induced in vitro by
IFN-� treatment, which leads to altered bacterial forms and an
antigen profile that is different from that observed during ac-
tive infection (4, 6). Significantly, there is down-regulation of
the chlamydial major outer membrane protein (MOMP), and
expression increases or decreases for several other proteins
and genes, whereas expression of the immunostimulatory chla-
mydial antigen, hsp60, remains at high levels during the per-
sistent state (6, 27, 49). The intracellular chlamydiae undergo
striking morphological changes, becoming much larger than
conventional RB (5, 49). In IFN-�-treated infected cells, the
chlamydiae are noninfectious, but the bacteria are viable and
can revert to the infectious state following removal of IFN-�
(3).

Several Chlamydia spp. have joined a growing number of
intracellular microorganisms that modulate apoptosis in oppo-
site directions, both promoting and inhibiting apoptosis under
different conditions (8, 17, 19, 23, 35, 55). Similar to other
pathogens, chlamydiae protect infected cells against apoptosis
due to external stimuli during early stages of infection (15) and
induce apoptosis of the host cell during later stages (21, 38, 40,
41). Chlamydiae may thus protect infected cells against cyto-
toxic mechanisms of the immune system, while the apoptosis
observed at the end of the infection cycle may contribute to the
inflammatory response or facilitate release of bacteria from
infected cells.

It has recently been reported that cells infected with C.
trachomatis in the presence of IFN-� resist apoptosis due to
external ligands, via inhibition of caspase activation (11). In-
hibition of caspase activation has also been shown in the ab-
sence of IFN-� (15), while the apoptosis due to the infection
itself is independent of caspases (38, 41). To determine if
persistently infected cells are still susceptible to apoptosis at
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the end of the infection cycle, we characterized apoptosis of
cells infected with C. muridarum in the presence or absence of
IFN-� in vitro. The study was then extended to an in vivo
infection by measuring the number of apoptotic cells in the
genital tracts of wild-type and IFN-�-deficient mice infected
with the same strain of C. muridarum. In both cases, IFN-�
inhibited Chlamydia-induced apoptosis, which could contrib-
ute to limiting propagation of the infection during the state of
persistence.

MATERIALS AND METHODS

Cells and animals. HeLa 229 cells (obtained from the American Type Culture
Collection, Manassas, Va.) were cultivated in Dulbecco’s modified minimal es-
sential medium with Glutamax-1 (Life Technologies, Inc., Rockville, Md.), sup-
plemented with 10% heat-inactivated fetal calf serum and 25 �g of gentamicin
per ml. C. muridarum, obtained originally from the American Type Culture
Collection, was grown in McCoy cells and purified as previously described (44).
Six-week-old female C57BL/6 (C57; H-2b) and IFN-�-deficient female C57BL/
6-Ifgtm1 (IFN-��/�) mice were purchased from The Jackson Laboratory (Bar
Harbor, Maine). Recombinant human IFN-� was obtained from PeproTech
(Rocky Hill, N.J.), and L-tryptophan was from Aldrich (Saint Quentin Fallavier,
France). All other reagents were previously described (40).

Infections of cells with C. muridarum and treatment with IFN-�. For infections
in vitro, HeLa cells were plated at a density of 2 � 104 cells per well in six-well
plates (Costar). After 24 h in a humidified incubator at 37°C with 5% CO2, the
cell monolayers were washed and infected at a multiplicity of infection (MOI) of
0.5. At 1 h postinfection, the inoculum was removed and replaced with fresh
culture medium. Infected monolayers were maintained in the incubator for 2
days or treated 3 h postinfection with various concentrations of IFN-�. In some
experiments, 200 �g of L-tryptophan per ml was added to the cell cultures at the
same time as the IFN-� (3, 28).

Immunofluorescence. Infected or uninfected cells were fixed in 4% parafor-
maldehyde and revealed with anti-Chlamydia fluorescein-conjugated antibodies,
consisting of a mixture of two monoclonal antibodies specific for the chlamydial
MOMP and chlamydial lipopolysaccharide (1:500 dilution; Argene, Varilhes,
France), as previously described (37, 38). Host cell and bacterial DNAs were
visualized by staining saponin-permeabilized cells with 5 �g of Hoechst 33258
(Sigma, St. Louis, Mo.) per ml. Samples were examined with an Axiovert 135 TV
fluorescence microscope (Zeiss, Oberkochen, Germany) attached to a cooled
charge-coupled device camera (Photometrics).

To estimate the number of cells with persistent chlamydiae, infected samples
were fixed and incubated with an anti-Chlamydia monoclonal antibody, as de-
scribed above. Using the scale of 1 to 4 for the level of persistent chlamydial
development defined previously (3), normal cells correspond to cells with inclu-
sions containing typical chlamydia (level 1), while persistently infected cells
included all the cells with inclusions with some evidence of atypical, enlarged
chlamydiae (levels 2 and 3) or exclusively atypical chlamydiae (level 4). As the
cells were also labeled with Hoechst, apoptotic cells in the same samples were
identified by their condensed nuclei.

Analysis of cell death. In vitro, apoptosis was measured by cytofluorimetry
using detergent-permeabilized cells stained with propidium iodide (PI), as pre-
viously described (13, 29, 33, 36). Since apoptotic cells were present mainly in the
supernatant (38), adherent cells were detached with 1 mM EDTA in phosphate-
buffered saline at 37°C, and both adherent cells and cells in suspension were
collected and centrifuged. After one washing with phosphate-buffered saline, the
cell pellet was resuspended directly in PI-detergent buffer (62.5 �g of PI per ml,
0.1% Triton X-100, and 1 mg of sodium citrate per ml in water) and transferred
into 12- by 75-mm Falcon 2052 fluorescence-activated cell sorting tubes (Becton
Dickinson, San Jose, Calif.). Data from 10,000 HeLa cells were collected on a
FACScan flow cytometer (Becton Dickinson) with an argon ion laser tuned to
488 nm. Apoptosis was measured in the FL-3 range, and the marker used to
quantify the number of apoptotic cells was set in such a way as to exclude debris
and necrotic cells in the low FL-3 values. Each sample was performed in tripli-
cate, and each experiment was repeated at least three times on separate days.

Infection of mice and histological procedures. Wild-type or IFN-�-deficient
mice received 2.5 mg of medroxyprogesterone acetate (Depo-Provera; Upjohn,
Kalamazoo, Mich.) subcutaneously 7 days before vaginal infection. The mice
were infected by placing 30 �l of 250 mM sucrose–10 mM sodium phosphate–5
mM L-glutamic acid (SPG) containing 1.0 � 107 inclusion-forming units of C.
muridarum per ml into the vagina of each mouse or 30 �l of SPG without

bacteria for negative controls, as described elsewhere (10). Mice were sacrificed
7 days after vaginal infection. Oviducts and uterine horns were removed, fixed in
4% paraformaldehyde, and embedded in 37°C paraffin. Longitudinal 4-�m sec-
tions were cut, deparaffinized, and hydrated through xylene and graded alcohol
series.

Apoptotic cells were identified by staining with the terminal deoxynucleotidyl-
transferase-mediated dUTP-biotin nick end labeling (TUNEL) method using the
apoptosis detection kit from Boehringer Mannheim (Meylan, France), following
the manufacturer’s instructions. Samples were examined with the Zeiss micro-
scope, and images were acquired and analyzed with the IPLab spectrum program
(Signal Analytics Corporation, Vienna, Va.). The relative number of apoptotic
cells in each microscope field was quantified with the IPLab spectrum program,
as previously described (40).

RESULTS

Effect of IFN-� on survival of Chlamydia-infected cells in
vitro. Several strains of C. trachomatis and C. muridarum and
the guinea pig inclusion conjunctivitis strain of Chlamydia
psittaci induce apoptosis of host cells towards the end of the
infection cycle (21, 38, 40). IFN-� has been reported to induce
a state of persistence of C. muridarum, human strains of C.
trachomatis, and Chlamydia pneumoniae (5, 30, 39), although
human strains of C. trachomatis are more sensitive than C.
muridarum (30). When incubated 24 or 48 h before the start of
infection, IFN-� had a partial effect on growth of C. muridarum
at 0.5 ng/ml and a larger effect at 2.0 ng/ml. The IFN-� con-
centrations used in this work had no effect on uninfected cells
(data not shown), but IFN-� concentrations above 5 ng/ml
were toxic to the host (HeLa) cells themselves (30). When cells
are infected first and then cultured with IFN-�, growth of the
chlamydiae is not inhibited, and instead the chlamydiae as-
sume the biochemical and morphological features of persis-
tence (4). We therefore measured the effect on apoptosis dur-
ing C. muridarum infection in the presence of IFN-� at 0, 0.2,
and 2 ng/ml, which was added 3 h after the start of infection.
Apoptosis, defined by DNA content as measured by cytofluo-
rimetry after 48 h of infection, was not affected by IFN-� at 0.2
ng/ml but was inhibited by approximately half by IFN-� at 2
ng/ml (Fig. 1).

Correlation between chlamydial persistence and host cell
nuclear condensation. Cells persistently infected with some
human C. trachomatis strains in vitro contain abnormally large
noninfectious forms of chlamydiae (5, 6). As for C. trachomatis
serovar A (3, 49), the number of C. muridarum-infected cells
containing persistent chlamydiae was heterogenous for cells
treated at the low IFN-� concentration. At 0.2 ng of IFN-� per
ml, cells with both normal and aberrant inclusions were ob-
served (data not shown), while at 2 ng/ml, most of the inclu-
sions had enlarged chlamydiae, as reflected by the appearance
of patches in the inclusions, observed by immunofluorescence
(Fig. 2). Thus, unlike C. trachomatis L2, whose form does not
change significantly in response to IFN-� (49), the morpholog-
ical development of C. muridarum in IFN-�-treated cells is
reminiscent of that of C. trachomatis serovar A.

Approximately 1/10 of the infected cells had persistent chla-
mydiae at 0.2 ng of IFN-� per ml, compared to over 3/4 of the
cells that had been treated with 2 ng of IFN-� per ml (Fig. 3A).
At the MOI of 0.5 used here and in the absence of IFN-�, half
of the infected cells had apoptotic nuclei after 48 h of infection
and the other half still had normal nuclei (data not shown).
Interestingly, at the lower IFN-� concentration, inhibition of
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nuclear condensation, as assayed by immunofluorescence of
Hoechst-stained nuclei, was limited preferentially to cells con-
taining the aberrant chlamydial inclusions (Fig. 3B). Thus,
IFN-� inhibits apoptosis mainly of persistently infected cells.

Effect of tryptophan on apoptosis of IFN-�-treated cells.

The persistent phenotype of Chlamydia-infected cells can be
reversed through incubation of cell cultures with an excess of
extracellular tryptophan (3, 28, 53). Similarly, coincubation of
Chlamydia-infected cells with IFN-� and tryptophan partially

FIG. 1. Effect of IFN-� on apoptosis and survival of host cells
infected with Chlamydia. HeLa cells were infected with C. muridarum
at an MOI of 0.5, and the indicated concentration of IFN-� was added
3 h after the beginning of infection. After 48 h of infection, specific
apoptosis of adherent cells and cells in suspension was measured by
cytofluorimetry of PI-treated, detergent-permeabilized cells, as de-
scribed in Materials and Methods. The marker (M) was used to define
the population of apoptotic cells. (A) Cytofluorimetry profile of in-
fected and uninfected cells treated with PI. In the absence of infection
or IFN-� treatment, a spontaneous level of apoptosis of 3 to 5% was
always observed after 48 h (filled profile). Over 25% of the cells
became apoptotic after a 48 h infection (open profile). (B) Cytofluo-
rimetry profile with expanded y axis to show apoptotic cells in a pop-
ulation of infected cells (dashed line) and infected cells incubated with
IFN-� at 0.2 ng/ml (solid line) or 2 ng/ml (dotted line). The fluores-
cence intensity (FL-3) is given on the x axis, and the number of cells is
on the y axis (A and B). (C) Calculated values of specific apoptosis for
infected cells treated with 0, 0.2 or 2 ng of IFN-� per ml. The values are
means and standard deviations for three Chlamydia-infected samples
treated with IFN-� on separate days. P is �0.01 for 0 versus 2 ng of
IFN-� per ml.

FIG. 2. Appearance of Chlamydia inclusions in cells treated with
IFN-�. HeLa cells infected with C. muridarum and treated with IFN-�
at 0 (A) or 2 (B) ng/ml were fixed with paraformaldehyde and pre-
pared for immunofluorescence as described in Materials and Methods,
using fluorescein-conjugated anti-Chlamydia antibodies (green) and
Hoechst for DNA labeling (red). Chlamydia inclusions were normal in
the absence of IFN-� but were aberrant when infected cells were
treated with 2 ng of IFN-� per ml. Arrows indicate Chlamydia inclu-
sions, and arrowheads show host cell nuclei. Bar, 10 �m.
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reverses the inhibitory effect of IFN-� on Chlamydia-induced
apoptosis (Fig. 4), suggesting that IFN-� exerts its effect mainly
via host cell indoleamine 2,3-dioxygenase (IDO) activity (5).
Thus, IFN-� inhibits infection-dependent apoptosis by approx-
imately 60% in the absence of tryptophan and by approxi-
mately 30% in the presence of tryptophan (Fig. 4). However,
tryptophan did not completely reverse the inhibitory effect of
IFN-�, suggesting that this cytokine may have some effects on
chlamydiae independent of IDO activity. As controls, addition
of tryptophan to the extracellular medium in the absence of
IFN-� did not affect Chlamydia-induced apoptosis, and 2 ng of
IFN-� per ml with or without tryptophan had no effect on
apoptosis in the absence of infection (data not shown).

Apoptosis in wild-type and IFN-�-deficient mice. Both C.
muridarum and human strains of C. trachomatis are sensitive to
the inhibitory effects of IFN-� in mouse models, although, as in
the case of the chlamydiae in vitro (30), human strains are

more sensitive than C. muridarum (43). The effect of IFN-� on
apoptosis during infection with C. muridarum in vivo was eval-
uated by quantifying the apoptotic cells, revealed by the
TUNEL technique, in the upper genital tracts of wild-type and
IFN-�-deficient mice infected for 7 days. There was a large
increase in the level of apoptosis in infected wild-type mice
compared to uninfected controls (Fig. 5), as previously re-
ported (40). The extent of apoptosis increased even further,
more than twofold, in the IFN-�-deficient mice that had been
infected (Fig. 5), suggesting that secretion of IFN-� may pro-
tect against Chlamydia-induced apoptosis in vivo.

DISCUSSION

We show here that IFN-� produces a state of persistence of
C. muridarum, as previously reported for human strains of C.
trachomatis (5, 6, 39, 49). After treatment with a low concen-
tration of IFN-� (0.2 ng/ml), we observed a heterogenous pop-
ulation of Chlamydia inclusions, some being normal and others
being aberrant. A homogeneous population of persistent, ab-
errant chlamydiae arises after treatment with a higher concen-
tration (2 ng/ml) of IFN-�, as reported for the human strain C.
trachomatis serovar A (3). In infected cells in vitro, IFN-�
treatment also results in inhibition of Chlamydia-induced ap-
optosis. As measured by immunofluorescence, there is near-
complete inhibition of apoptosis at 2 ng of IFN-� per ml and
partial inhibition at 0.2 ng/ml. However, at the lower concen-
tration, the inhibitory effect is restricted mainly to cells con-
taining inclusions with the persistent phenotype. The inhibitory
effect of IFN-� on apoptosis was smaller when assayed by
cytofluorimetry, which allowed us to measure apoptosis of both

FIG. 3. Sensitivity to the effects of IFN-� and correlation between
the developmental state of Chlamydia vacuoles and sensitivity to apo-
ptosis. HeLa cells were infected with C. muridarum at an MOI of 0.5
for 48 h in the presence of the indicated concentrations of IFN-�.
(A) The number of cells containing normal inclusions (black bars) or
inclusions with persistent chlamydiae (white bars) was determined and
defined as described in Materials and Methods. For cells containing
normal inclusions, P is �0.01 for 0 versus 0.2 and 0 versus 2 ng of
IFN-� per ml. (B) Host cells were identified as containing normal or
persistent chlamydiae, and apoptotic cells were counted based on the
condensation of Hoechst-labeled nuclei, as described in Materials and
Methods. For cells containing normal inclusions and condensed nuclei,
P is �0.001 for 0 versus 2 ng of IFN-� per ml and �0.01 for 0 versus
0.2 ng of IFN-� per ml. Each series of experiments was performed at
least three times.

FIG. 4. Reversal by tryptophan of IFN-�-dependent inhibition of
apoptosis. HeLa cells were infected with C. muridarum at an MOI of
0.5 for 48 h. Infected cells were treated with (white bars) or without
(black bars) IFN-� (2 ng/ml) and with or without 200 �g of L-trypto-
phan per ml. Apoptosis was measured by cytofluorimetry using PI-
stained, detergent-permeabilized cells, as described in Materials and
Methods. The values were normalized to the highest level of apoptosis
(infected cells in the absence of IFN-� or L-tryptophan), and the values
are means and standard deviations for three samples infected with C.
muridarum on separate days.
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adherent cells and cells in suspension. Thus, the extent of
apoptosis is most likely underestimated when measured by
immunofluorescence, which is limited to adherent cells. We
also quantified the number of apoptotic cells in the upper
genital tract of IFN-��/� mice infected with C. muridarum and
found that, consistent with the in vitro results, there are more
apoptotic cells in the IFN-��/� mice than in wild-type mice.

The concentration dependence and the timing of the effects
of IFN-� on Chlamydia-induced apoptosis are consistent with
previous work on the persistent state of chlamydiae in vitro. It
has been reported that multiplication of C. trachomatis is in-
hibited in a dose-dependent manner when IFN-� treatment
begins before infection (50). However, when treatment begins
concomitantly with infection or shortly after infection, as in our
experiments, a persistent state develops in which the RB are
morphologically abnormal and are unable to develop into el-
ementary bodies (4), remaining in an undividing but viable
state. In addition, pretreatment of HeLa cells with IFN-� be-
fore infection with the murine species used in this study, C.
muridarum, had little effect on the production of infectious
chlamydiae at IFN-� concentrations of �0.2 ng/ml, but there
was more than a threefold reduction in the number of infec-
tious chlamydiae starting at 0.5 ng/ml (30). The concentrations
of IFN-� that cause persistence in vitro are thus comparable to
those found in endocervical secretions from women infected
with C. trachomatis (1, 5).

Chlamydia spp. have been reported to modulate apoptosis in
opposite directions (19, 55), both protecting acutely infected
cells against apoptosis due to external ligands and inducing
apoptosis towards the end of the infection cycle (15, 38, 40, 41).
In a recent study, the effect of persistence on the protective

activity of C. trachomatis serovar A was evaluated in HeLa cells
incubated with 0.2 and 2.0 ng of IFN-� per ml (11). During
acute infection in vitro, infected cells are resistant to apoptosis
due to inhibition of cytochrome c release from mitochondria
and inactivation of host cell caspases (15). Similarly, cyto-
chrome c was not translocated from mitochondria to the cy-
tosol in persistently infected cells, suggesting that caspase-9
and consequently caspase-3 were not activated (11). Thus, the
mechanism of protection in persistently infected cells appears
to be the same as that observed in the absence of IFN-� (15).
The effect of IFN-� on apoptosis at the end of the infection
cycle was not evaluated.

Chlamydia species are endowed with a type III secretion
apparatus that could be used by the bacteria to secrete viru-
lence factors into the inclusion or the host cell cytosol (16, 24,
51). Although specific Chlamydia factors that could induce or
inhibit apoptosis have not been identified yet, it is tempting to
speculate that proteins secreted by Chlamydia may modulate
apoptosis in the infected cell, as reported for other intracellu-
lar bacteria (18, 55). It also remains to be seen whether IFN-�
could alter the expression of chlamydial proteins that modify
survival pathways in the infected cell. A recent proteomic anal-
ysis of the regulation of chlamydial proteins revealed that the
expression of chlamydial MOMP and several other proteins
decreases markedly early in the developmental cycle of C.
trachomatis serovar A, while modifications were also found for
other proteins (49). However, no significant down-regulation
was observed for the expression of MOMP or other proteins in
cells infected with C. trachomatis serovar L2. If it turns out that
chlamydial virulence factors are involved in IFN-�-dependent
inhibition of host cell apoptosis, then one may expect that
IFN-� affects Chlamydia-mediated apoptosis differentially, de-
pending on the Chlamydia strain.

In human epithelial cells, IFN-� treatment results in deple-
tion of tryptophan via IFN-�-induced expression of IDO. IDO
activity leads to tryptophan catabolism, thus decreasing the
intracellular concentration of tryptophan available for chla-
mydiae (3). C. trachomatis and C. pneumoniae can be res-
cued from IFN-�-treated or tryptophan-depleted cell cultures
through the addition of extracellular tryptophan (3, 28, 53), but
IFN-� may also induce or inhibit apoptosis of eukaryotic cells
in the absence of infection (7, 34, 57). In order to distinguish
between the effects of IFN-� on host cell apoptosis and chla-
mydial development, apoptosis of IFN-�-treated infected cells
was measured in the presence and absence of exogenous tryp-
tophan. IFN-� by itself (at 2 ng/ml) or with tryptophan in the
absence of infection had no effect on survival of the host cells.
However, reversal by tryptophan of the effect of IFN-� in
infected cells suggests that IDO activity is responsible for the
IFN-�-dependent inhibition of apoptosis observed during C.
trachomatis infection of human host cells.

The increase in apoptosis observed in the genital tracts of
infected IFN-�-deficient mice may also have been due to their
inability to induce IDO. Unlike the case for infected human
host cells (3, 4), the anti-C. muridarum activity of IFN-� in
murine host cells was not dependent on induction of IDO and
tryptophan catabolism in vitro (12). However, in a murine
model of C. pneumoniae infection, IFN-� was necessary for
accumulation of IDO transcripts in the lung (46), and in a
murine model of malaria, IDO was induced in wild-type mice

FIG. 5. Level of apoptosis in the genital tracts of wild-type and
IFN-�-deficient mice infected with Chlamydia. Mice were infected with
C. muridarum for 7 days, histological samples were stained by TUNEL,
and the number of apoptotic cells in the uterine horns and oviducts was
determined as described in Materials and Methods. All apoptosis
values were normalized to the value obtained with infected IFN-�-
deficient (IFN� KO) mice, which was defined as 100. Histological
sections were prepared from three uninfected mice and three infected
mice from each group.
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but not in IFN-�-deficient mice (47). It is thus likely that IDO
activity may also be responsible for IFN-�-dependent inhibi-
tion of apoptosis in the murine genital tract.
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