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Applied behavior analysis is based on an investigation of variability due to interrelationships
among antecedents, behavior, and consequences. This permits testable hypotheses about the
causes of behavior as well as for the course of treatment to be evaluated empirically. Such
information provides corrective feedback for making data-based clinical decisions. This paper
considers how a different approach to the analysis of variability based on the writings of Walter
Shewart and W Edwards Deming in the area of industrial quality control helps to achieve
similar objectives. Statistical process control (SPC) was developed to implement a process of
continual product improvement while achieving compliance with production standards and
other requirements for promoting customer satisfaction. SPC involves the use of simple statistical
tools, such as histograms and control charts, as well as problem-solving techniques, such as flow
charts, cause-and-effect diagrams, and Pareto charts, to implement Deming's management phi-
losophy. These data-analytic procedures can be incorporated into a human service organization
to help to achieve its stated objectives in a manner that leads to continuous improvement in
the functioning of the clients who are its customers. Examples are provided to illustrate how
SPC procedures can be used to analyze behavioral data. Issues related to the application of these
tools for making data-based clinical decisions and for creating an organizational climate that
promotes their routine use in applied settings are also considered.
DESCRIPTORS: statistical process control, data analysis, methodology, applied behavior

analysis, developmental disabilities

Statistical process control (SPC) includes a
number of simple statistical procedures and
problem-solving techniques with powerful ap-
plications in industrial manufacturing opera-
tions. In these contexts, SPC is used to detect
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patterns of variation in the production process
that must be corrected in order to ensure that
quality control standards are achieved and to
implement a plan leading to continual product
improvement. The introductory text by Whee-
ler and Chambers (1992) describes seven basic
tools for accomplishing these objectives, includ-
ing (a) the construction of histograms (e.g., bar
charts or stem-and-leaf plots), (b) running rec-
ords that provide a graphic representation of the
production process, (c) use of control charts
(described below), and (d) procedures for set-
ting the process aim that provide for a more in-
depth analysis of the quantitative information
used to monitor productivity and to evaluate
the quality of the product produced. In addi-
tion, three organizational tools for problem
solving-flowcharts, Pareto charts, and cause-
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and-effect diagrams-are useful in tracking
down the sources of variability that result in
special causes of variation. These are considered
to be exceptions to the manner in which the
manufacturing system normally functions. A
fundamental objective in using SPC tools is to
distinguish patterns of variation due to these
special (assignable) causes of uncontrolled vari-
ation from patterns of controlled variation due
to common (systemic) causes, which are regard-
ed as inherent features of how the manufactur-
ing process is organized and operated.

Intervening in a work process that is "in sta-
tistical control" and therefore displays only
common causes of variation is tampering (illus-
trated by the funnel experiment described in
Scherkenbach, 1991, pp. 41-55) and will result
only in greater variability. This represents a
"false alarm" and is similar to the Type I error
made in conventional hypothesis-testing re-
search. Furthermore, such a faulty analysis often
leads to a tendency to blame workers for the
production of defects that are due to common
causes of variation. These can be corrected only
by the actions of management in changing how
the system fundamentally operates. This point
is illustrated by Deming's infamous red bead
experiment, described by Geller (1992) in his
introduction to a special issue of the Journal of
Applied Behavior Analysis (Fall 1992) devoted to
applications of performance management in
business and industry. This was also noted by
Mawhinney (1992) in his discussion of the im-
plications of Deming's management philosophy
for organizational behavior management. Type
I errors can lead to increased frustration on the
part of supervisors as well as workers, who both
are trying to fix a system that is operating nor-
mally. On the other hand, failure to correctly
identify special causes of variation when they
are present and to track down and correct the
extraneous influences contributing to these de-
fects results in a costly need to undo the damage
done by faulty production. These Type II errors
also result in missed opportunities to avoid such
defects in the future.

As described in introductory texts by Gitlow
and Gitlow (1987), Kane (1989), Montgomery
(1985), Pyzdek (1989), and Wheeler and
Chambers (1992), SPC offers an approach for
evaluating the significance of changes associated
with planned interventions or with the spon-
taneous occurrence of uncontrolled variables. It
combines the rigor and objectivity of a statis-
tical analysis of data with the sensitivity of clin-
ical judgment developed by the behavior-ana-
lytic tradition that favors visual inspection of
characteristics in the time series of scores from
an individual subject (see Baer & Parsonson,
1981). This is accomplished by constructing a
control chart, in which the average values ob-
tained during a trial period are used to compute
a measure of location or central tendency (the
central line) and control limits, based on a mea-
sure of dispersion or variability in the scores ob-
tained. The running record serves as a graphic
representation of the work process. Use of con-
trol charts provides objective criteria (i.e., scal-
ing factors) for "eyeballing" the data in much
the same manner that other judgmental aids de-
scribed by Bailey (1984) and Birkimer and
Brown (1979) assist in the visual interpretation
of quantitative information. Accordingly, use of
these procedures allows the investigator to avoid
choosing between either a statistical analysis or
a visual inspection of time series data. Using
control charts, it is possible to do both types of
analysis without making the questionable as-
sumptions that statistical analyses sometimes re-
quire (i.e., assuming that there is no autocor-
relation among scores or that scores are nor-
mally distributed, etc.; see Pfadt, Cohen, Sud-
halter, Romancyzk, & Wheeler, 1992, and
Wheeler, 1990, for a fuller consideration of
these issues).

The Logic ofa Control Chart Analysis
The conceptual foundation for the use of

control charts was established by Walter She-
wart during his pioneering research at Bell Lab-
oratories (see Shewart, 1939/1986) and is de-
scribed in detail by Wheeler and Chambers
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(1992). The upper and lower control limits of
the output of a work process are established by
converting measurements of the dispersion of
scores in samples of some quality characteristic
of the manufactured items into sigma units.
Sigma units reflect the distribution of scores
that can be expected to lie on either side of the
central line (the mean of the samples), in terms
of standard deviation units. Control limits are
used to establish the parameters of common
causes of variation. These limits specify a range
of values to be expected if only those factors
intrinsic to the normal operation of the pro-
duction process affect the results obtained. A
prediction is made about how the process
should continue to function if only common
causes of variation are operative. The control
limits are extended and the subsequent output
of the work process is monitored by applying
certain decision rules (described below). These
objective guidelines are used to determine if and
when the assumption of chance variation has
been violated and the effects of special causes
of variation are apparent.
Some of the decision rules commonly used

in an SPC analysis of time series data are de-
scribed in Wheeler and Chambers (1992) and
have been reproduced by Mainstone and Levy
(1987, p. 15). These criteria are based on the
applicability of probability theory for evaluating
the likelihood of obtaining certain patterns of
scores by chance, using the control limits and
central line of the control chart as scaling fac-
tors. For example, a special cause of variation is
suggested whenever eight successive values fall
on the same side of the central line or whenever
two of three points are on the same side of, and
more than two standard deviation units away
from, the central line.
The use of sigma units provides a basis for

shifting from arbitrary measurement units that
describe the characteristics of a representative
sample to standardized units that provide esti-
mates of the relevant characteristics of a process
parameter. It is important to emphasize, how-
ever, that the use of three-sigma limits as the

foundation for taking action on the signals de-
tected by control charts is not based solely on
probability theory, although it is supported by
the application of mathematical principles de-
rived from sampling theory. Shewart (1939/
1986) stated that three-sigma limits were cho-
sen because they provided practical guidelines
for determining when it was worthwhile to in-
vest the resources of an organization in looking
for assignable causes of the abnormal patterns
of variation that are detected by their use.
Wheeler and Chambers (1992) observed that
"the strongest justification of three-sigma limits
is the empirical evidence that these three-sigma
limits work well in practice-that they provide
effective action limits when applied to real
world data" (p. 60).

Differences between contingency-shaped and
rule-based guidelines for making data-based de-
cisions were described by Killeen (1978), who
considered the relative advantages and disadvan-
tages of each. The objective criteria that guide
an SPC analysis of data sets function as rules
that instruct the investigator to attend to par-
ticular aspects of the data. We provide two clin-
ical examples below to illustrate this process. In
this way, characteristics of a subject's data come
to serve as discriminative stimuli for taking cor-
rective actions on those environmental influ-
ences that are associated with problematic be-
haviors. If these interventions are successful,
their use will be reinforced. If they are not suc-
cessful, their use will be extinguished (and de-
servedly so). Therefore, SPC guidelines allow
for the change agent's repertoire of problem-
solving skills to come under the control of the
data generated during planned interventions
(see Saunders & Saunders, 1994). In this re-
gard, the tools of SPC also lead to contingency-
shaped decision rules and problem-solving strat-
egies, as will be illustrated below.

The Organizational Context for
SPC Applications

Taking action on the information provided
by control charts and other SPC problem-solv-
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ing tools requires an organizational culture that
is committed to making data-based decisions.
This necessitates that technical and manage-
ment systems become interdependent and well
integrated in order for meaningful changes to
occur (see Rubinstein, 1984). Implementing the
principles of Deming's management philosophy
(Deming, 1986, 1993) is one way to achieve
this interdependency. However, there are points
of disagreement as well as areas of considerable
overlap between Deming's "system of profound
knowledge" and the metatheoretical assump-
tions that underlie the applied analysis of be-
havior. Contributors to special issues of the
Journal of Organizational Behavior Management
(Vol. 9, No. 1) and the Journal ofApplied Be-
havior Analysis (Vol. 25, No. 3) expressed a
range of opinions about the compatibility of
these two approaches. It is beyond the scope of
this article to consider this issue in detail. Nev-
ertheless, the application of SPC will have only
a limited impact unless it is supported by the
top levels of management within an organiza-
tion. This is also true for any of the technolog-
ical innovations developed by applied behavior
analysis. We will consider issues related to in-
corporating SPC into routine clinical practice
in the last section of this article.

Brache and Rummler (1988) described three
levels of quality improvement in manufacturing
settings related to individual workers, produc-
tion processes, and organizational variables. Ac-
cording to Brache and Rummler, "the organi-
zation, process, and individual levels are inter-
dependent, linked together in a total quality
system that ultimately determines the quality of
an organization's products and services" (p. 46).
In this article we will be primarily concerned
with describing how control charts can be used
to evaluate behavioral data when the focus is on
changing the performance of an individual di-
ent. However, SPC tools can be introduced in
an applied setting in order to change the be-
havior of a clinical team, so that members use
a more data-based approach to treatment plan-
ning and decision making. Finally, it is possible

to regard Deming's management philosophy as
a set of rules for consultants to follow in order
to promote systems-wide changes within an en-
tire organization, as discussed by Saunders and
Saunders (1994). The data-analytic and prob-
lem-solving tools of SPC described below can
be used to implement a process of continual
improvement based on the plan-do-study-act
cycle detailed by Scherkenbach (1991, pp. 63-
81). Issues related to incorporating SPC into
routine clinical practice in applied settings will
be discussed in the final section of this article.

CLINICAL APPLICATIONS OF
SPC METHODS

The use of SPC in clinical contexts is based
on the premise that variability in the occurrence
of target behaviors can be analyzed by using
procedures that have been developed in indus-
trial settings as rules of thumb for evaluating
time-ordered measurements in the output of a
work process. Redmon (1992) observed that
"changes in steady state depicted on an SPC
control chart represent changes in controlling
variables in much the same way as variations in
graphic data patterns signal changes in perfor-
mance as a function of environmental phenom-
ena in applied behavior analysis" (p. 547). A
similar observation was made over 40 years ago
by Wilson (1952/1990), who reported that at-
tempting to control all relevant sources of vari-
ation in an experimental situation "does not
necessarily eliminate all variability in the results
because there will be a very large number of
variables left which individually have small ef-
fects but which collectively produce a scatter in
the results" (p. 262). Noting that this scatter
could be interpreted as essentially random (or
in statistical control), Wilson then provided a
number of examples (see pp. 263-272) to il-
lustrate how the statistical principles developed
by Shewart (1939/1986) for industrial quality
control could be applied to analyze the results
of planned interventions. Pfadt et al. (1992)
and Pfadt and Wheeler (1993) have shown how
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these statistically based decision criteria can be
used to carry out the interpretive guidelines dis-
cussed by Parsonson and Baer (1986) in eval-
uating changes in level and trend in behavioral
data during baseline or during treatment in
clinical settings.
The direct application of SPC procedures is

most straightforward in those cases in which
some aspect of a client's behavior can be con-
sidered to be defective and the goal is to identify
and correct any ecobehavioral variables that are
associated with these defects. However, such an
eliminative approach (Hawkins, 1986) is essen-
tially reactive and involves "scraping burned
toast," because the targeted behavior must oc-
cur often enough for these corrective strategies
to be implemented. For this reason, Hawkins
recommended constructional approaches to
treatment (originally described by Goldiamond,
1974) that attempt to expand the repertoire of
the person displaying the problem behavior by
teaching new skills. From this perspective, the
change agent will be interested in the ability of
control charts to detect when a new level of
performance (or training criteria) is achieved, so
that the success of this enterprise can be mon-
itored in real time. Changes in treatment can
then be based on this information. For example,
the training program might be modified if spec-
ified outcomes are not achieved by a target date.
This application is similar to the use of standard
celeration charts in precision teaching (Lindsley,
1992). Application of control charts in the con-
text of a constructional approach to treatment
is also an effective strategy for operationalizing
a changing criterion design (Tawney & Gast,
1984), whereby the upper control limit com-
puted during the client's preintervention base-
line is used to determine the changed training
criterion in effect during the treatment phase.

Control charts can be applied in three dif-
ferent but interrelated areas of treatment plan-
ning and clinical decision making: (a) The de-
cision rules described by Wheeler and Cham-
bers (1992) for detecting changes in level,
trend, or both can be applied to determine

whether the criteria for baseline stability have
been achieved or if baseline observations indi-
cate the presence of special causes of variation;
(b) control charts can be used retrospectively, as
judgmental aids, to provide objective guidelines
for determining whether or not an intervention
was effective in comparison with the preinter-
vention baseline data; and (c) control charts can
be used to monitor the effects of interventions
in real time and to implement a changing cri-
terion design that selects the values used to in-
dicate a change in clinical status on the basis of
pretreatment functioning and not in terms of
some arbitrarily imposed criteria. Here we will
be concerned with issues related to selecting,
constructing, and interpreting control charts to
evaluate baseline stability. Elsewhere (Pfadt et
al., 1992; Pfadt & Wheeler, 1993), we have il-
lustrated the second and third applications. We
will also consider how SPC problem-solving
techniques (Pareto charts, cause-and-effect dia-
grams, and flowcharts) can be used in clinical
settings to identify the source of any special (ab-
normal) patterns of variation detected in the
running record. First, however, we will consider
some measurement issues regarding the behav-
ioral stream as similar to a work process.

The Behavioral Stream As a
Work Process
Mawhinney (1992) and Redmon (1992)

showed how, when viewed from a systems per-
spective, both SPC and applied behavior anal-
ysis are alike in their attempts to analyze the
causal systems affecting the measurable prop-
erties of the "process" under investigation into
those components responsible for transforming
inputs into outputs. Welch (1992) expressed a
reservation to the application of SPC for be-
havioral data by noting that "after all, people
are not widgets and their errors cannot be treat-
ed as scrap" (p. 10). However, as noted previ-
ously, variability in the measures of both be-
havioral and work processes can be analyzed by
means of control charts. The ecobehavioral
model of Morris and Midgley (1990) described
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below also calls attention to similarities between
the behavioral stream and a work process. This
reflects the historical influences of ecological
psychology and field theories of behavior that
gave rise to this perspective, as Morris and
Midgley discuss in their article.
The products of a work process are com-

prised of relatively static properties that can be
measured as fixed characteristics to yield vari-
able or attribute data. In the latter case, "mea-
surement consists of evaluating whether an in-
dividual part or item has a particular feature,
i.e., is a part defective or nondefective" (Kane,
1989, p. 26), although the number of blemishes
(or defective features) on a particular part may
also be counted. However, the behavioral
stream is a continuous process. Although it is
possible to speak of "behavioral units" (Thomp-
son & Zeiler, 1986), these are not static prod-
ucts (in this respect, people really aren't widg-
ets!) and these units cannot be considered as
discrete items. In behavior analysis the response
class (Skinner, 1935), rather than a specific in-
stance of behavior, is the fundamental unit of
analysis. Furthermore, it is assumed that func-
tional relationships rather than topographical
features are the most important characteristics
in describing the "natural lines of fracture"
(Skinner, 1935) that determine the flow of the
behavioral stream. Barrett, Johnston, and Pen-
nypacker (1986) observed that "response classes
defined by empirical verification of functional
homogeneity across their various topographies
constitute the maximally efficient pretreatment
assessment baselines from which to select and
against which to evaluate the effects of the re-
mediation procedures" (p. 170). Units of mea-
surement that can be used as appropriate stan-
dards for quantifying clinically relevant dimen-
sions of behavior have been described by John-
ston and Pennypacker (1993, chap. 5) and will
only be listed here. They include frequency,
countability (rate), celeration (the second deriv-
ative of frequency), duration, latency, and in-
terresponse time (IRT).
From an SPC perspective, frequencies of tar-

get behaviors (even though a well-defined ob-
servation code might be employed to yield re-
liable and accurate data) are regarded as attri-
bute measures. Three inherent frustrations as-
sociated with attribute data have been described
by Wheeler and Chambers (1992): (a) Control
charts constructed from small counts in which
the average per subgroup is less than one are
insensitive, necessitating long measurement in-
tervals to detect enough nonconformities to es-
tablish representative values; (b) such binary
data have an all-or-nothing feature that obscures
information about the underlying dimension;
and (c) there is ambiguity about whether the
data-collection process or the behavior of the
production process is responsible for the differ-
ent measures obtained. Although Johnston and
Pennypacker (1993) acknowledge that, for
some purposes, frequency of all target behaviors
identified in a sampling interval (or the derived
measure, rate) may not provide the most dini-
cally relevant information (see also Baer, 1986),
they do not ascribe a lesser status to count data
than to other measures of behavioral dimen-
sions (e.g., duration or IRT). However, John-
ston and Pennypacker do give primacy to me-
chanical transducers relative to human observers
for many purposes and they recommend that
"given their strategic advantages, researchers
should fully consider the possibilities for using
machines as transducers before turning to hu-
mans" (p. 118). A similar conclusion was
reached by Pfadt and Tryon (1983), who de-
scribed a variety of uses for mechanical trans-
ducers in clinical settings. In this sense, then,
behavioral assessment can provide the equiva-
lent of "measurement by gauges" that results in
variable data. It is also possible to use measures
of duration (as well as latency and IRT) to pro-
vide variable data that can be expressed in the
dimensions of natural science (see Barrett et al.,
1986, Table 1, p. 174, for the properties and
units involved). We will illustrate certain advan-
tages to using variable data (such as IRTs) in-
stead of frequency counts of operationally de-

354



STATISTICAL PROCESS CONTROL

fined target behaviors (attribute data) in the ex-
amples presented below.

Analyzing Baseline Stability
Stable rates of responding during baseline are

important for the basic (experimental) as well
as the applied analysis of behavior for theoret-
ical and practical reasons. Conceptually, stabil-
ity has traditionally been regarded as an index
of the extent to which an investigator has es-
tablished control over relevant variables that af-
fect responding in the experimental condition
(Sidman, 1960). Pragmatically, stability during
baseline is necessary if a subject's preinterven-
tion time series is to be useful in detecting sub-
sequent changes in level, trend, or both during
treatment. Because the effectiveness of treat-
ment within the behavior-analytic tradition is
typically determined by visual inspection of
graphed data for an individual subject, stability
during baseline enhances the investigator's abil-
ity to detect treatment effects. Baer and Parson-
son (1981) and Kazdin (1982), among others,
have discussed the interpretive problems posed
by variability during baseline. Hartmann et al.
(1980) observed that "the eye has trouble dis-
tinguishing real behavior change from random
fluctuations when scores are highly variable" (p.
544) and have recommended that such mea-
sures be aggregated to produce a more stable
time series if it is not possible to rerun the ex-
periment under more tightly controlled condi-
tions. This advice, however, begs the question
of determining when a baseline is stable enough
to provide a useful frame of reference for eval-
uating subsequent effects.
The stability criteria proposed by Cumming

and Schoenfeld (1960) and Killeen (1978) rep-
resent attempts to use statistical principles to
answer the question: When is a baseline stable
enough to proceed with the next phase of treat-
ment? Cumming and Schoenfeld considered re-
sponding to be stable enough if the difference
between the means of two consecutive 3-day
periods was within ±5% of the overall 6-day
mean. Killeen reanalyzed the data presented by

Cumming and Schoenfeld and suggested several
additional criteria, including a coefficient of
variation (CV = the standard deviation divided
by the mean times 100) that did not exceed
14%. Elsewhere (Pfadt, Wheeler, Sersen, &
Moreno, 1993), we showed how control limits
can be used to inspect the classic data set pre-
sented by Cumming and Schoenfeld to provide
an operational definition for determining when
stability has been achieved during baseline. A
baseline can be said to be stable when there is
no evidence that assignable causes of variation
are present for the individual values of the time
series in the X chart or in the mR chart for the
moving ranges, using the set of four detection
rules presented in Wheeler and Chambers
(1992, p. 96):

1. A single point that falls outside the three-
sigma control limits.

2. Two of three points that fall on the same
side of, and more than two-sigma limits away
from, the central line.

3. At least four out of five successive points
fall on the same side of, and more than one
sigma unit away from, the central line.

4. At least eight consecutive values or 12 of
14 successive points fall on the same side of the
central line.
We will apply these criteria to analyze the

baselines presented below. These examples also
provide opportunities to consider some mea-
surement issues related to constuctional versus
eliminative approaches to treatment. We will
also illustrate the different properties of attri-
bute versus variable data when they are analyzed
by control charts.
An eliminative approach to treatment using at-

tribute data. The data presented in Figure 1 rep-
resent daily frequency counts of operationally
defined instances of "aggressive outbursts" ex-
hibited by a 30-year-old man who functions in
the severe range of mental retardation. Daily
frequencies of these target behaviors (instances
of hitting or kicking others, or using objects as
weapons to attack other clients or staff) were
obtained from incident reports completed by
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Figure 1. Daily frequencies of aggressive outbursts for Mr. X during baseline.

staff in a public residential facility as part of an
approved behavioral treatment plan. They were

compiled by the agency psychologist as part of
a consultation at the diagnostic and research
dinic where the senior author is employed.
When the graph of these data is interpreted

without benefit of the judgmental aids provided
by control charts, it appears that no dear "sig-

nals" (i.e., changes in level or trend) are present

in this "noisy" baseline. This impression is

borne out by the value of the linear regression
(-0.06) computed for this time series, using
procedures described by Baer and Parsonson
(1981). However, when these baseline values are

displayed on a control chart (see the upper pan-

el in Figure 2), six dear signals can be detected
using the four decision rules presented earlier.
The central line (CL = 0.46) is the mean of
the baseline time series. The upper control limit
(UCL = 2.54) was calculated by first comput-
ing the mean of the moving ranges for the bas-
eline values (i.e., the absolute values of differ-
ences between successive daily frequencies).
This value (0.78) was multiplied by a conver-

sion constant (2.66), which was then added to

the value for the central line: (2.66 X 0.78) +
0.46 = 2.54. The interested reader can com-

pute the moving ranges for all of the values
shown in the lower panel in Figure 2 to verify
these computations (which are accurate to with-
in rounding error) and to practice constructing
control charts for similar data. For example, the

first moving range is one (the difference be-
tween the daily frequency of one on Day 1 and
two on Day 2) and the second moving range is
zero (the frequencies on Day 2 and Day 3 are

the same). Notice that the number of moving
ranges will be one less than the number of data
points. Some statisticians might prefer to use a

C chart (see Wheeler & Chambers, 1992, pp.

271-274) to analyze data such as these. The
results are essentially the same, and the individ-
ual (X) and moving range (mR) charts do not

require any assumptions about the underlying
distribution of scores.

The value of the conversion constant used for
the X control chart was taken from the table
presented in Wheeler and Chambers (1992, p.

393) for selecting bias correction factors when
the sample size is two. This is the case when
the moving range is used to estimate the within-
sample variation if only single measurements

(such as daily frequencies) are obtained (see
Wheeler and Chambers, 1992, p. 48). The
three-sigma UCL helped to identify two signals
present in the upper panel in Figure 2. These
occurred on Day 16 and Day 50 when the daily
frequency of three exceeded the UCL of 2.54.
An estimate of sigma in a time series of indi-
vidual scores was obtained by multiplying the
mean of the moving ranges by the conversion
constant and dividing by three: (0.78 X 2.66)/
3 = 0.69. This sigma value was used to carry

out the other tests mentioned earlier. A two-
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Figure 2. Control charts for the individual values (upper panel) and the moving ranges of the daily frequencies
shown in Figure 1. The central line (CL = 0.46) is the mean of the time series and is represented by the solid line in
the upper panel. The circled values below the CL in this panel are runs of scores that are out of statistical control,
according to criteria defined in the text. The upper control limit (UCL = 2.54) is represented by the broken line in
the top of this panel and is used to identify values on Day 15 and Day 50 as potential signals. The dotted line between
the CL and the UCL is the two-sigma line, used to identify clusters of values (two of three consecutive values) that
are potential signals. Values shown in the lower panel are moving ranges, the absolute values of differences between
successive daily frequencies. The UCL (2.56) for the moving range chart is represented by the broken line above the
CL (0.78). The four values in the lower panel that exceed this line identify discontinuities in the orginal time series.

sigma line was calculated by adding the value
of two times sigma to the central line: (2 X

0.69) + 0.46 = 1.84. Drawing this two-sigma
line on the graph helped to identify two more

signals in this baseline-a bad period that in-
cluded Days 2 and 3 and another bad period
from Days 38 to 40, where two of three con-

secutive values were above the two-sigma line.
The central line itself was used as the frame of
reference for identifying the last two signals
present in this baseline. The first is indicated by
a run of eight consecutive values below the cen-

tral line from Day 4 through Day 11, and the
second corresponds to a run of 12 of 14 values
below the central line from Day 23 through
Day 36.

Instead of regarding all of the variability in
the baseline time series for Mr. X as "noise,"
use of control charts permits the identification

of six signals that are presumably due to special
causes of variation. In fact, the use of control
charts to analyze the data presented in the up-

per panel of Figure 2 suggests that it is not the
behavioral output of a stable process. Rather,
these data have apparently been produced by at

least two different processes, producing signals
on the high side or the low side of the central
line. The signals identified as circled values in
this panel tell an investigator where to look in
order to determine which ecobehavioral influ-
ences cause the observed behavior. In this sense,

the control chart functions as a road map, call-
ing attention to patterns in the data. Without
these objective criteria, one risks the error of
interpreting any change as if it were a signal (a
Type I error that leads to tampering, as dis-
cussed earlier). This raises the question: How
do we know that patterns are really signals due
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to special causes of variation and not simply the
results of chance fluctuations? Several types of
evidence support the former interpretation. The
first is related to the "logic of control charts"
described earlier. If one flipped an unbiased
coin eight times in a row, the probability of
getting eight successive heads or tails would be
p = .008 (1/27 after throwing the first head or
tail). Of course this outcome could have hap-
pened by chance, but a more likely explanation
would be that the coin was biased. Likewise,
the odds that a run of eight consecutive values
above or below the central line could have hap-
pened by chance are very small, approximately
one chance out of 128. However, it is more
reasonable to assume that a special cause of vari-
ation altered the underlying cause system and
thereby influenced the subject's performance
during that time period. A simple test for de-
termining whether a set of scores contains se-
quences that are not randomly distributed was
presented by Wilson (1952/1990). The central
line in the upper panel of Figure 2 is used as a
reference point to count the clusters of scores
below the mean of the distribution (0.46). For
60 observations, any number of runs below the
critical value of 22 (taken from Wilson, 1952/
1990, Table 9.9, p. 267) suggests a nonrandom
distribution of scores. There are only 15 clusters
of scores below the mean of this series (i.e., the
run of eight scores from Day 4 through Day 11
is counted as one cluster). This is sufficient to
reject the null hypothesis at p = .025.
The mR chart shown in the lower panel of

Figure 2 also provides supportive evidence that
there are meaningful signals in the running rec-
ord for Mr. X presented in Figure 1. The con-
trol chart shows that there are two abrupt tran-
sitions which correspond to the moving ranges
before and after the bad days identified in the
upper panel of Figure 2 (Day 16 and Day 50).
The UCL for the mR chart was computed by
multiplying the mean of the moving ranges
(0.78) by a bias correction factor (3.268) that
is used to construct mR control charts (see
Wheeler & Chambers, 1992, p. 48). Decision

Rules 2, 3, and 4 described above are not used
to analyze runs of scores on an mR chart be-
cause of the manner in which moving ranges
are computed. Except for the first and the last
score, each measurement contributes to two
consecutive moving ranges. This would make it
twice as likely to make a Type I error if tests
were used to identify sequences of scores that
are out of control. Additional supportive evi-
dence could be provided by any collateral ob-
servations (reports from staff, performance on
tasks, incident reports such as documentation
of the need for medical treatment) that were
part of the clinical records; these might suggest
that bad days or periods really were different
from good days or periods. Ultimately, the abil-
ity of the investigator to interpret the infor-
mation generated by control charts in the con-
text of knowledge about the process that gen-
erated the data and to use this new information
to improve subsequent performance determines
whether or not these out-of-control values
should be regarded as meaningful signals or ex-
traneous noise.

It is worth noting that both the X and the
mR charts shown in Figure 2 call attention to
bad days, when frequencies above the upper
control limit were recorded. This tends to neg-
atively reinforce the investigator's development
of eliminative approaches to treatment and re-
duces the likelihood that these aversive stimuli
will appear again in subsequent graphs of a
client's performance. However, complete sup-
pression of problematic target behaviors may
not be a realistic outcome if the individual does
not have an alternative behavior in his or her
repertoire that can provide equivalent access to
reinforcing consequences. Furthermore, graphs
of frequency data may fail to identify potential
signals in a time series that indicate improve-
ments in functioning related to desirable con-
ditions that should be enhanced or pro-
grammed to occur more predictably. We will
illustrate below how a constructional approach
to treatment can be facilitated by the use ofIRT
data.
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A constructional approach to treatment. Al-
though the use of control charts to analyze the
frequency data in Figure 2 helps to differentiate
signals from noise in the baseline time series,
there is a serious limitation to this approach if
we want to use these control limits to monitor
treatment outcomes. Because incidents occur
only every other day (CL = 0.46) on the av-
erage, it is not possible to compute a meaning-
ful lower control limit or even one- and two-
sigma warning limits below the central line. In
order for improvements to be apparent, one
must eliminate the target behavior for pro-
longed intervals (8 consecutive days or 12 of 14
successive days). More subtle treatment effects
cannot be detected using these decision rules.
Parsonson and Baer (1986) suggested that this
is not really a problem, because only robust
treatments will survive this type of selection
process. However, many applied interventions
may be worthwhile if they lead to more modest
outcomes, which can then be made part of a
more comprehensive treatment package (see
Fawcett, 1991). Use of IRTs (length of time be-
tween the occurrences of target behaviors) pro-
vides a means of obtaining variable data that
can be used to analyze Mr. X's baseline time
series.

Each of the events shown in the upper panel
of Figure 2 was recoded to provide an IRT mea-
sure using the following procedure. Because
only the number of events per day and not the
exact time when incidents occurred was avail-
able, the IRT was estimated by assuming that
if only one event was reported, it occurred at
the end of the day. Two or three events per day
were assumed to be equally spaced throughout
the day. For example, three events on the same
day were coded as IRTs of 0.33, 0.33, and 0.33.
Of course, if events had been coded in real time
it would not have been necessary to make these
simplifying assumptions and a source of poten-
tial bias or confusion would have been elimi-
nated. Furthermore, in the absence of real-time
measurements of the duration of episodes when
the target behaviors were displayed, it was not

possible to measure each IRT precisely or to
calculate the total IRT interval when respond-
ing could have occurred. A precise measure of
rate (count divided by total IRT) therefore
could not be computed, as recommended by
Johnston and Pennypacker (1993). Neverthe-
less, the IRT data presented in Figure 3 permit
a consideration of how a constructional ap-
proach to treatment (see Goldiamond, 1974;
Hawkins, 1986) differs from an eliminative ap-
proach. The three-sigma upper control limit
(UCL = 8.20) shown in the upper panel of
Figure 4 was computed in the manner described
previously. The value of the CL, 2.04, was add-
ed to the product of the mean of the moving
ranges (2.31) shown in the upper panel of Fig-
ure 4 and the bias correction factor (2.66) used
for X charts: 2.04 + 2.31 (2.66) = 8.20. Two
of the IRT values shown in Figure 4 exceeded
this three-sigma criterion.

There is no time axis on an IRT chart, al-
though each event corresponds to a particular
interval of time. However, by comparing the
IRT values shown in Figure 3 to the frequency
data presented in Figure 2, the time periods cor-
responding to the out-of-control signals shown
in Figure 3 can be identified. The upper control
limit provides an empirically derived, objective
criterion for determining when the run of good
days on an IRT chart is sufficiently different
from other patterns seen in a running record to
qualify as an out-of-control signal. In this case,
more than 8 consecutive days without an inci-
dent are required. This happened on two oc-
casions, once from Day 4 through Day 11 and
again from Day 23 through Day 30, as shown
in Figure 3. Moreover, use of IRT as an out-
come measure calls attention to treatment strat-
egies that enhance the person's ability to func-
tion in a socially desirable manner (e.g., by
teaching self-control strategies that lessen the
person's vulnerability to triggering events that
might lead to the expression of problematic be-
haviors, as discussed by Gardner & Cole,
1989). Whereas there was little room for im-
provement in the control chart for daily fre-
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Figure 3. Control charts for the IRTs calculated for the daily frequencies shown in Figure 2, according to procedures
described in the text. The circled values in the upper panel correspond to prolonged intervals from Days 4 to 11 and
Days 23 to 30 when no aggressive outbursts were reported. The moving range chart in the lower panel shows three
circled values that identify breaks in the original time series.

quencies shown in Figure 2, there is unlimited
room for improvement in an IRT chart for the
same data. It is also possible to construct mean-

ingful one- and two-sigma warning limits for
these IRT scores that can then be used to eval-
uate changes in functioning. For example, two

of three consecutive IRTs more than 6 days
apart indicate than an improvement has taken
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place, according to Decision Rule 2 presented
above. Likewise, four of five consecutive IRTs
greater than the one-sigma value (four) signals
a change in functioning. In clinical terms, this
indicates that the person was able to "regroup"
more quickly after losing inhibitory control
over a problematic behavior and was then able
to display another run of good days. This strat-
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egy was used successfully to evaluate drug treat-
ment programs by Mann, Charuvastra, and
Murthy (1984), who calculated the length of
time between relapses as an outcome measure.
It seems to offer promise in other areas as well
(see Johnson & Pennypacker, 1993, chap. 5, for
a discussion of IRTs per opportunity as a di-
mensional property of behavior).
The moving range chart of the IRT data for

Mr. X is presented in the lower panel of Figure
3. The out-of-control signals in this chart reflect
abrupt transitions from bad to good periods and
support the interpretation offered above, that
the periods from Days 4 through 11 and Days
23 through 30 are meaningful signals.

Another Application
The principles discussed above can be ap-

plied to analyze the data presented in the Ap-
pendix, which were used to evaluate the treat-
ment of severe pica displayed by Ms. Y, a 33-
year-old woman with severe mental retardation
who resided in a developmental center. The use
of physical restraints (a protective helmet and
special "posey" mittens to restrict hand move-
ments) was authorized as part of a behavioral
treatment plan that attempted to prevent the
ingestion of dangerous materials. This was ac-
complished by assigning a staff person to pro-
vide constant surveillance, thereby protecting
Ms. Y's safety. On two occasions in the year
prior to authorization of this plan, surgery was
necessary to remove large metal objects (as well
as a pair of surgical gloves) from her stomach;
Ms. Y had obtained these items by persistently
searching her environment for objects to swal-
low. Protective equipment was also used to con-
trol other self-destructive behaviors (repeated
attempts to pull off and swallow her fingernails,
self-injurious head banging, hitting herself with
her fists). These incidents occurred episodically
in spite of behavioral and pharmacological in-
terventions that were carried out in a specialized
treatment unit where she lived and attended day
programming. As required by state law, an in-
cident report was filled out each time restraints

were applied. This report documented the
length of time restraints were used and de-
scribed the circumstances that led to their ap-
plication. The second and third columns in the
Appendix reflect the data reported by each work
shift on the total duration and the number of
times that restraints were used each day.

Instead of analyzing specific target behaviors
(e.g., instances of pica or attempts to ingest for-
eign objects, head banging, nail pulling, etc.),
the use of protective equipment by staff was
selected as an outcome measure during a period
of baseline assessment in April. This was based
on the judgment of staff members who were
familiar with Ms. Y that different behavioral to-
pographies reflected similar management prob-
lems. Accordingly, an operational definition of
a severe behavioral incident was provided by the
use of restraints to control a problematic situ-
ation. This measurement strategy reflects an
emphasis on the system rather than the individ-
ual, given that factors other than Ms. Y's be-
havior might have contributed to the use of re-
straints on a particular occasion (e.g., the pres-
ence of certain objects in the setting, the judg-
ment of staff about the dangerousness of the
situation, etc.). However, eliminating the use of
restraints was a top priority of Ms. Y's treatment
plan. Therefore, monitoring changes in this
variable reflected progress towards attaining an
important clinical outcome. This approach to
treatment is consistent with the behavior engi-
neering model developed by Gilbert (1978),
which distinguishes behavior (i.e., the move-
ments of a person that can objectively be re-
corded) from accomplishments (defined in terms
of the tangible results or products of behavior).
In Gilbert's terms, this measurement strategy
seeks to monitor changes in performances of the
ecobehavioral system (see Morris & Midgley's,
1990, model described below) that includes the
client, the staff, and the physical setting in
which treatment takes place. The use of re-
straints is a measure of the competence of this
system in coping with the demands of Ms. Y's
challenging behaviors, given the resources that
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are available for treatment in a particular con-
text. Changes in performance were monitored
in this case by measuring relevant accomplish-
ments in reducing the use of restraints (e.g.,
number and duration of applications, length of
time between applications). The Appendix
shows that restraints were used 50 times during
the month of April, for an average duration of
45 min. No changes in medication or behav-
ioral treatment were made during this 30-day
period.

Daily frequencies for the number of times
that restraints were applied during the month
of April were used to construct the X and mR
charts shown in Figure 4. According to the de-
cision criteria illustrated above, Ms. Y's baseline
appears to be stable. All values in the X and
mR charts are in statistical control, and there
don't seem to be any changes in level or trend.
However, as with the frequency data presented
earlier for Mr. X (see Figure 2), there are prac-
tical limitations in using these control charts to
evaluate treatment outcomes. There are no
meaningful sigma limits below the central line
for the frequency chart shown in the lower pan-

el of Figure 5, because CL (1.67) minus one
sigma (1.80) is a negative value. Therefore, it is
necessary to obtain eight consecutive values be-
low the central line (frequencies of one or less)
before improvements can be reliably detected.
Furthermore, due to the day-to-day variability
in this time series, the upper control limit
(7.08) is quite high. This means that a daily
frequency of eight or more is necessary to detect
a worsening of behavior on a particular day.
The duration measures reported in the Ap-

pendix indicate that these values are highly re-
dundant in comparison with the frequency
data. This impression is borne out by the con-
trol chart for duration measures shown in the
upper panel of Figure 5, which also indicates
that the baseline for Ms. Y is stable (i.e., in
statistical control). The moving range chart for
the duration measures reported in the Appendix
is also in statistical control, as shown in the low-
er panel of Figure 5.
The use of IRT as an outcome measure for

Ms. Y is illustrated in Figure 6, a control chart
of IRT scores computed for the shift values
shown in the Appendix. Here the IRT score for

AA/\
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INo/v
Figure 5. Control charts for the duration (in minutes) of use of restraints with Ms. Y each day, as shown in the

Appendix. Both the chart for individual values (upper panel) and the moving range chart (lower panel) are in statistical
control.

400-

*° 200-

a -

0-

400 -
co
0

Cu
a, 200-
C

0

V w"*j\&

. ~~~~~~~~~~~334

D 5I
Day 5 10

A 75

20 25 30

"I,.'
QQ .

r--\ 0 It\ 101
V

362

OL-"14i

A



STATISTICAL PROCESS CONTROL

15

10

5.

363

4/15 to 4120

II1R N 1A71
Event 10 20 30 40 50

Figure 6. Control chart for the IRTs calculated for the data on the use of restraints shown in the Appendix, according
to procedures described in the text. The circled value corresponds to a prolonged interval (over 13 consecutive work
shifts) when restraints were not used between April 15 and April 20.

a particular incident refers to the number of
consecutive work shifts between successive ap-

plications of restraints. On occasions when it
was necessary to use restraints more than once

per shift, it was assumed that they were equally
spaced throughout the shift, because informa-
tion was not available indicating when restraints
were applied in real time. For example, on April
1, restraints were applied three times on the day
shift for an IRT of 0.33 for each occurrence. If
only one application was necessary per shift, it
was assumed to occur at the end of the shift, as

a simplifying assumption so that IRTs could be
computed consistently. For example, a value of
1 was assigned for the occurrence on the eve-

ning shift of April 1. The next application of
restraints (on the day shift of April 3) received
an IRT of 5. The X control chart for these IRT
values is presented in Figure 6. This chart calls
attention to a prolonged interval when re-

straints were not used (from the end of the eve-

ning shift on April 15 through the end of the
day shift on April 20). This period of improved
functioning (over 13 consecutive shifts when re-

straints were not needed) was not apparent in
the frequency chart shown in Figure 4, again
illustrating an advantage of the constructional
approach to treatment. The control chart for
IRT values directs the clinical team to look for
explanations (special, assignable causes) to ac-

count for this period of improved functioning
that might be incorporated into Ms. Y's treat-

ment plan. Parsonson and Baer (1986) recom-

mended a similar strategy, observing that "an
analysis of baseline, to see what it contains that
sometimes accomplished what the researcher in-
tends to accomplish later with a specific inter-
vention, may show the researcher an even better
intervention" (p. 171).
As noted previously, applied behavior ana-

lysts have regarded rate measures as the best in-
dicator of response strength (see Barrett et al.,
1986; Johnston & Pennypacker, 1993). For
those more comfortable with this unit of anal-
ysis, IRT scores can be converted to instanta-
neous rates by taking the reciprocal of IRT (i.e.,
instantaneous rate = 1/IRT). These instanta-
neous rate scores are displayed on the control
chart shown in Figure 7. None of the individual
values are above the upper control limit of 4.92
computed for this control chart. However, dur-
ing the day shift on two occasions (April 9 and
April 26), three consecutive instantaneous rate

measures exceeded the two-sigma warning limit
of 3.87. This suggests that special influences
may have been present on those days. The SPC
problem-solving tools described below might be
helpful to a clinical team in determining which
factors might have contributed to the high rates

reported on those two shifts.

SPC Problem-Solving Tools
Several procedures have been described in the

SPC literature (see Gitlow & Gitlow, 1987,

E

a)
0
0.
0)
a)
IL

C



AL PFADT and DONALD j WHEELER

Day Shift 4/19 Day Shift 4/26 4.92

_~~~~~~._.._.._.._.._.._.. e...._.._.._.. .._.._.._.._.._.._.._._.

A- 7 0 0 / \ \ t t t~~~~t 1t 1 tA / ; Tut~~ 1.77

j~~~~~~~~~~~~~ I 7,T ,1 ~lU W llu YIl I \

Events 10 20 30 40 50
Figure 7. Control chart for instantaneous rate (/IRT) values shown in the Appendix. Circled values exceed the

two-sigma line (3.87) for the day shift on April 19 and April 26; these were used to identify clusters of values (two of
three consecutive values) that represent potential signals.

chap. 5; Kane, 1989, Part II, chap. 8-13; Py-
zdek, 1989, chap. 7) that might be relevant for
applied behavior analysts interested in identi-
fying the causes of erratic performance. These
data-based problem-solving tools include Pareto
diagrams, flowcharts, and scatter plots or his-
tograms to identify variables that might be re-

sponsible for variation that could be better con-

trolled in order to improve product perfor-
mance or to enhance quality control. Each will
be described briefly here as they might be ap-

plied in clinical settings as adjuncts to more tra-

ditional functional analytic strategies with sim-
ilar purposes. More detailed descriptions ofhow
to adapt these procedures for use in human ser-

vice organizations can be found in Albin (1992)
and Mawhinney (1992).
The problem-solving tools mentioned above

can all be regarded as different approaches to

constructing cause-and-effect diagrams, in
which the basic intent is to identify all of the
potentially relevant influences that contribute to

a problematic situation (either a specific target
behavior or a particular type of dysfunction). A
generic fishbone diagram (also known as an Ish-
ikawa diagram) may provide a useful organizing
framework to focus the group's problem-solving
efforts, but team members should be free to fill
in the specifics for each branch on the tree

themselves. For the purpose of analyzing behav-
ior problems, the categories of an ecobehavioral

model described by Morris and Midgley (1990)
might be helpful in stimulating group explora-
tion of the universe of possible influences that
could contribute to maladaptive functioning.
Morris and Midgley identified five types of in-
fluence (person variables, the stimulus environ-
ment, a historical context, the media of contact,

and the current context) to be considered in
analyzing a particular behavior. These variables
represent varying degrees of complexity within
the interbehavioral field. The use of histograms,
scatter plots, and Pareto charts represents a

more quantitative approach to the analyses of
behavior problems, analyses that use frequency
counts of specific components of a problem to

investigate potential causes of the variability ob-
served. These are similar to the guidelines for
conducting a behavioral analysis described by
Groden (1989), among others. The use of scat-

ter plots to explore associations between vari-
ables that might not be apparent by inspecting
the frequency X time plot used to construct a

running record has been recommended by
Touchette, MacDonald, and Langer (1985) for
analyzing behavioral data. Likewise, Haring and
Kennedy (1988) have recommended a graphic
display of task-analytic data that permits a more

fine-grained analysis of the errors that contrib-
ute to defective task performance. A less tech-
nical introduction to this topic and the other
graphic problem-solving procedures discussed
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above is provided by Moran, Talbot, and Ben-
son (1990). Detailed examples of how to use
the tools of SPC for planning and solving prob-
lems within human service organizations to im-
plement the principles of total quality manage-
ment can be found in Albin (1992). Change
agents interested in restructuring the chain of
command so that an organization's philosophy
is more conducive to the application of SPC for
clinical decision making will find Albin's appli-
cations of Gilbert's (1978) performance engi-
neering matrix particularly helpful (as illustrat-
ed below).

INCORPORATING SPC INTO
ROUTINE CLINICAL PRACTICE

It has been our experience that SPC makes
demands on both workers and management.
Leaders within an organization must create a
climate that empowers both of these groups to
respond appropriately to the orderly accumu-
lation of knowledge that is made possible by the
systematic use of the data-analytic and problem-
solving tools we have described in this article.
If the metacontingencies (Glenn, 1991; Ma-
whinney, 1992) operating within a particular
organization do not result in sufficiently rein-
forcing consequences whenever action is taken
to correct problems uncovered by applying
these tools, their use will become aversive and
these procedures will gradually be eliminated.
This is not because SPC is overly labor inten-
sive. For example, a hand-drawn version of the
control charts shown in Figure 2 was completed
in less than 30 min, including time spent cal-
culating control limits and inspecting the graph
to identify data points that were out of statis-
tical control. However, if adequate technical
and support systems have not been established
to allow workers to correct the problems iden-
tified (whenever this is possible), then this will
be seen as "busy work" that is neither produc-
tive nor in the best interests of the customer
(i.e., the clients served by the agency).
We have previously noted that Deming's

(1986, 1993) management philosophy has been
recognized as a means for creating an organi-
zational culture that is committed to making
these types of data-based decisions. Saunders
and Saunders (1994) have analyzed Deming's
management philosophy from a behavior-ana-
lytic perspective and have concluded that "in-
stituting change through SPC methods
(changes that later can be said to reflect adher-
ence to Deming's 14 points) results in bringing
workers and managers into more direct contact
with the reinforcement contingencies operating
on the manufacturing process" (p. 121). This
same outcome could be achieved in health care
settings if leaders were able to make SPC an
integral part of the decision-making process, us-
ing the plan-do-study-act cycle described by
Scherkenbach (1991) as an integrating frame-
work. The planning stage of this cycle consists
of four steps: (a) identify current opportunities
for improvement, (b) document the present
process, (c) create a vision for the improved pro-
cess, and (d) define the scope of an initial small-
scale improvement effort. During the next (do-
ing) stage, a pilot project is carried out in a
controlled setting over a reasonably long inter-
val to encounter all relevant obstacles to full-
scale implementation. The results are studied
carefully during the next stage, leading to an
accumulation of knowledge about the unin-
tended as well as the intended consequences of
the intervention. Finally, during the action
stage, this knowledge is applied to modify the
plan by introducing new resources to correct
problems identified by the clinical team. The
entire cycle is repeated at the next improvement
opportunity, resulting in an iterative process
that leads to continual improvement if the or-
ganizational context includes sufficient re-
sources and a commitment from top-level man-
agement to act appropriately on the informa-
tion uncovered. This data-based approach to
decision making is consistent with the goals of
applied behavior analysis. Both advocate the de-
velopment of a plan of action based on a thor-
ough analysis of a problematic situation and the
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use of corrective feedback provided by the out-
comes achieved to make appropriate modifica-
tions that are effective in accomplishing the in-
tended objectives.
A troubleshooting guide adapted from Gil-

bert's (1978) behavior engineering matrix,
which was used by Albin (1992) to identify po-
tential obstacles to the implementation of qual-
ity improvement efforts in human service or-
ganizations, provides a useful framework for
considering the types of environmental supports
and behavior repertoires that would promote
the use of SPC data-analytic and problem-solv-
ing tools for clinical decision making in applied
settings. In this section, we will consider how
some dimensions of Gilbert's behavior engi-
neering matrix may suggest strategies that facil-
itate the use of control charts in applied set-
tings. Environmental supports refer to the char-
acteristics of a work setting that management
must create and maintain to accomplish desired
outcomes. The three broad categories of envi-
ronmental supports relate to (a) how informa-
tion is presented to workers in the form of data,
(b) what instruments are available to facilitate
the use of control charts, and (c) what moti-
vational conditions have been established to re-
inforce desired performance. In order to use
control charts appropriately, workers must have
sufficient data (made available through training
manuals and feedback from experienced super-
visors about how current performance compares
to established exemplars) as well as adequate re-
sources (e.g., materials and equipment) to chart
data efficiently. As noted previously, control
charts can be done by hand using standardized
forms (sample forms are available from SPC
Press, Inc., 5908 Toole Drive, Suite C, Knox-
ville, TN 37919) without a large investment of
time and effort. However, choosing the correct
control chart for variable or attribute data in a
particular application may require the advice of
a statistical consultant who is familiar with the
assumptions that must be met in order to justify
the use of certain mathematical models (e.g.,
Poisson distributions) to estimate population

parameters (measures of central tendency and
dispersion) from the statistics computed from
the sample data. Professional training is re-
quired to set up control charts, but they can
usually be maintained by staff members with a
high school education. This brings workers into
direct contact with clinical data and enables
them to share information with other team
members about special circumstances that may
have been associated with values that are out of
statistical control. In this manner, the control
chart becomes a living document that embodies
the "social memory" of a work group, providing
a historical record of the team's decision-making
process (see Wheeler, 1986, for an industrial ex-
ample).

There are three components of a worker's
personal repertoire of behavior (knowledge, ca-
pacity, and intrinsic motives) that must be pres-
ent in order for control charts to be used effec-
tively for clinical decision making. The concep-
tual understanding and technical skills required
depend on the complexity of the application
and the degree of supervisory support available.
Selection of clinically useful target behaviors
and measurement strategies requires proficiency
in applied behavior analysis (see Johnston &
Pennypacker, 1993) as well as experience in
SPC. However, after issues about measurement
strategies and tactics have been decided, staff
members can be given a great deal of respon-
sibility in maintaining control charts for a par-
ticular client. This involvement in the decision-
making process provides a source of motivation
for workers to use control charts that may con-
tribute to pride in workmanship, a principle
stressed by Deming (1986, 1993) as important
for the successful implementation of SPC in an
organization. The use of extrinsic motivation
(extra pay, bonuses) to reward workers for using
control charts is considered to be counterpro-
ductive by Deming because it detracts from this
pride of workmanship, although this might be
considered to be a questionable assumption by
some applied behavior analysts (see Mawhinney,
1992).

366



STATISTICAL PROCESS CONTROL 367

The capacity of workers to use control charts
in some applied settings can be enhanced by the
use of computer programs that handle large da-
tabases efficiently. However, some commercially
available programs do not compute control lim-
its correctly. Use of computer graphics packages
might contribute to a tendency to value the ap-
pearance of a control chart over its clinical util-
ity and might alienate workers who do not
know how to use these programs. It is impor-
tant to emphasize that the clinical utility of con-
trol charts derives from their ability to help
workers distinguish patterns of variation due to
special (assignable) causes from variation due to
common causes. Having control charts readily
available so that staff members can contribute
their knowledge of whatever factors may have
influenced data points that are out of statistical
control by making notations directly on the
charts greatly facilitates the ability of the clinical
team to respond appropriately. This helps to
avoid superstitious decision making, where ac-
tion is taken on the first data point that appears
to be different from others in a time series with-
out first determining if it truly is a signal or
merely reflects noise in the system. The orderly
accumulation of knowledge that is made pos-
sible by use of control charts as part of the plan-
do-study-act cycle provides a health care orga-
nization with a means for continually improv-
ing the quality of services provided to its cus-
tomers.

In summary, SPC problem-solving strategies
that employ cause-and-effect diagrams, scatter
plot and histogram analysis, Pareto diagrams,
and brainstorming techniques may contribute
to the analysis of how various elements in the
individual's social ecology contribute to clinical
dysfunction in the same manner that these pro-
cedures currently facilitate an exploration of the
systems variables that contribute to defect pro-
duction through an analysis of work processes.
By systematically including information provid-
ed by all staff members who participate in clin-
ical teams, the use of SPC in health care settings
may enhance the quality of treatment provided

to individuals with challenging behaviors. A
similar conclusion was reached by Mawhinney
(1987), who examined the application of SPC
methodologies in organizational behavior man-
agement and noted that "SPC should help us
attack more complex performance management
systems and reinforcement systems" (p. 4).
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APPENDIX
Different formats for recording incident data on the use of protective equipment to control the emotional outbursts
of a young woman with severe mental retardation. Duration is the length of time that restraints were used during

each shift. Frequency is the number of times that restraints were applied during each shift. Interresponse time is the
number of work shifts between incidents.

Inter- Inter-
response Instanta- response Instanta-

Duration time neous rate Duration time neous rate
Date and shift (in minutes) Frequency (IRT) (1/IRT) Date and shift (in minutes) Frequency (IRT) (1/IRT)

April 1 D 85 3 0.33 3.00 April 7 D 170 3 5.33 0.19
0.33 3.00 0.33 3.00
0.33 3.00 0.33 3.00

E 30 1 1.00 1.00 E 0 0
N 0 0 N 0 0

E=115 Y=4 E=170 Y=3
April 2 D 0 0 April 8 D 0 0

E 0 0 E 0 0
N 0 0 N 0 0

O=o O=o O=o O=o
April 3 D 55 1 5.00 0.20 April 9 D 250 4 5.25 0.19

E 0 0 0.25 4.00
N 0 0 0.25 4.00

Y.=55 5=1 0.25 4.00
E 40 1 1.00 1.00
N 0 0

=290 5
April 4 D 30 1 3.0 0.33 April 10 D 65 2 1.50 0.67

E 0 0 0.50 2.00
N 0 0 E 0 0

E=30 =1 N 0 0
;=65 =2

April 5 D 165 3 2.33 0.43 April 11 D 90 2 2.50 0.40
0.33 3.00 0.50 2.00
0.33 3.00 E 0 0

E 0 0 N 0 0
N 0 0 i=90 ;=2

,=165 Y.=3
April 6 D 0 0 April 12 D 55 1 3.00 0.33

E 0 0 E 0 0
N 0 0

N 0 0 =55 =1
;=O O=O
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APPENDIX
(Continued)

Inter- Inter-
response Instanta- response Instanta-

Duration time neous rate Duration time neous rate
Date and shift (in minutes) Frequency (IRT) (1/IRT) Date and shift (in minutes) Frequency (IRT) (1/IRT)

o o
o 0
o o

; = O : = O

April 22 D

E
N

100 2 5.00 0.18 April 23 D
0.50 2.00 E

0 0
0 0

1 = 100 I = 2

0 0
30 1
0 0

: = 30 : = 1

0 0
0 0
0 0

Y=0 Y=0

0 0
0 0
0 0

Y=0 y=0

4.00 0.25

N

April 24 D

E
N

April 25 D

E
N

April 26 D

E

N

0 0
0 0
0 0

1 = O ; = 0
0 0
0 0
0 0

Y. = O ; = O
85 2 13.50 0.07

0.50 2.00
70 2 0.50 2.00

0.50 2.00
0 0

Y. = 155 Y. = 4

0 0
0 0
0 0

Y, = O Y, = O

April 27 D
E
N

April 28 D
E
N

April 29 D

E

N

April 30 D
E
N

90 2 4.50 0.22
0.50 2.00

0 0
0 0

Y. = 90 Y. =2
40 1
0 0
0 0

Y. = 40 : =1

3.00 0.33

155 3 2.33 0.33
0.33 3.00
0.33 3.00

0 0
0 0

I = 155 : = 3
140 3 2.33 0.43

0.33 3.00
0.33 3.00

0 0
0 0

1= 140 X=3
220 4 2.25

0.25
0.25
0.25

45 2 0.50
0.50

0 0

:=265 ; = 6

0.44
4.00
4.00
4.00
2.00
2.00

0 0
0 0
0 0

E=0 S;=o
0 0

30 1
0 0

=30 1 = 1
78 2 1.50 0.67

0.50 2.00
90 2 0.50 2.00

0.50 2.00
0 0 0.50

1 = 168 I = 4

30 1
0 0

0 0

Y. = 30 1 =1

2.00 0.50

370

April 13 D
E
N

April 14 D

E
N

April 15 D
E
N

April 16 D
E
N

April 17 D
E
N

April 18 D
E
N

April 19 D
E
N

April 20 D

E

N

April 21 D
E
N


