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Arginine-specific cysteine proteinases (gingipains-R) from periodontopathic Porphyromonas gingivalis
cleaved CD14, a bacterial pattern recognition receptor, on human gingival fibroblasts (HGF). Consequently,
gingipains-R reduced lipopolysaccharide-induced interleukin-8 production by HGF, indicating that gingi-
pains-R inhibited CD14-dependent HGF activation and are involved in immune evasion by the bacterium in
periodontal tissues.

Porphyromonas gingivalis has been implicated as a principal
bacterium in adult periodontitis (8, 30) and possesses a number
of putative virulence factors such as proteolytic enzymes (3). It
produces two cysteine proteinases specific for Arg-X (50 and
95 kDa) or Lys-X (105 kDa) bonds, which are referred to as
arginine-specific gingipain (Rgp) and lysine-specific gingipain
(Kgp), respectively (2, 23). The 95-kDa high-molecular-mass
Rgp (HRgpA) differs from the 50-kDa Rgp (RgpB) in that the
protein noncovalently complexes with the hemagglutinin/adhe-
sin domain in the same manner as Kgp. It has been shown that
gingipains play a critical role in the onset of inflammation
through a wide variety of biological activities (9–17, 19, 20, 32,
38).

CD14, a 55-kDa glycosylphosphatidylinositol (GPI)-an-
chored membrane protein, functions as a pattern recognition
receptor for many bacterial components such as lipopolysac-
charide (LPS) in the innate immune response (27, 39); e.g.,
CD14 mediates sensitive responses to LPS by interacting with
Toll-like receptor 4 (TLR4) and MD-2, a molecule associated
with TLR4 (25, 28, 31, 35). CD14 is expressed strongly on
monocytes (5, 36) and weakly on neutrophils (7) and human
gingival fibroblasts (HGF) (33, 37), all of which exist in peri-
odontal tissue with periodontitis, indicating that these cell
types are the first line of defense against invasive bacteria
triggered by the bacterial components via CD14 in periodontal
tissues.

We have recently shown that the gingipains preferentially
cleave CD14 on human monocytes and consequently inhibit a
CD14-dependent monocyte activation pathway triggered by

LPS (32), suggesting that P. gingivalis could evade immune
surveillance controlled by monocytes. Periodontitis is clinically
characterized as inflammation in periodontal connective tissue,
in which the dominant cell type is HGF. HGF may actively
participate in the inflammatory response by producing various
cytokines (34) and chemokines such as interleukin-8 (IL-8)
(33) which are released from HGF via CD14. Therefore, we
examined the effect of gingipains on HGF functions.

We first examined the effect of gingipains purified from P.
gingivalis HG66 culture supernatant (23, 26) on the expression
of CD14 by HGF by using flow cytometry (32). HGF were
prepared from the explants of normal gingiva obtained from
patients who gave informed consent (33). When HGF were
treated with 0.03 to 0.3 �M HRgpA and RgpB for 30 min, the
expression of CD14 on the cell surface was significantly (P �
0.01) reduced (Fig. 1). The expression was almost completely
abolished by 60 to 120 min of treatment with 0.1 and 0.3 �M
concentrations of both HRgpA and RgpB. By contrast, Kgp
exhibited much less activity for the reduction than Rgps. An
Rgp-specific inhibitor, Phe-Pro-Arg-chloromethyl ketone
(FPR-cmk) (32), efficiently inhibited HRgpA activity at a 10-
fold molar excess (Table 1). By contrast, a Kgp-specific inhib-
itor, benzyloxycarbonyl-Phe-Lys-chloromethyl ketone (32), ex-
erted only a marginal effect, indicating that the enzymatic
activity of Rgp is required for the elimination of CD14.
HRgpA differs from RgpB in that it has a hemagglutinin/
adhesin domain. This domain binds to fibrinogen, fibronectin,
and laminin (24) and reacts with phospholipids of the plasma
membrane in a Ca2�-dependent manner (15). This could be
the reason that HRgpA cleaved CD14 more efficiently than
RgpB, i.e., because the domain might increase the affinity of
the enzyme ligand. HRgpA at 1.0 �M still effectively reduced
CD14 expression in the presence of 20% freshly isolated hu-
man serum (Table 1), indicating that high doses of gingipains
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are resistant to inhibitors in serum. This observation is sup-
ported by the fact that serum is ineffective in preventing the
Rgp activation of prekallikrein (11), factor X (14), and protein
C (9).

Expression of CD59 and CD157, two other GPI-anchored
proteins (4, 18), as well as CD40 was only slightly decreased by
treatment with HRgpA (Fig. 2A), which eliminated the possi-

bility that Rgp preferentially cleaves GPI-anchored molecules
on the cell surface. The expression of TLR4 as well as of major
histocompatibility complex class I molecules was unchanged
after the treatment, although there are 21 Arg and 9 Lys sites
and 29 Arg and 35 Lys sites on CD14 and TLR4 amino acid
sequences, respectively (6, 29). These findings indicate that
HRgpA is structurally inaccessible to TLR4 and that at least
the functional anti-TLR4 binding site is conserved. After treat-
ment, CD14 was gradually reexpressed on the cell surface upon
reculture and more than 80% of the initial value was recovered
at 48 h (Fig. 2B).

Immunoblot analysis using anti-human CD14 polyclonal an-
tibody (32) showed that pretreatment of the purified mem-
brane fraction isolated from HGF (33) with HRgpA markedly

FIG. 1. Kinetics of CD14 reduction on HGF caused by gingipain
treatment. HGF were treated with the indicated concentrations of
HRgpA, RgpB, and Kgp for the indicated times at 37°C. After treat-
ment, cells were washed with phosphate-buffered saline and stained
with anti-human CD14 MEM-18 or isotype-matched MAb and ana-
lyzed by flow cytometry. Representative findings of three independent
experiments are expressed as the means of the mean fluorescence
intensities (MFI) (% of control) (32). ��, P � 0.01 versus respective
untreated cells at each time point by a one-way analysis of variance.

FIG. 2. Preferential reduction of CD14 on HGF by HRgpA and
reexpression of CD14 after HRgpA treatment. HGF were treated with
0.3 �M HRgpA for 30 min. (A) CD14, TLR4, CD40, CD59, CD157,
and major histocompatibility complex class I (MHC class I) expres-
sions on HGF were measured by flow cytometry. Representative find-
ings of three independent experiments are expressed as the means of
the MFI (% of control). ��, P � 0.01 versus respective untreated cells.
(B) After being washed with medium three times, cells were recultured
in alpha-minimum essential medium supplemented with 10% fetal calf
serum for the periods indicated. After being harvested by trypsiniza-
tion, cells were stained with MEM-18 and analyzed by flow cytometry.
The findings are expressed as percentages of the MFI of the control
cells indicated versus those for the same time points without pretreat-
ment with HRgpA. Representative findings of three independent ex-
periments are expressed as the means of the MFI (% of control). ��,
P � 0.01 versus respective untreated cells at each time point. Error
bars, standard deviations.TABLE 1. Effect of gingipain-specific inhibitors and serum on the

reduction of CD14 on HGF induced by HRgpAa

HRgpA
concn (�M) Inhibitor Inhibitor

concn
Binding of

MEM-18 (%)b
%

Inhibitionb

0.3 25.7 � 0.2
0.3 FPR-cmk 3 �M 97.6 � 0.4 96.7��
0.3 Z-FK-cmkc 3 �M 43.7 � 4.6 24.5��
1.0 0.4 � 0.4
1.0 Human serum 1% 0.9 � 0.6 0.5
1.0 Human serum 10% 16.9 � 0.2 16.6��
1.0 Human serum 20% 28.4 � 0.4 28.1��

a HRgpA at a dose indicated was pretreated with or without gingipain-specific
inhibitors or freshly isolated human serum at the indicated concentrations for 10
min at room temperature. HGF were then treated with the supernatants for 30
min at 37°C.

b After the treatment, cells were stained with MEM-18 or isotype-matched
MAb and analyzed by flow cytometry. Representative findings of three indepen-
dent experiments are expressed as the means of the MFI and expressed as
percent binding and percent inhibition. ��, P � 0.01 for combined HRgpA and
RgpB treatment versus HRgpA treatment alone at 0.3 and 1.0 �M, respectively.

c Z-FK-cmk, benzyloxycarbonyl-Phe-Lys-chloromethyl ketone.
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degraded CD14 into multiple CD14 fragments (Fig. 3), indi-
cating that the reduction of CD14 on HGF induced by gingi-
pains resulted from direct proteolysis and that CD14 proteo-
lyzed by gingipains had no ability to function as the soluble
form. Gingipains can also degrade soluble CD14 (32). There-
fore, it is conceivable that gingipains down-regulate CD14-
mediated cell activation in vivo.

In support of this hypothesis, preincubation of HGF with 0.3
�M HRgpA for 30 min markedly suppressed IL-8 production
triggered by 10 ng of LPS/ml (Escherichia coli O55:B5; Sigma),
as determined by enzyme-linked immunosorbent assay (22)
(Fig. 4). Pretreatment of 0.3 �M HRgpA with 3 �M FPR-cmk

for 10 min recovered IL-8 production. Anti-CD14 monoclonal
antibody (MAb) was used as a positive control. Furthermore,
preincubation of HGF with 0.3 �M HRgpA for 30 min did not
have any inhibitory effect on IL-8 production by HGF upon
stimulation with phorbol myristate acetate (data not shown).
In the present study, stimulation of HRgpA-treated HGF with
LPS after removal of residual HRgpA by washing (Fig. 4)
eliminated the possibility that the decrease in IL-8 production
was due to degradation of IL-8 by HRgpA (21). IL-8 is one of
the major chemokines produced by HGF triggered by LPS via
CD14 (33). IL-8 triggers both neutrophil degranulation and
respiratory burst and enhances phagocytosis in addition to
chemotactic activity (1, 25), indicating that reduced production
of IL-8 may be important for attenuating neutrophil function.
Collectively, the data reported here indicate that Rgps down-
regulates CD14-mediated cell activation of HGF and further
support the hypothesis of the immune evasion mechanism of P.
gingivalis in periodontal tissues.
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