
1190 VOLUME 113 | NUMBER 9 | September 2005 • Environmental Health Perspectives

Research

Few researchers doubt that lead exposure has
significant health consequences at levels below
those considered medically acceptable just
decades ago, although there is still debate over
what levels of lead exposure, if any, can be con-
sidered harmless. Key to this debate is deter-
mining the form of the dose–response function
describing how the amount of exposure is
related to the magnitude of the health effect.

There are two basic forms of the dose–
response function for lead: a simple linear
model, in which the increase in health effect is
a linear function of increasing blood lead con-
centration (BPb), and a nonlinear model, in
which the amount of health effect change
attributable to lead changes according the
region of the dose–response curve studied. A
special case of the nonlinear dose–response
function is a threshold model in which the
response to lead decreases as a function of
decreasing dose until it reaches a lead dose
below which there is no further detectable
change in health. An alternative threshold
model is one in which the response to lead
changes as a function of increasing dose until
an upper lead bound is reached, at which point
the increase in health damage exceeds predic-
tions, as in cases of high doses producing organ
damage.

Although epidemiologists have become
increasingly sophisticated in construction and
diagnosis of models describing their data, as a
whole, we generally pay much less attention to
systematically and rigorously addressing the

specification of the dose–response function. A
number of public health issues depend on
adequately specifying the form of the dose–
response function for lead, chief among them
regulatory action.

Cost–benefit analyses should form the
backbone of regulatory decisions regarding
permissible exposures or background concen-
trations of toxic substances in both population
and occupational settings. In such an ideal
world, the savings in health care, disability,
and productivity gain realized from reducing
exposure to a particular substance are com-
pared to the cost required to achieve that
reduction in exposure. Policy analysts seek the
“sweet spot,” where the marginal costs of lead
reduction equal the marginal benefits (i.e.,
where the slopes of the cost function and ben-
efits function are equal) (Pacala et al. 2003).
Even if in the real world less easily quantifiable
factors affect regulatory decisions, all parties to
regulation have some notion of costs and ben-
efits in mind when presenting their cases to
regulatory agencies.

One recent publication (Grosse et al.
2002) presented data on the economic benefits
of nationwide lead reduction due to childhood
IQ (intelligence quotient) loss attributable to
lead over the last 25 years. These authors con-
servatively used a linear dose–response func-
tion of lead–IQ as part of their model, stating
that there was insufficient evidence to deter-
mine the shape of the dose–response function.
The economic savings predicted by their

model were in the range of hundreds of bil-
lions of dollars over the lifetime of a yearly
birth cohort.

The lead–health dose–response function
selected for the benefits model has clear impli-
cations for policy decisions based on it. A
threshold model suggests that once reductions
of population level of lead reach the threshold,
further lowering of lead would have no benefi-
cial health or economic consequences. The
current Centers for Disease Control and
Prevention (CDC) action limit of > 10 µg/dL
for children (CDC 1991) would be justifiable
on health grounds alone if there were a thresh-
old somewhere near that limit. A linear model
suggests that equal reduction in population
BPb is accompanied by equal reduction in
health consequence from any starting level of
lead. Under a linear dose–response model,
even though the health benefit would continue
to increase with further population lead reduc-
tion, the present CDC action limit might be
justifiable on economic grounds if the cost of
further population BPb reduction far exceeded
the recoverable economic benefits. A nonlinear
model, especially one in which health benefits
are greater for lead reduction nearer the popu-
lation’s zero lead point than farther from it,
would argue for further reduction in popula-
tion lead levels and CDC action limits if the
accelerated health benefit at lower lead levels
exceeded the increased costs of lead reduction
to those levels.

In this article, we present a critical exami-
nation of the dose–response function in a
widely studied area of epidemiologic research
with lead: childhood IQ. We present easily
accessible statistical techniques useful for
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deciding among alternative dose–response
functions and for testing whether residual con-
founding resulting from possible misspecifica-
tion of model control variables affects the
dose–response function. We apply our dose–
response modeling results to the benefit model
noted above to calculate changes in economic
benefits realized from using a statistically ade-
quate dose–response function. The results are
placed in the context of public health policy
and regulation.

Materials and Methods

Data sets. Eight prospective studies of lead
exposure have used child IQ or develop-
mental index as the outcome measure, with
outcome measured at least to 5 years of age,
of which seven (Baghurst et al. 1992;
Bellinger et al. 1992; Canfield et al. 2003;
Dietrich et al. 1993; Ernhart et al. 1989;
Schnaas et al. 2000; Wasserman et al. 1997)
agreed to participate in a pooled analysis
study; combining the data sets produced a
study sample of 1,333 with a 0.1–71.7 µg/dL
range of lead exposure (Lanphear et al. 2005).
All studies producing data for the pooled
analysis were approved by an appropriate insti-
tutional review board. Child IQ as measured
by one of several versions of the Wechsler
Intelligence Scales for Children (Wechsler
1967, 1974, 1981, 1991) around 7 years of age
was regressed on different indices of BPb (child
BPb from 6 to 24 months, peak BPb during
the first 7 postnatal years, average BPb over the
same time, and contemporary BPb) in multiple
regression models controlling for maternal IQ
and education, quality of the home environ-
ment and child–caretaker interaction [Home
Observation for Measurement of the
Environment (HOME); Caldwell and Bradley
1984], birth weight, and study site. Other con-
trol and confounding variables, such as child’s
sex, tobacco exposure during pregnancy, alco-
hol use during pregnancy, maternal age at
delivery, marital status, and birth order, had
no significant effect in the models, did not sig-
nificantly alter the IQ–lead relationship, and
were not included in the final models. All lead
variables in the models were natural-log trans-
formed. All lead variables had highly signifi-
cant effects on IQ (p < 0.0005) in the models.

We selected BPb measured contemporane-
ously with IQ for further analysis using the
pooled data set [adjusted estimate of natural-
log lead (95% confidence interval; CI) on IQ =
–2.70 (–3.74 to –1.66)], because this was the
measure to which Lanphear et al. (2005)
devoted most attention, even though it had the
second smallest coefficient among the four
measures presented.

Statistical analyses. Multiple regression
modeling. The IQ data set was analyzed with
the original model specifications, including
log-transformed BPb, using multiple regression

analyses (STATA, version 8.2; Stata Corp.,
College Station, TX, USA). The IQ multiple
regression model was also respecified with a
linear lead term.

Specification tests for the functional form
of the lead variable (dose–response function).
The omitted variable test, or regression specifi-
cation error test (Ramsey 1969), statistically
tests change in model fit when any polynomial
transformation of the variable in question is
used in place of the original functional form of
the variable. To test whether the polynomial
form is superior to the original form of the
variable, a chi-squared test is constructed by
using the difference in two models’ chi-squared
value (or the difference in two times the log
likelihood of the two models), with the num-
ber of degrees of freedom determined by the
number of additional variables added to the
polynomial model. This is a maximum likeli-
hood evaluation of changes in model fit and is
a test of nested models, because the original
specification is nested within the polynomial
specification. Its principal disadvantage is that
it only tests whether a polynomial specification
is better than a simpler specification and does
not allow direct comparison of two non-nested
models each with a different specification, such
as linear and logarithmic. On the other hand,
it is easy to do even in the absence of “canned”
statistical routines and quickly indicates
whether the original variable specification can
be improved by adding polynomial terms.

An accessible approach for comparing vari-
able specification between two non-nested
models is the J-test (Davidson and MacKinnon
1981). It can be realized by first obtaining pre-
dicted values for two models, each with a dif-
ferent specification of the same independent
variable, and then adding the prediction of the
first model to the specification of the second
model and vice versa (Appendix). A clear indi-
cation in favor of one or the other specification
would occur when one of these prediction-
added models results in a significant value for
one specification of the variable and the other
prediction-added model results in a nonsignifi-
cant value. A disadvantage of this test is its low
power to detect a significant improvement in
variable specification. Hundreds or thousands
of observations might be needed if the differ-
ence between two alternative variable specifica-
tions is subtle or the variable is measured over a
limited range. Low power and limited range
are not limiting factors in the present study
(n = 1,333; BPb range, 0.1–71.7 µg/dL).

Testing for residual confounding. When
control or confounding variables either are
omitted or their functional form is mis-
specified, the resulting residuals in the model
could cause an alteration in the apparent func-
tional form of the dose–response relationship
(Becher 1992). In the case of IQ, not account-
ing for variables such as the number of other

family members, family socioeconomic status,
birth or childhood trauma or serious illness,
IQ of the father, or other variables that might
control subject IQ could alter the measured
form of the dose–response relationship for
lead. If these variables are not accounted for in
the experimental design by becoming part of
the inclusion/exclusion criteria or they are not
tested for and, where appropriate, included in
the models, they may contribute to residual
confounding of the dose–response curve.

Another potential cause of residual con-
founding occurs when the functional form of
included control or confounding variables is
not correctly specified. Because much statistical
modeling in epidemiology is performed using
some variant of generalized linear models (we
used least-squares regression), modelers may
assume that the linear specification of these
other variables is correct. For instance, a truly
nonlinear relationship between maternal and
child IQ that is mistakenly modeled as a linear
relationship, significant or not, will alter the
residuals of child IQ over different parts of the
maternal–child IQ relationship. Because the
dose–response curve for lead–IQ is based on
those residuals, this confounding can modify
the modeled dose–response relationship.

When residual confounding is caused by a
variable omitted from the design, there is little
remedy available except to redesign the study
and collect the data anew. Fortunately, we can
account for residual confounding when it is
due to misspecification of included variables.
Generalized additive models (GAM) (Hastie
and Tibshirani 1990) can use smoothing
spline functions, among other smoothers, to
fit continuous and ordinal independent vari-
ables to the dependent variable instead of pre-
determined linear fits as with linear regression
models. Depending on the number of degrees
of freedom allotted to the splines, the tech-
nique can follow complex nonlinearity in the
relationship between independent variables
and the dependent variable, nonlinearity that
might be difficult to account for by parametric
functions. The penalty for increasing the com-
plexity of the spline fit is the use of more
degrees of freedom in the model. GAM yields
no parameters readily summarizing the
relationship between independent variables
and the dependent variable. There is no dis-
advantage, however, if we want to use GAM
to characterize the possibly complex relation-
ships among independent control variables
and the dependent variable to avoid having
incorrect residuals affect the parametric dose–
response relationship, as has been previously
shown with simulations (Benedetti and
Abrahamowicz 2004). 

GAM allows calculation of the gain from
the spline fit over a linear fit by assessing the
increase in deviance of the fit of the linear
characterization of the variable compared with
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the spline fit characterization. Under the null
hypothesis that nonlinearity of the smoothed
function is an artifact, the gain is approxi-
mately a chi-squared distribution. Thus,
approximate probability values can be calcu-
lated for improvement of fit using the spline
function. A significant gain indicates that the
original linear or any other specification of the
variable was a poorer fit to the data than is the
spline fit. The procedure also gives a total
model gain and model gain significance value.

We used cubic-spline GAM modeling of
IQ. We modeled all continuous and ordinal
variables with cubic splines with 2, 3, and 4
degrees of freedom. We constructed three
alternative models based on the basic model
above. In the first series of GAM models, we
used untransformed BPb (linear BPb) spline
modeled with the same number of degrees of
freedom as the control variables. A significant
gain in the spline-modeled untransformed
BPb term would indicate that the original lin-
ear BPb specification could be improved
upon, after correcting for any nonlinearity in
the control variables.

In the second series of GAM models, we
substituted the natural-log–transformed BPb
variable for the linear BPb variable of the first
model, allowing the number of degrees of free-
dom of the spline fit to vary as in the first
model. An insignificant gain of the natural-
log–transformed lead variable would indicate
there was no improvement detected in the fit to
the dependent variable by spline modeling of
the log-transformed lead variable, correcting for
possible nonlinearity in the control variables.

Finally, the third series of GAM models
was constructed as above, except that the nat-
ural-log–transformed lead variable was held to
1 degree of freedom. This tested the original
natural-log specification of the lead variable in
a model where residual confounding from
possible misspecification of the control vari-
ables was corrected. Insignificant gains in the
other variables would suggest that their origi-
nal specifications were adequate. The size of
the lead coefficient was compared between
the third series and the original multiple
regression model to determine how much
residual confounding of misspecified control
variables affected the estimated size of the
relationship between lead and the health out-
come dependent variable.

All statistical procedures were carried out
using MATLAB (version 6.5.1; Mathworks,
Natick, MA, USA) and STATA 8.2.

The benefits model. We used a previously
published model (Grosse et al. 2002) of eco-
nomic benefits showing expected dollar sav-
ings produced by population lead declines in
the United States from 1976 through 1999
solely through increased population cognitive
ability as measured by lead effects on child IQ.
The model posits that the dollar gain in the
affected cohort is a simple product of reduc-
tion in BPb over the period (micrograms per
deciliter), the IQ–BPb slope (IQ per micro-
grams per deciliter), the earnings–IQ slope
(%), the present value of lifetime earnings of a
2-year-old child (in year 2000 dollars), and the
size of the 2-year-old cohort. Grosse et al.
(2002) used linear IQ–lead slopes of
0.185–0.323 IQ points for each 1 µg/dL, cal-
culated from published meta-analyses.

Instead of the linear IQ–lead slope, we
substituted the change in IQ expected over the
estimated 15.1 µg/dL decrease in population
lead in the United States, calculated by assum-
ing both a linear–linear and a log-linear
lead–IQ dose–response function using the
results of the pooled analysis presented above
and then recalculated the cohort benefit.

Results

Lead and IQ. Table 1 shows the lead coeffi-
cients of the different IQ models. Both linear
and natural-log lead specifications were highly
significant (Table 1). The omitted variable test
using the linear lead variable showed a signifi-
cant improvement in fit using the polynomial
lead specification (p = 0.020), whereas the
same test showed that a polynomial form of
the log lead variable offered no improvement
(p = 0.258).

The J-test showed that the log lead speci-
fication was still significant (p = 0.009) in a
model with the prediction from the linear
lead model added (Table 1). The alternative
model, the linear lead model with the predic-
tion from the log lead model resulted in an
insignificant linear lead variable (data not
shown). The results indicate that the log lead
specification described the data significantly
better than did the linear lead specification.

Tables 2–4 show the results of the GAM
analyses. Presented results are limited to the

2 degrees of freedom spline fits because they
usually resulted in the largest gains and lowest
probability values, although results were similar
for the 3 and 4 degree of freedom spline fits.
Spline fit gains are shown only for ordinal and
continuous variables because dichotomous
variables cannot be fit by splines and they
remain in the model unmodified.

In Table 2 the linear lead model is
entirely fitted by splines. Note that the gains
of all control variables were nonsignificant,
suggesting adequate specification of these
variables as linear. The gain of the linear lead
variable was highly significant (p = 0.006),
and the total gain of the model was also sig-
nificant (p = 0.0142). These findings indicate
that both the linear lead specification and the
model as a whole better fit the data when
splines were used than when the original vari-
ables were fit by linear regression. The results
from Table 1, that the linear lead term did
not adequately fit the data, was confirmed in
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Table 1. Lead coefficients for IQ as a function of model.a

Variable Coefficient 95% CI p-Value

Linear lead modelb –0.18 –0.26 to –0.10 < 0.0005
Natural-log lead modelc –2.70 –3.74 to –1.66 < 0.0005
Quadratic lead model 0.005 0.001 to 0.009 0.020
Quadratic-log lead model –0.25 –0.76 to 0.26 0.258
Ln(lead) with linear lead prediction –2.47 –4.30 to –0.63 0.009

(J-test) model
aControl variables for all models were HOME, birth weight, maternal IQ, maternal education, and site identification.
bModel with linear lead specification. cModel with natural-log lead specification.

Table 2. GAM results for IQ.

Probability
Variable dfa Gain of gain

HOME 2 2.621 0.106
Birth weight 2 2.587 0.108
Maternal IQ 2 0.596 0.440
Maternal education 2 0.961 0.327
Linear lead 2 7.467 0.006

df, degrees of freedom. Dichotomous variables (sites) not
shown: spline fit of linear lead specification and all inde-
pendent variables with two degree of freedom splines.
Total gain (nonlinearity χ2) = 14.232 (5.003 df), p = 0.0142.
aApproximate.

Table 3. Spline fit of natural-log lead specification
and all independent variables with two degree of
freedom splines.

Probability
Variable dfa Gain of gain

HOME 2 2.646 0.104
Birth weight 2 2.515 0.113
Maternal IQ 2 0.603 0.438
Maternal education 2 0.690 0.406
Natural-log lead 2 1.438 0.230

df, degrees of freedom. Total gain (nonlinearity χ2) = 7.894
(5.005 df), p = 0.1626. 
aApproximate.

Table 4. Spline fit of all independent variables with
two degree of freedom splines with original natural-
log lead variable modeled as is.

Linear Probability 
Variable dfa coefficient Gain of gain

HOME 2 4.51 2.740 0.098
Birth weight 2 1.48 2.523 0.112
Maternal IQ 2 4.91 0.609 0.436
Maternal 2 1.15 0.642 0.424

education
Natural-log lead 1 –2.62 — —

Abbreviations: —, not applicable (natural log lead was not
modeled as a spline function; thus, there is no gain or
probability of gain); df, degrees of freedom. Total gain
(nonlinearity χ2) = 6.514 (4.006 df), p = 0.1644. 
aApproximate.



Table 2, and the nonlinear (spline) fit of the
lead variable was not due to residual con-
founding with included variables.

Table 3 shows the same spline-fit model as
Table 2, but the natural-log lead term is substi-
tuted for the linear lead term. Once again, no
control variable showed significant gain using
the spline fit, the log-transformed lead variable
gain was also nonsignificant (p = 0.230), and
the model itself was not significantly improved
by fitting the variables with splines (p = 0.163).
There was no significant improvement in the
log-linear lead–IQ fit by adjusting for possible
departures from that specification.

In Table 4 the natural-log–transformed
lead variable is allowed to maintain its original
specification while the remainder of the vari-
ables are fit with splines. Comparison of the
coefficient of the log lead variable in this
model (β = –2.62) with the coefficient of the
multiple regression model (β = –2.70; second
coefficient from Table 1) further supports the
result that there was no important misspecifi-
cation of the control variables in the original
multiple regression model and the log-linear

form of the dose–response curve was not
affected by residual confounding of variables
included in the model.

These results strongly support the hypothe-
sis that an adequate description of the
dose–response curve for the effect of lead on
child IQ is log-linear, not linear, and that
residual confounding of the dose–response
specification by possible misspecification of
included control variables played no role. The
log-linear dose–response relationship is com-
pared with the linear dose–response relation-
ship in Figure 1.

Economic benefits model for lead–IQ.
Grosse et al.’s (2002) benefit model of eco-
nomic gains due to lead reduction effect on IQ
in the United States calculated the total year
2000 dollar savings as a result of the fall of BPb
over a 23-year period. Their model postulated
that the dollar benefit per cohort was benefit =
A × B × C × D × E, where A is the reduction in
BPb (micrograms per deciliter); B is the
IQ–BPb slope; C is the earnings–IQ slope (%);
D is the present value of earnings of a 2-year-
old child (in 2000 US dollars); and E is the size
of the 2-year-old cohort. We used their “base
case” figures as follows: C, 2.0; D, $723,000;
E, 3,800,000. In place of Grosse et al.’s A of
15.1 µg/dL, we used the difference in the nat-
ural-log BPb values in 1976 and 1999: BPb
(1976), 17.1 µg/dL; natural-log BPb (1976),
2.84; BPb (1999), 2.0 µg/dL; natural-log BPb
(1999), 0.69; difference in BPb (1976 –
1999), 15.1 µg/dL; and difference in natural-
log BPb (1976 – 1999), 2.15. In place of
Grosse et al.’s B of 0.257 IQ–BPb slope (every
decrease of 1 µg/dL BPb is associated with an
increase of 0.257 IQ points) used in their
“base case” analysis, we used the natural-log
lead coefficient calculated from the pooled
analysis study (Table 1, natural-log lead
model), 2.70 (every natural-log unit decrease
in BPb is associated with an increase of
2.70 IQ points). 

The original benefits model used uncer-
tainty in the reduction of BPb over the period
studied (variable A) and the IQ–BPb slope
(term B) to calculate upper and lower bounds
on economic benefits. We used only the

uncertainty in the IQ–BPb slope, calculated
from the coefficients presented in Table 1 and
from the reported meta-analysis Grosse and
colleagues used (Grosse et al. 2002; Schwartz
1994) in their base case analysis. We present
Grosse et al.’s original calculations based on
their linear lead coefficient, the new calcula-
tions based on a log-linear dose–response rela-
tionship with 95% CIs of B (–3.74 to –1.66),
and, for comparison, the dollar savings per
cohort based on the demonstrably incorrect
linear lead specification calculated from the
pooled analysis study, 0.18 (95% CI, –0.26 to
–0.10) (Table 1, linear lead model). These
results are presented in Table 5.

Savings estimated using the correct log-
linear dose–response relationship between
BPb and IQ are nearly 2.2 times those esti-
mated using a poorly fitting linear dose–
response relationship for the same decrease in
population BPb.

Discussion

Model specification. Diagnosing model specifi-
cation is an essential part of statistical model-
ing, particularly when ordinal and continuous
variables are part of the model. Compared
with the more commonly used diagnostic
tests for general linear models, such as testing
for distribution and homoskedasticity of
residuals, formal tests of the assumed func-
tional form of any independent variables
against the dependent variable are scarcely
reported in the epidemiologic literature. We
often do not address functional form issues
except as a by-product of adjusting residual
diagnostics. For example, most lead–IQ stud-
ies in children, especially in the last 20 years,
have used a natural-log–transformed lead
variable to normalize the residual distribution
of the model and correct for heteroskedasticity
of residuals.

Although issues of the functional form of
the lead–health effect relationship have occa-
sionally been raised in the literature, notably
by Schwartz (e.g., Schwartz 1994), and more
recently and extensively by Grosse et al.
(2002), it is common practice for the authors
of applications of these studies to economic
analysis to use linear approximations of the
lead effect over a limited range of BPb, as did
Grosse et al. (2002). Authors have not extrap-
olated health effects below the lower limits of
lead in their data sets in the past. Data sets
studying a wide range of BPb have only
recently become available. Because linear and
log lead specifications produce large differ-
ences in predictions only as BPb approaches
zero (Figure 1), data sets including substantial
numbers of very low BPb levels are required
to notice, appreciate, and test for adequacy of
alternative specifications. Implicit in the log-
lead specification is that change in health
effect with change in BPb at higher levels is
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Table 5. Economic savings (year 2000 dollars) per
cohort estimated from the Grosse et al. (2002) IQ
model according to dose–response specification.

Benefit/cohort
Study (billions $) 95% CIa

Grosse et al. (2002) 213.83 147.27–280.39
linear lead

Pooled analysis, 148.58 82.18–215.82
linear lead

Pooled analysis, 318.98 196.30–441.67
natural-log lead

aCIs cannot be used to compare linear and log lead speci-
fications because the linear specification is incorrect and
the 95% CI calculated from it suffers from uncorrected
residual heteroskedasticity.

105

100
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90

85

80
0 20 40 60 80

IQ

BPb (µg/dL)

Natural-log–transformed
Linear

Figure 1. Partial regression plot of adjusted IQ
(adjusted for natural-log lead model) and BPb (from
Lanphear et al. 2005). The two regression lines
(bold) with 95% CIs (narrow lines) represent the
best-fit estimates of the relationship between IQ
and BPb for natural-log–transformed BPb and lin-
ear BPb. Note that the linear BPb term overesti-
mates the slope (change in IQ with change in BPb)
of the statistically superior natural-log lead func-
tion down to 15 µg/dL and underestimates the
slope < 15 µg/dL. The scatter plot does not show all
data points because the y-axis has been expanded
to show differences in regression functions. 



small, save when lead toxicity associated with
pathologic organ damage is reached.

Most studies using a log-linear dose–
response relationship also neglect to comment
on the public health implications of this func-
tional form. As opposed to a linear dose–
response relationship, where equal changes in
health outcome are predicted for equal changes
in BPb across the entire range of BPb, the log-
linear relationship has the steepest slope at the
lowest BPb. Health outcome changes are equal
for equal proportional changes in BPb across
the entire tested range of BPb. In the case of a
log-linear dose–response relationship, the
increase in population IQ predicted from a
decrease in population BPb from 2 to 1 µg/dL
is exactly the same as that predicted from a
decrease in BPb from 20 to 10 µg/dL or from
40 to 20 µg/dL, although populations exposed
to these different concentrations of lead will
likely have different mean IQs.

We calculated the BPb change in the U.S.
population between 1976 (17.1 µg/dL) and
1999 (2.0 µg/dL) used by Grosse et al. (2002)
at 2.15 natural-log units change. The pooled
analysis study has 38 subjects with BPb levels
< 2 µg/dL. If we project the 1999 population
BPb of 2.0 another 2.15 natural-log lead
units down to a population lead level of
0.24 µg/dL in the indeterminate future, we
can duplicate the health benefit of BPb reduc-
tions for the population already achieved by
the reductions between 1976 and 1999, at
least for IQ outcomes.

The log-linear dose–response function for
lead, especially if it generalizes across other
health outcomes, may also account for the fail-
ure of many older studies to find significant
lead-related effects. In occupational studies of
health effects of lead exposure, often the gener-
ally high mean BPb levels of the “exposed”
groups and even the “nonexposed” control
group place health comparisons among expo-
sure levels on the flat end of the log-linear
dose–response curve, where the dose–response
curve approximates a nearly zero slope linear
trend. Under such conditions, a very large
sample size would be needed to detect signifi-
cant differences among groups. If a linear
model were used to specify the dose–response
relationship at higher BPb, even significant
effects detected in large studies would have
small coefficients. The apparent “no-effect”
relationship predicted by the near zero slope of
a log-linear dose–response function at elevated
BPb is especially notable in the occupational
lead–blood pressure literature.

We do not propose that the log-linear
dose–response function for BPb effect on child
IQ is the “correct” dose–response function.
Our analysis indicates only that it is superior to
a linear–linear dose–response function. We
examined two other nonlinear dose–response
functions for this relationship, a third-order

polynomial and a logit dose–response function.
The logit function is attractive because it can
model a reduction of the dose–response slope
as BPb falls below currently modeled data, thus
providing for the possibility of an ultralow
threshold for lead effect on IQ. The poly-
nomial function would permit modeling of a
new increase of slope of the dose–response
function beyond the upper limits of the data
set modeled here. This would allow accounting
for severe lasting effects of the pathologic
changes associated with lead-induced
encephalopathy. However, the alternative
nonlinear dose–response functions both mod-
eled the present data set no better than did
the log-linear function, including the steeper
slope at low BPb. There was a difference of
< 0.2% of the variance in IQ accounted for
by the lead variable among the three specifica-
tions. Because the log-linear dose–response
relationship only required two parameters for
complete specification and the alternatives
required three parameters, we elected to use
the most parsimonious specification for
detailed analysis of the data set at hand.

Public health and policy implications.
There appears to be no support for a threshold
model for BPb effect on IQ. On the contrary,
instead of finding a no-effect lower limit, the
present study strongly suggests that most of
the damage attributable to BPb occurs within
the first few micrograms per deciliter of BPb
within the lead range studied. Any apparent
threshold will appear at the upper ranges of
BPb, where the dose–response curve flattens,
at least until BPb reaches the range producing
frank organ damage.

In prospective lead studies of child develop-
ment, including the pooled study IQ effects
cited here, history of exposure is always avail-
able in the form of sequential BPb measure-
ments of each child. We have good evidence
that the log-linear lead–IQ dose–response func-
tion is not an artifact of unmeasured history of
exposure and represents the best available func-
tional description of BPb on IQ.

The drop in population lead exposure from
mean BPb of 17.1 µg/dL to 2.0 µg/dL over the
last quarter century produced the large health
benefits calculated in Table 5. Although lead in
paint and food has been specifically regulated
with the goal of reducing population lead
exposure, the reduction of lead in air and even-
tually in dust, one of the major contributors to
past urban population lead exposure (Mielke
et al. 1983, 1997, 1999), was by and large due
to the introduction of catalytic converters for
automobiles. Thus, a large part of the drop in
population lead was only coincidentally
achieved in response to the stated policy of
reducing gaseous automobile contaminants.
Fortunate though we may have been to have
benefited from this accidental process, it is
unlikely that further reduction in population

lead exposure will be achieved without
increased targeted effort.

Although many hailed the Occupational
Safety and Health Administration’s 1979 regu-
lations seeking to limit occupational exposure
to 40 µg/dL (Occupational Safety and Health
Administration 1979) and the CDC’s promul-
gation in 1991 of action limits for childhood
lead exposure to 10 µg/dL (CDC 1991), it
appears very likely that these limits have pre-
vented only a small percentage of the damage
associated with lead exposure. The total mod-
eled increase in IQ from the pooled data study
over the BPb range of 0.1–71.7 µg/dL was
17.7 IQ points. The improvement in IQ pre-
dicted by the log-linear model down to the
CDC action limit for children was 5.3 IQ
points; the remainder of the IQ improvement
(12.4 IQ points) was found below the CDC
action limit. If we continue to permit children
and, by extension, pregnant women to main-
tain up to 10 µg/dL BPb without aggressive
intervention to lower exposure, we are still
allowing most of the preventable subclinical
damage to occur.

Economic benefits realized by lead exposure
reduction under a log-linear dose–response
function are more than twice that previously
estimated using a linear dose–response func-
tion. Updated cost studies of further population
and occupational exposure reduction are long
overdue. Using updated cost and benefit mod-
els, epidemiologists and health economists can
determine how much additional exposure
reduction is economically warranted.

In this article we only address the form of
the dose–response function for lead effect on
child IQ. Another well-studied area of health
effects of lead exposure is the effect of lead on
adult hypertension and blood pressure. A
recent meta-analysis of studies examining the
effect of contemporary BPb on adult blood
pressure (Nawrot et al. 2002) used a log-linear
dose–response relationship and found a signifi-
cant effect. For every doubling of BPb, Nawrot
et al. (2002) calculated a 1.0 mm Hg increase
in systolic blood pressure and a 0.6 mm Hg
increase in diastolic blood pressure. The pat-
tern of increased blood pressure with increase
in BPb was exactly the same as the decrease in
child IQ with increased BPb. The greatest
changes in predicted blood pressure occurred
in the first few micrograms per deciliter of
BPb. Because the authors performed no formal
testing of other forms of the dose–response
function, the log-linear dose–response relation-
ship for BPb on adult blood pressure should be
examined in a pooled data study similar to that
used for the IQ study detailed here. If the orig-
inal data in the studies contributing to the
meta-analysis for blood pressure were used in a
pooled analysis study, there would be > 50,000
subjects in the study. Such a large study sample
would allow testing other nonlinear forms of

Rothenberg and Rothenberg
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the dose–response relationship for lead and
blood pressure against the log-linear form. Any
nonlinear dose–response relationship of the
same general form as the log-linear function for
blood pressure would have economic and pub-
lic health repercussions similar to those dis-
cussed above for IQ. Over the U.S. population,
BPb change measured between 1976 and 1999,
Nawrot’s coefficient translates into a 4.1 mm
Hg decrease in population systolic blood pres-
sure, a change with significant health and eco-
nomic benefits. However, most of the health
and economic benefits would be realized only
by bringing population and occupational expo-
sures well below currently permitted limits.

Conclusions

Correctly specifying the dose–response or
exposure–health relationship in all epidemio-
logic and toxicologic studies has important

scientific, economic, and policy implications.
Authors of such studies could take the initia-
tive and apply statistical techniques similar to
those discussed in this article to test whether
the presented functional form of the dose–
response relationship cannot be ruled out by
definable statistical criteria. Journal editors and
their reviewers can also insist that authors pro-
vide such evidence regarding dose–response
curves in submitted manuscripts. Adopting
these practices will give toxicologists additional
clues about mechanisms of effect, will give
environmental economists more accurate data
for their models, and will give regulators the
needed information for evidence-based actions.

If the nonlinear form of the exposure–
health effect curve is more appropriate to the
data than a linear function, we still have most
of our work ahead of us to protect the popu-
lation from the effects of lead.
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Appendix: 
Steps for Running J-test 

Selection between two non-nested models 

Linear Model 

Y = α • lead + [β • X ] + ε,

where [β • X ] is the vector of all other vari-
ables in the model. 

Generate the prediction of linear lead = Πlin.

Logarithmic Model 

Y = α • ln(lead) + [β • X ] + ε.

Generate the prediction of natural log lead
= Πlog. 

The J-test:

Y = γ • Πlog + α • lead + [β • X ] + ε,

Y = γ • Πlin + α • ln(lead) + [β • X ] + ε.

Then test the probability of the predicted
lead term and the original lead term in the
two artificial regressions above.
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