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ABSTRACT The generalized Stokes-
Einstein equation is used, together with
the two-dimensional pressure equa-
tion, to analyze mutual diffusion in con-
centrated membrane systems. These
equations can be used to investigate
the role that both direct and hydrody-
namic interactions play in determining
diffusive behavior. Here only direct
interactions are explicitly incorporated
into the theory at high densities; how-
ever, both direct and hydrodynamic

interactions are analyzed for some
dilute solutions. We look at diffusion in
the presence of weak attractions, soft
repulsions, and hard-core repuisions. It
is found that, at low densities, attrac-
tions retard mutual diffusion while
repulsions enhance it. Mechanistically,
attractions tend to tether particles
together and oppose the dissipation of
gradients or fluctuations in concentra-
tion, while repulsions provide a driving
force that pushes particles apart. At

higher concentrations, changes in the
structure of the fluid enhance mutual
diffusion even in the presence of
attractions. It is shown that the theoreti-
cal description of postelectrophoresis
relaxation and fluorescence correlation
spectroscopy experiments must be
modified if interacting systems are
studied. The effects of interactions on
mutual diffusion coefficients have prob-
ably already been seen in postelectro-
phoresis relaxation experiments.

INTRODUCTION

The lateral mobility of membrane proteins affects many
biological processes and has, therefore, been the subject of
intensive experimental study (Axelrod, 1983; Petersen,
1984; McCloskey and Poo, 1984; Edidin, 1987). The
physics of protein diffusion is probably best understood,
however, from a theoretical perspective. From theoretical
considerations we can establish a mathematical relation-
ship between protein mobility and physical properties of
the protein and lipid bilayer.

It was shortly after the introduction of the fluid-mosaic
model (Singer and Nicolson, 1972) that an expression for
the protein diffusion coefficient was first obtained, from
hydrodynamic fluid theory (Saffman and Delbriick,
1975; Saffman, 1976; Wiegel, 1980; Hughes et al., 1981).
The most familiar hydrodynamic result, known as the
“Saffman-Delbriick equation,” was then subjected to
experimental test and found to provide a good description
of protein diffusion in simple reconstituted systems con-
taining a low lateral density of protein (Vaz et al., 1984;
Clegg and Vaz, 1985). However, we now know that, as
the concentration of protein is increased to biologically
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relevant levels and the proteins begin to interact signifi-
cantly, the theoretical description of two-dimensional
diffusion must be generalized.

For example, our previous theoretical work (Scalettar
et al., 1988) demonstrated that two classes of diffusional
phenomena, self and mutual diffusion, must be distin-
guished when the protein molecules interact. Self
diffusion describes the random Brownian motion of an
individual protein; the self-diffusion coefficient, D*, is a
coefficient of proportionality between the mean-squared
displacement of the protein and the time. Mutual diffu-
sion, on the other hand, refers to the relaxation of
gradients or fluctuations in protein concentration; a
mutual-diffusion coefficient, D™, may be defined mathe-
matically through the generalized Stokes-Einstein rela-
tionship, Fick’s laws, and so on. When the protein concen-
tration is nonzero, these two diffusion coefficients are in
general different. We recently discussed the nature of the
self-diffusion coefficient in Abney et al. (1989); here, we
focus on mutual diffusion.

Mutual diffusion is frequently manifest in biological
systems and in experimental data. Biologically, gradients
in membrane protein concentration may be created near
regions of protein insertion or depletion, such as coated
pits (Eisinger and Halperin, 1986), in regions of active
growth, such as the developing axon (Small et al., 1984),
or after the disassembly of membrane structures, such as
gap junctions (Lane and Swales, 1980). Experimentally,
macroscopic concentration fluctuations are established
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and allowed to decay in postelectrophoresis relaxation
(PER) experiments (Poo, 1981; Young et al., 1984),
while microscopic gradients (concentration fluctuations)
are monitored in fluorescence correlation spectroscopy
(FCS) experiments (Elson and Magde, 1974; Magde et
al., 1974).

Here, we study the effects that direct (e.g., hard-core
and electrostatic) interactions have on mutual diffusion in
dense two-dimensional systems. We also analyze the
influence of protein-induced changes in lipid flow (hydro-
dynamics) and conformation (viscosity). Although the
light-scattering community has extensively discussed the
effects that direct and hydrodynamic interactions have on
three-dimensional mutual diffusion, relatively few works
(Phillies, 1975; Ackerson and Fleishman, 1982; Scalettar
et al., 1988) have addressed the analogous two-dimen-
sional problems. This paper, in particular, represents the
first study of two-dimensional mutual diffusion in dense
systems, such as biomembranes.

The paper may be outlined as follows. In the Theory
section, we derive an expression that describes the effects
of direct interparticle interactions on the mutual-diffu-
sion coefficient. Under Methods, we describe the model
interprotein interactions that we analyzed and the tech-
niques used to obtain numerical solutions to the theoreti-
cal equations. Our numerical data are presented under
Results. Finally, in the Discussion, we analyze the effects
that attractions, repulsions, hydrodynamics, and protein-
induced changes in lipid conformation have on the
mutual-diffusion coefficient. We also discuss interaction-
generalized descriptions of macroscopic and microscopic
gradient-diffusion experiments, such as PER and FCS,
and analyze the available experimental data.

2. THEORY

We will analyze mutual diffusion in a two-component
system in which there is no volume change upon mixing.
For such a system, the relaxation of gradients in the
concentrations of species 1 and 2 can be described by flux
equations of the form J; = —D,VC; (i = 1, 2), where J;, C,,
and D; are, respectively, the flux, concentration, and
diffusion coefficient associated with component i. (The
significance of this flux equation is discussed further in
Section 5.7.) Moreover, because we are assuming that
there is no volume change upon mixing, a net flux of
species 1 must in some sense be compensated for by
movement of species 2; this statement implies that D, =
D, = D™ (Gosting, 1956). The following discussion
focuses on the single mutual-diffusion coefficient, D™,
that then describes the relaxation to equilibrium in the
two-component system as a whole.

In our discussion, we will assume that diffusion in the

absence of interaction (i.e., at infinite dilution) can be
described by D,, a bare-diffusion coefficient. D, can be
determined theoretically from the Saffman-Delbriick
equation and can, in principal, be measured experimen-
tally by monitoring the motion of a single protein alone in
a membrane. The goal then is to calculate the magnitude
of the interaction-modified mutual-diffusion coefficient
relative to D,,.

We are fundamentally interested in lateral diffusion,
and so model only the two-dimensional projection of
protein motion. It is well known that calculations of a
strictly two-dimensional bare-diffusion coefficient are
often plagued by anomalies. However, these anomalies
are not manifest in a more realistic de novo calculation of
D, (Saffman and Delbriick, 1975). Our analysis of inter-
action effects also does not manifest these difficulties.

The interaction dependence of D™(p) can be analyzed
by invoking any of several appropriate physical models.
For example, if one starts with the kinetic theory of
liquids and introduces an interaction-dependent term into
the flux equation given above, one can obtain, to first
order in density, an expression for the interaction depen-
dence of the mutual-diffusion coefficient (Phillies, 1974;
Felderhof, 1978). We have previously adopted this
method in our analysis of mutual diffusion in dilute
membrane systems (Scalettar et al., 1988). One can also
take a less microscopic viewpoint and formulate (an
equivalent) thermodynamic description of the generalized
mutual-diffusion problem. We will adopt this latter,
complementary approach in the current work.

Einstein was the first to show that, in an inhomoge-
neous system, the mutual-diffusion coefficient is related
to the osmotic pressure, II, and the mutual-friction coeffi-
cient, f™, as follows (Pusey and Tough, 1985)

1 dIl(p)
f™) dp

In this generalized Stokes-Einstein equation, p is the
number density of proteins. This result is not, perhaps, the
most familiar of the Einstein diffusion relationships;
however, it can be shown to be equivalent to the well
known Einstein formula, D™ = kg T/ f™, if one notes that,
for noninteracting systems, Il = pkgT. Here kj is Boltz-
mann’s constant and T is the absolute temperature. Note
also that we have emphasized the mutual character of the
friction coefficient by putting a superscript m on f. Such
notation serves as a reminder of the fact that mutual- and
self-friction coefficients can differ just as the mutual- and
self-diffusion coefficients do (Altenberger and Tirrell,
1984).

Eq. 1 connecting D™ and II is valid even for interacting
systems. This point has been extensively discussed by
theorists who are interested in three-dimensional diffu-
sional phenomena (Phillies, 1974; Ohtsuki, 1983; Kops-

D™(p) =

1)
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Werkhoven et al., 1983; Pusey and Tough, 1985). More-
over, in these analyses of three-dimensional diffusion, it is
generally assumed that the osmotic pressure is modified
by direct interparticle interactions and that the density
dependence of the friction coefficient is primarily due to
the effects of hydrodynamic interactions. We can thus
analyze these two interactions separately. (We note,
however, that the possibility that direct interactions con-
tribute to f™(p) has been discussed [Phillies, 1981].) In
the development that follows, we focus our attention on
the contribution that direct interparticle interactions
make to D™ Mathematically, we set f™(p) = f°, a
constant; hydrodynamic effects are discussed semi-quan-
titatively in Section 5.4.

It has been shown (Braun et al., 1987) that the osmotic
pressure associated with a two-dimensional system of
particles that interact through a pair-wise additive poten-
tial u(r) is given by the expression

I(p) P’ e du(r)
kaT =p— 4kBT»£ r ar g(r, p)2wrdr. (2)

In obtaining Eq. 2, it is assumed that the distribution of
particles in the fluid is described by the radial distribution
function, g(r, p); recall that g(r, p) defines the relative
probability of finding a second particle at a distance
from a given central particle (e.g., Hill, 1956; McQuarrie,
1976; Braun et al., 1987). In the rest of the paper, we
follow standard convention and set g(r, p) = g(r).

If we now use Eq. 2 to evaluate the derivative appearing
in Eq. 1 and replace f ™(p) by f°, we find that

1 Il(p) kT
D(p) = - 22 B0
W -F"% ~
«d 1 9
. [1 - 1rpﬁ£ —%grr—)[g(r) + Ep%]rz dr]. 3)
Here 8 = 1/kT and the ratio kg T/ f° = Dy; thus, as

p — 0, D™(p) reduces, as it should, to D,.
We can now isolate the effects that direct interactions
have on the mutual-diffusion coefficient as the ratio

D (p) o f dulr) [ %p % ]r’ dr. (4)
Note also that Ohtsuki (1983) has shown that the three-
dimensional analogue of Eq. 4 may be obtained from
arguments founded in the more microscopic formalism of
kinetic theory.

In the dilute limit, the radial distribution function can
be approximated by the density-independent analytical
expression g(r) exp [—Bu(r)]. In this limit, the
mutual-diffusion coefficient is given by

D;(op) 1w [ pp2g,, )

This result was previously derived from microscopic argu-
ments in Scalettar et al. (1988).

3. METHODS

In this section, we will describe, in order, (a) our sources of data, (b) the
natural units associated with each data set, (c) the determination of g(r)
and dg(r)/dp, and (d) the solution of Eq. 4 for D™ /D,

3.1. Sources of data

Data were obtained from Monte-Carlo generated configurations of
particles interacting through specified analytical potentials. The poten-
tials defined below serve as models for the effects of both repulsive and
attractive interactions on the mutual-diffusion coefficient. Note that we
have not presented results for the gap junction potential analyzed in
Abney et al. (1989) because we cannot directly obtain values for
dg(r)/ap: the force and distribution functions for this system are strictly
known and valid only at the in vivo densities.

3.1.1. 6-4 potentials

Two, related 6-4 potentials were chosen as models for proteins that
interact through soft repulsions at small separations and either through
weak attractions, or not at all, at larger separations. In a real membrane
system, soft repulsions might arise if there is some deformability at
contact; weak, long-ranged attractions could arise from a lipid-mediated
protein-protein interaction (Abney and Owicki, 1985).

A general 6-4 potential was defined as

2
usr) = 5 l(o/r)* = (/)] ®

This potential crosses zero at r = o and reaches its minimum value, —e,
atr = ro = (3/2)"%0. See Fig. 1. Differentiation yields the 6-4 pair force,
which is repulsive for r < ry and attractive for r > r,.
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FIGURE 1 Potentials used in the calculation of diffusion coefficients.
Three analytical potentials were analyzed: hard core (- —-), fluid A
(—), and fluid R (- - - - - ). To facilitate comparison between the
functional forms for these potentials, we have arbitrarily set the
hard-core diameter dyc equal to r,. It is shown in the text that only the
product rpd}c/4 = f, determines the rate of change of the diffusion
coefficient.
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For computational economy during Monte-Carlo simulations, the 6-4
potential was truncated at r = 2.5r = 3.06190; it was also shifted up
slightly (by —u¢(2.5 79) ~ 0.07¢) to maintain continuity. This gave a
fluid with repulsions and attractions (fluid A)

Ue(r) — ue(2.51r) r<2.5r,

ua(r) = ‘0 r=25r,. ™

The force is unaltered by the truncation out to r = 2.5r¢; beyond this the
force is zero.

A similar procedure was used to generate a purely repulsive fluid
(fluid R). Here, the 6-4 potential was truncated at r = ry, = 1.22470 and
shifted upward by e

U (r) = [u“(r) —ug(ry) r<rg ®)

0 r=r,.

This truncation preserves the repulsive component of the 6-4 force
(Chandler et al., 1983), while eliminating the attractions.

3.1.2. Excluded-volume interaction

We also analyzed a model system in which the proteins experience an
infinite repulsive interaction at some contact separation but do not
interact over an extended range. Many of the qualitative features of
interaction-dependent diffusion emerge from study of this simple hard-
core or hard-disk interaction (Scalettar et al., 1988).

The excluded-volume interaction was defined as

oo I'SdHc

uyc(r) = 9)

0 r> dHC'

This potential describes the interaction between two particles with
hard-core diameters dyc. See Fig. 1. The associated force is a delta
function centered on r = dyc.

3.2. A discussion of units

The theoretical equations, 1-5, are written in terms of number density,
i.e., the number of particles per unit area. However, results for the two
classes of potentials discussed above are presented in terms of more
standard units. For the hard-core potential, D™ /D, is given as a function
of area fraction, f, = wpd¥c/4, of protein coverage. For the 6-4
potentials, a unique area fraction cannot be assigned; the standard unit
of concentration is the reduced density, p*, defined by p* = po?, where o
is given in Eq. 6.

3.3. Computation of g(r) and
ag(r)/dp

3.3.1. The 6-4 potentials

Equilibrium particle configurations corresponding to the 6-4 potentials
were generated for 256 particles in a square patch using the standard
Metropolis et al. (1953) Monte-Carlo algorithm. Simulations were run
2,000-3,000 cycles, where one cycle corresponds to one (sequentially)
attempted movement of every particle. The radial distribution function
was computed from particle configurations as an average over discrete
bins of width A,; we approximated the real values of the function by
these averaged values. Beginning with an equilibrated sample, averag-
ing was performed every ten cycles over the entire length of the
simulation. Data were collected from a lower cutoff of » = 0 to an upper
cutoff of r = 4o. Detailed descriptions of the algorithms have been

previously described in Braun et al. (1987), Abney (1987), and Abney et
al. (1989).

Derivatives dg(r)/dp were computed for the 6-4 potentials using
values of g(r) at three evenly-spaced values of p*, separated by A,.,
using Savitzky-Golay fits (Savitzky and Golay, 1964).

In the dilute limit, no simulations were required: the radial distribu-
tion function and its density derivative were computed analytically from
the relationship g(r) = exp [—Bu(r)]. However, to maintain consistency
with the numerical calculations at higher densities, we still reported
values and performed subsequent numerical operations at discrete
values of r.

3.3.2. Excluded-volume interaction

For the hard-disk fluid, we required g(r) and dg(r)/dp only at contact.
These quantities were obtained for arbitrary densities, without simula-
tions, from a Padé approximant to the hard-disk pressure equation (Ree
and Hoover, 1967; McQuarrie, 1976). Specifically, the symmetric (3, 3)
Padé approximant allowed us to find an analytical expression for
g(dyc). Note that this Padé approximant is not an exact expression, but
rather an excellent approximation based on an evaluation of the first six
hard-disk virial coefficients. We began with the relationship

II(p)

bp — 0.202080(bp)? + 0.005589(bp)’
pkBT

1 — 0.984085bp + 0.242916(bp)*

~ wdicp
2

g(dyc), (10)

where b = (1/2)rd}c. Converting to units of area fraction and
rearranging yielded

1 — 0.404160 f, + 0.022356 f2
1 — 1.968170 f, + 0.971664 2

g(duc) = (11)

Appropriate differentiation of this expression gave dg(dyc)/d fa- We
note that it is also possible to obtain dIl(p)/dp directly from Eq. 10
without solving for g(dyc).

3.4. Determination of diffusion
coefficients

The calculated functions g(r) and dg(r)/dp and the analytical poten-
tials were used to compute the ratio D™(p)/D, (see Eq. 4). For the 6-4
potentials, the integral was computed numerically using Simpson’s Rule
(Bevington, 1969). For the excluded-volume interaction, integration
over the delta function force gave

D™(fA) 1 . dg(duc)
AR [g(dﬂc) Hh T

D
Equations describing the density dependence of the mutual-diffusion
coefficient in the dilute limit were previously derived and reported in
Scalettar et al. (1988). These dilute formulae are given in the Results
section so that they may be compared with the numerical results
obtained from the generalized expression.

12)

4. RESULTS

We present results for the 6-4 potentials (fluid A and
fluid R) and the hard-disk potential at a variety of
densities.
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4.1. 6-4 results

Our results for the 6-4 potentials correspond to a choice of
€ = kgT; thus, the depth of the attractive well in fluid A is
one kgT.

Fluid A and fluid R were simulated at thirteen reduced
densities up to p* = 0.8. Radial distribution functions are
plotted for these fluids at p* = 0.0, 0.3, and 0.8 in Fig. 2.
Diffusion coefficients for both potentials are presented
together in Fig. 3. To obtain these results, we set A, = 0.05
and used a three-point central Savitzky-Golay fit to find
dg(r)/dp (Savitzky and Golay, 1964).

These diffusion data should be contrasted with the
predictions of the dilute theory:

DR(p*)/ Dy =1 — 6.20p* Fluid A (13a)

1A
2.0 -
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=
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0.0 1.0 2.0 3.0 4.0
r (o)
18
2.0 -
E‘: o
-] -
1.0 H
0.0 — a
I T T T T I T T T T I T T T T | T T T T '
0.0 1.0 2.0 3.0 4.0

r (o)

FIGURE 2 Density dependence of the radial distribution functions for
fluids A and R. Panel 4 shows g(r) for fluid A at p* = 0.0 (- - - . - ),
0.3 (- —-), and 0.8 (—). Panel B shows these same functions for fluid
R, using the same notation. The radial distribution function gives a
probabilistic measure of finding a second particle at a distance r from a
given first particle. At small separations, the probability is zero. At large
separations, the probability is uniform and normalized to one. At
intermediate separations, and with details depending on the potential
and the density as shown, the probability oscillates above and below one
in indication of shells of enhanced and diminished occupancy, respec-
tively.

®(0*)/ Do =1 + 3.34p* Fluid R. (13b)
The linear relationships in Eq. 13, a and b, are also shown
in Fig. 3. The dilute theory agrees with the more general
formalism at small (reduced) densities, but underesti-
mates D™ /D, as p* increases. The disagreement is partic-
ularly pronounced for fluid A; for this fluid the dilute
result predicts D™ /Dy < 1 when, in fact, at high densities
D™ /Dy > 1.

4.2. Excluded-volume results

The density-dependence of the hard-disk diffusion coeffi-
cient is displayed in Fig. 4. To first order in area fraction,
the following analytical relationship holds

DEc(fa)/Do=1 + 4 f,. (14)

This result is also shown in Fig. 4. The analytical dilute
equation and the numerical results agree exactly for small
values of f, (quantitative comparison not shown); this
agreement serves as a check on the accuracy of aspects of
our numerical work. At higher concentrations, the dilute
expression underestimates the value of the hard-disk
mutual-diffusion coefficient.

20.0 -

- | 2

°

s J
Q i
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& 8
g 10.0 -
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FIGURE 3 Mutual-diffusion coefficients for fluids A (O) and R (a).
Error estimates were obtained for two reduced densities, p* = 0.30 and
0.70, from identical analysis of independent sets of Monte-Carlo simula-
tions. For both fluids at each of these densities, two points are plotted.
Predictions of the dilute theory, Egs. 13, a and b, for fluid A (—) and
flud R (- - -« ) are extrapolated to higher densities as references.
Relative errors in the data increase as the density decreases. This is
because at low densities there is much less structure in the fluid and so
the distribution functions are correspondingly noisier. We compensated
for this effect to some extent by running the simulations for more cycles
at low densities. Note also that, because we used central three-point fits
(with A,. = 0.05) to find dg(r)/dp, an analysis of our simulations at
thirteen evenly-spaced values of p yielded values of the diffusion
coefficient at only eleven densities.
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D™(£,)/Dy

FIGURE4 Mutual-diffusion coefficients for the hard-core fluid. The
general results (——) were obtained analytically from Eqs. 11 and 12.
The dilute results (- - - - - ) were derived from Eq. 14 and extrapolated
to higher densities as a reference. Finally, an expression incorporating
both direct and hydrodynamic interactions, valid in the dilute limit (see
Section 5.4), is also plotted (- —-); it too has been extended to higher
densities as a reference.

5. DISCUSSION
5.1. Analysis of 6-4 results

We have obtained mutual-diffusion coefficients for fluids
A and R at a variety of densities, as shown in Fig. 3. We
were interested in comparing the effects of repulsions and
long-ranged, weak attractions on diffusive behavior in
single-phase systems; hence, we chose ¢ = kgT for all
simulations (see Section 5.1. of Abney et al. [1989] for
more details).

The mutual-diffusion coefficients corresponding to
these two potentials display strikingly different density
dependences. In fluid R, D™/D, is always greater than
unity and grows monotonically with increasing density. In
fluid A, on the other hand, this ratio is less than unity if
the solution is dilute; however, as the density of the system
increases, the interactions in fluid A also begin to enhance
mutual diffusion and D™/D, > 1. These results show that
repulsions and attractions have profound and different
effects on the mutual-diffusion coefficient.

If Eq. 4 is examined in detail, a mechanistic rationale
for the mutual-diffusion results emerges. Clearly, there
are three quantities that are influencing the interaction
dependence of D™: the force, —du(r)/dr, and two func-
tions that are related to the structure of the fluid, g(r) and
dg(r)/dp. If the system is dilute, an integral over the
product of two of these quantities, —du(r)/dr and g(r),
dictates the interaction dependence of D™ /D, (see Eq. 5).
Moreover, because the radial distribution function is
always positive, the sign of the force determines the
magnitude of D™/D,. If the interaction is purely repul-
sive, this ratio is greater than unity, and if the force is

purely attractive, it is less than unity. These latter state-
ments hold independent of the detailed characteristics of
the interprotein interaction. If the potential is a composite
of attractions and repulsions, the results are more compli-
cated. For example, the diffusion coefficient of fluid A is
dominated by the attractions, at low densities, because
the particles sit preferentially on the attractive compo-
nent of the interprotein potential (see Fig. 2 in this paper
and Fig. 4 in Braun et al. [1987]).

The dilute results are intuitively reasonable. Repul-
sions tend to push particles apart and accelerate the
dissipation of fluctuations or gradients. Conversely,
attractions tend to tether particles together and thereby
retard the relaxation to the equilibrium state.

What can be said about the behavior of the mutual
diffusion coefficient as the density of the solution
increases? Because the average interparticle spacing
decreases as the density increases, the strong repulsions
that are felt by closely packed particles in fluid A must
necessarily begin to influence diffusive behavior in this
liquid at higher densities. Hence, our low density result,
Eq. S, would lead us to expect that mutual diffusion
accelerates in both fluids, A and R, as the density of the
solution gets higher. Is this prediction actually in accord
with results obtained from our generalized expression,
Eq. 4?

Our generalized analysis of mutual diffusion shows
that a new quantity, dg(r)/dp, also begins to affect the
interaction dependence of D™ as the solution becomes less
dilute. Moreover, our numerical data indicate that, at
high densities, this new term in fact dominates the low
density part of Eq. 4. Despite this fact, the prediction
made above is correct; at high densities, mutual diffusion
does in fact accelerate in both fluids A and R. The reason
is as follows.

We have mentioned that as the density of the system
increases, the probability of finding particles in proximity
increases; therefore, for large p and small r, dg(r)/dp is
positive and large (see Fig. 2). Moreover, the force
becomes very large and positive as the particles approach
one another and hence small values of » make dominant
contributions to the integral that determines the interac-
tion dependence of D™. We, therefore, again are led to
conclude that the repulsions will dictate the behavior of
D™ and that mutual diffusion will accelerate in fluids A
and R at high density.

5.2. Analysis of excluded-volume
results

We have seen that long-ranged interprotein interactions
can markedly influence two-dimensional mutual diffu-
sion. The excluded-volume results obtained here also
show that D™ will exhibit interaction-induced changes
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even if the membrane protein molecules interact only at
contact. Note that mutual diffusion is accelerated in the
hard-disk fluid and that the physical and mathematical
analysis of fluid R given above is also applicable to the
hard-core interaction. Finally, we note that the general-
ized and dilute hard-disk results agree for low values of

Sa

5.3. Viscosity considerations:
perturbation of lipid conformation

We have previously noted that the self-diffusive motion of
membrane proteins will be influenced by direct forces and
by protein-induced perturbations of lipid conformation
and flow (Abney et al., 1989). These same three interac-
tions also affect the mutual-diffusion coefficient. The
discussion thus far has been directed only at analysis of
the influence that direct forces have on D™. We now look
briefly at conformation and flow effects.

Protein-induced perturbation of lipid conformation (in-
.cluding changes in headgroup and chain orientation and
dynamics) probably causes changes in bilayer viscosity.
Viscosity, in turn, is a major determinant of the bare-
diffusion coefficient of protein molecules. This implies
that the denominator in Eq. 4 may not be constant. We
have previously suggested that one can account for the
effect that lipid perturbation has on the normalized
self-diffusion coefficient, D*/D,, simply by rescaling the
value of the bare-diffusion coefficient, D,. This same
procedure can be applied to the calculation of D™/D,. It
then follows that increases in viscosity will decrease the
mutual-diffusion coefficient and that decreases in viscos-
ity will increase D™. See Abney et al. (1989) for a more
complete discussion.

A protein-induced change in lipid conformation could
also alter the interprotein force (Abney and Owicki,
1985). Such density-dependent changes can be incorpo-
rated into the analysis of mutual diffusion simply by using
the correct expression for the force when evaluating the
pertinent equations.

5.4. Hydrodynamic considerations:
perturbation of lipid flow

The last interaction that we want to discuss is the
hydrodynamic interaction. We have already noted that
hydrodynamic forces arise because the solute perturbs the
flow of solvent. This perturbation manifests itself in the
magnitude of the mutual-friction coefficient and, in turn,
in the value of the mutual-diffusion coefficient (see Eq.
1). For repulsively interacting molecules in three dimen-
sions, the mutual-friction coefficient increases when
hydrodynamic interactions are important (Pusey and

Tough, 1985). Therefore, if the direct force is repulsive,
the hydrodynamic interactions push D™ /D, back toward
unity. In fact, in dense three-dimensional systems that
interact through short-ranged repulsions, the effects of
the two types of force are so nearly compensatory that
D™ /D, ~ 1 (Pusey and Tough, 1985; Schurr and Schmitz,
1986).

Here we discuss two ways of analyzing the effects that
hydrodynamic interactions have on membrane protein
diffusion. In the dilute limit one can rigorously incorpo-
rate hydrodynamic-interaction tensors into the formalism
presented in Scalettar et al. (1988). We then find, within
the confines of one model, that the two-dimensional
hard-disk mutual-diffusion coefficient is given by the
relationship D™ /D, = 1 + 1.5 f, (details to be presented
elsewhere); see Fig. 4. This result should be contrasted
with the expression that embodies only the direct effects
of the hard-disk force, D™ /Dy, = 1 + 4 f,. It is apparent
that, in the dilute limit, the hydrodynamic and direct
forces produce somewhat compensatory changes in the
two-dimensional mutual-diffusion coefficient, as they do
in three dimensions. However, in dilute two-dimensional
solutions the hydrodynamic and direct interactions do not
seem to counteract one another as markedly as they do in
three-dimensional systems.

One can also proceed with a semi-empirical analysis of
the effects that hydrodynamic interactions have on D™,
Experimental data obtained from three-dimensional sys-
tems often indicate that f* ~ f ™ (Phillies, 1984); here f* is
the self-friction coefficient. Hence one can insert an
experimentally measured (FRAP) self-friction coeffi-
cient into the generalized Stokes-Einstein relationship
and thereby hope empirically to incorporate hydrody-
namic effects into the formalism. (We are loathe to use
our theoretical self-diffusion data to calculate f* because
these data, to date, do not embody hydrodynamic interac-
tions.) Because the experimental f* increases with densi-
ty, the qualitative conclusion that one draws from the
semi-empirical analysis is the same as that noted above.

5.5. Mutual diffusion and
reference frames

We would like to comment briefly on the form of Eq. 1.
When one is analyzing mutual diffusion, it is important to
specify the frame of reference with respect to which the
quantities are measured. We have implicitly used a
laboratory-fixed reference frame in our discussion. How-
ever, we refer the reader extensively to the three-
dimensional literature, in which a solvent-fixed frame of
reference is often introduced (see Phillies [1974] and
Schurr [1982], among others). (Note that there is, of
course, net solvent flow in the macroscopic mutual-
diffusion problem, and so one can define a solvent-fixed
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frame in which the solvent flux is zero.) In the three-
dimensional literature one often finds a modified form of
Eq. 1, which reads

1 — fy 0Il(p)
() o’

where fy denotes the volume fraction occupied by the
solute (i.e., the three-dimensional analogue of f,,, the area
fraction) and £™(p) is a mutual-friction coefficient mea-
sured with respect to a solvent-fixed frame. These two
forms of the generalized Stokes-Einstein relationship,
Egs. 1 and 15, are equivalent (Kops-Werkhoven et al.,
1983; Pusey and Tough, 1985); the differences in them
simply reflect differences in the choice of reference frame
for the friction coefficient.

D%(p) = (15)

5.6. Relationship to the
compressibility equation

We have noted that one can calculate D™(p)/D, from
dII(p)/dp. Here we began with an expression for II(p),
which we then differentiated. It is also possible to find
dIl(p)/dp directly from the compressibility equation
without evaluating any derivatives (Ben-Naim, 1974;
McQuarrie, 1976). We find

all(p) _ ksT
9 1+ p£° [g(r) — 1121 dr

L. a6
PKT

where «r is the isothermal compressibility. This expres-
sion is superficially simpler than the one that we have
used because it depends explicitly only on p and g(r),
while Eq. 4 also depends on dg(r)/dp and du(r)/dr.
(Note, of course, that g(r) is a function of the interparti-
cle potential and thus u(r) does appear implicitly in Eq.
16.) The compressibility equation is also of greater gener-
ality than Eq. 4 because its derivation does not rest on
assumptions about the nature of the interparticle poten-
tial (e.g., pair-wise additivity, radial symmetry, etc.).

However, under conditions in which pair-wise additiv-
ity obtains, both expressions should (in principle) yield
the same result. This statement is true at all densities but
is especially easily verified at low densities where Eq. 16
can be shown analytically to reduce to Eq. 5. Despite this
equivalence, we feel that the approach we have taken may
be better suited to the task at hand, for at least two
reasons.

The first reason is pedagogical: Eq. 4 allows one more
easily to deduce the sign of the interaction-dependent
contribution to the diffusion coefficient, as we saw in
Section 5.1.

The second reason is numerical: the difference
[g(r) — 1] is weighted by 2wrdrin Eq. 16 and thus is very

sensitive to small fluctuations or errors in g(r) at large
separations. Random fluctuations arise due to the small
number of particles in the systems under study (mem-
branes or Monte Carlo). These fluctuations are apparent
in an analysis of our data (results not shown). Systematic
errors can also arise due to the finite sample size and
reflect more fundamental theoretical issues. For example,
the compressibility equation, which describes number
fluctuations, is derived in the grand canonical ensemble.
Most Monte Carlo, on the other hand, is performed in the
canonical ensemble, while micrograph distribution func-
tions are difficult unambiguously to assign to a particular
ensemble. Moreover, the radial distribution function is
different in different ensembles. In particular, g(r) —
1 — pkgTky/N for large r in the canonical ensemble,
while g(r) — 1 for large r in the grand canonical
ensemble (Hill, 1956; Lebowitz and Percus, 1961; Ben-
Naim, 1974); here N is the number of particles in the
system. Only the grand canonical g(r) can properly be
used in Eq. 16 for finite N; an erroneous “tail” in an
alternative distribution function would significantly alter
the integral over [g(r) — 1]. We note that these difficul-
ties vanish at large NV as they must.

In contrast, our expression involves g(r) and not
[g(r) — 1]. Thus a small error in g(r) produces only a
small error in the integral in Eq. 4. In addition, our
integrand is only nonzero at small separations (where
u(r) # 0) and so is completely insensitive to the noise or
errors in g(r) that are manifest at large r. Finally, the
pressure equation is derived in the canonical ensemble
and so is consistent with most Monte Carlo.

To conclude this discussion, we note that the compres-
sibility equation is central to the analysis of diffusion data
obtained from light scattering studies of three-dimen-
sional systems. This is because S(0), the zero wave-vector
limit of the static structure factor calculated from a
dynamic light scattering experiment is closely related to
the compressibility.

5.7. Implications for Fick’s laws

Thus far, we have presented a quasi-thermodynamic or
generalized Stokes-Einstein analysis of interaction-
dependent mutual diffusion. However, as we mentioned,
mutual diffusion can also be addressed from the viewpoint
of kinetic theory. The equivalence of these two
approaches has been demonstrated (Phillies, 1974; Kops-
Werkhoven et al., 1983; Ohtsuki, 1983).

In this section, we would like to present a brief descrip-
tion of the kinetic or generalized-diffusion formalism
because the diffusion equations that are central to that
approach are commonly utilized in theoretical descrip-
tions of membrane diffusion. In the standard analyses, the
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flux J, is written

D
J=—-DVp + kB—TFp. (17)
Here D is a (density-independent) diffusion coefficient
and F is an applied force, usually electrostatic in origin;
most typically this force appears in the flux equations that
describe electrophoresis experiments.
Particle conservation dictates that the flux satisfy a
diffusion equation of the form

%=—V-J=D[V’p—$V-Fp], (18)
where D has been pulled out of the divergence. Egs. 17
and 18 are commonly known as Fick’s first and second
laws for diffusion with drift, respectively.

We have shown (Scalettar et al.,, 1988) that in the
presence of interactions the form of the flux in Eq. 17
must be modified; this result has also been obtained in
analyses of gradient diffusion and light scattering in three
dimensions (Phillies, 1974; Ohtsuki, 1983). Specifically,
the appropriate form of the generalized flux is

J® = —D"™(p)Vp + :ToTF'p. (19)
Here the density-dependent mutual-diffusion coefficient,
D™(p), is identical to that derived from thermodynamic
arguments in the Theory section and discussed through-
out this paper. In the kinetic approach, the introduction of
a density-dependent diffusion coefficient does not alter
the basic form of Eq. 17. Note that the external term is
not influenced by the interactions.

The generalized diffusion equation is now written

(20)

It is no longer possible to pull the full diffusion coefficient
outside the divergence because the concentration depen-
dence of D™ gives it an implicit spatial dependence.

5.8. Implications for the
experimental determination of
diffusion coefficients

At least two of the standard techniques used to monitor
the lateral diffusion of membrane proteins reflect mutual
diffusion. These are PER and FCS. In this section, we
would like to discuss pertinent generalizations of the
theories of PER and FCS experiments.

There is a very straightforward way, using the results
of the previous section, to generalize the previous theoreti-
cal analyses of PER. In a PER experiment, an electric
field that is applied to a (cell) membrane creates a

concentration gradient by electrophoresing charged pro-
teins toward one pole. The equilibrium distribution that
obtains in the presence of the field can be found by setting
the flux in Eq. 19 equal to zero. Similarly, the decay of the
gradient after the field is turned off is described by the
diffusion equation, Eq. 20, when F = 0. In both cases, a
form for the diffusion coefficient appropriate to charged
molecules must be obtained. In a future paper, we will
solve these problems for the standard spherical geometry
and with a more appropriate diffusion equation that will
show how the interparticle interactions modify the results
of PER experiments.

The theory of the FCS experiment must also be gener-
alized if the molecules in the system are interacting. In an
FCS experiment, one monitors fluctuations in the number
of molecules that occupy an open region of a sample.
These number (or concentration) fluctuations arise
because molecules continually diffuse in and out of the
region of sample under observation. It is well known that
for ideal (i.e., noninteracting) solutions the fluctuation
autocorrelation function, G(7), monitored in an FCS
experiment, is given by

- G(0)
" (1 + 4Dyr/})’

Here 7 is a time parameter and w, characterizes the size
of the region of the sample under observation.

Phillies (1975) has shown that this equation must be
generalized when the particles interact. We do not pres-
ent his general result; however, we do display two limiting
forms of his equation that are mathematically simple and
of particular interest here. Phillies found that if essen-
tially all of the proteins are labeled, G(7) is

_ G(0)
(1 +4D™(p)7/wd)

G(r) (21)

G(7)

(22)

In contrast, if only a small fraction of the proteins have
been tagged, the expression is

G(0)

O =~ Tv e wyad)

(23)
Hence, in the former case, an FCS experiment will yield
the mutual-diffusion coefficient; in the latter case, how-
ever, the experiment will yield the self-diffusion coeffi-
cient. Note that the density-dependent, mutual- and
self-diffusion coefficients appearing in Eqs. 22 and 23 are
precisely those that we discuss here and in Abney et al.
(1989).

5.9. Comparison with self
diffusion

In a previous paper (Scalettar et al., 1988), we presented
theories of mutual and self diffusion in dilute two-
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dimensional systems. Since that time, we have extended
the theories (in Abney et al. [1989] and in this paper);
they are now also applicable to concentrated solutions.
Our new results support the basic qualitative conclusions
described in Scalettar et al. (1988). The new data
presented here are also better suited for comparison with
experimental results, which typically do not refer to truly
dilute systems.

For both kinds of diffusion and for all potentials
analyzed, we have found that the predictions of the dilute
theory coincide with the results obtained from the gener-
alized formalism at lower densities. We emphasize the
relationship between the theoretical predictions of the
dilute and generalized theories because our initial model-
ing of the effects of hydrodynamic interactions and
protein-induced changes in viscosity are being carried out
in the dilute limit.

We can also compare the theoretical expressions for the
mutual- and self-diffusion coefficients. Here, both the
derivation and final expression are simpler for D™. While
D™ was derived from simple thermodynamic arguments
involving pairs of proteins, D* was obtained using a
perturbation approach and involves three-particle infor-
mation. The programming and data collection necessary
to get the diffusion coefficient were also proportionally
simpler for D™. However, we note that because the
computation of D™ requires simulations at multiple densi-
ties to calculate dg(r)/dp, the computational expenses to
obtain the two diffusion coefficients are similar.

Finally, we note that, in the case of the ubiquitous
excluded-volume interaction, analytical summaries of the
data are now available for both self- (Saxton [1987], Eq.
12) and mutual- (this paper, Egs. 11 and 12) diffusion
coefficients. Both results describe diffusion under the
same conditions, neglecting hydrodynamic interactions
and protein-induced changes in lipid conformation.

5.10. Comparison with
experiment

The density dependences of the self-diffusion coefficients
of gramicidin, bacteriorhodopsin, and antibodies tethered
to lipid hapten at the membrane surface have been
experimentally inferred from fluorescence recovery after
photobleaching (FRAP) experiments. Therefore, theoret-
ical predictions concerning this diffusion coefficient can
directly be compared with experiment (see Abney et al.
[1989] for references and further discussion).

The density dependence of the two-dimensional
mutual-diffusion coefficient has not been the subject of
systematic experimental study. This reflects limitations in
the applicability and interpretation of the relevant experi-
mental approaches. PER results must be analyzed in
terms of Eqs. 19 and 20 using values of D™ that reflect the

range of densities found in the concentration gradient. To
date, however, these experiments have been interpreted
only within the framework of a single, in some sense,
“averaged” diffusion coefficient. FCS, on the other hand,
which can be used to measure the mutual-diffusion
coefficient at a single density, has not been systematically
applied to membrane systems. Thus, a precise comparison
of our predictions with experimental data is not possible,
and we must be content with a more inferential analysis.

We have already taken one such inferential approach
in Scalettar et al. (1988). There we noted that, if the
protein molecules interact repulsively, the mutual-diffu-
sion coefficient should be larger than the self-diffusion
coefficient. The 6-4 results presented here imply that this
statement may also be true at sufficiently high densities
even if the proteins interact attractively. Thus, if we
compare self- and mutual- (or FRAP and, for example,
PER) diffusion coefficients for systems of identical pro-
teins, the ratio D™/D* should be greater than one. As
noted in Scalettar et al. (1988), such an effect is indeed
observed for a variety of systems, although exceptions
exist.

A similar set of ideas was set forth previously by Small
et al. (1984) when they analyzed diffusion along a
concentration gradient in developing bullfrog olfactory
axons. The authors noted that the diffusion coefficients
they obtained for this system were larger than those
typically measured by FRAP experiments. Their results
were qualitatively interpreted within the framework of a
thermodynamic formalism, known as Darken’s Relation
(Darken, 1948); this relationship has been used to explain
the disparity between self and mutual diffusion in binary
alloys containing vacancies.

More recently, Ryan et al. (1988) analyzed the equilib-
rium spatial distribution of proteins on cells in an applied
electric field. These experiments suggest that interactions
between the proteins play a major role in dictating their
equilibrium distribution within the field. The authors note
that the gradient of chemical potential associated with
such interactions would serve to enhance lateral diffusion
relative to that of an isolated membrane protein. This
observation is in agreement with our analysis of the
effects that repulsive interparticle interactions have on
the mutual-diffusion coefficient. The authors present an
apparent paradox involving differences between their
experimental observation and theoretical predictions
which suggest that (excluded-volume) interactions should
inhibit diffusion (their reference 21). We feel that this
paradox may be resolved by noting that the works cited by
Ryan et al. (1988) contain analyses of self diffusion, for
which a different interaction dependence is to be
expected.

The above set of experiments strongly suggests that
interactions are having an observable effect on measured
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mutual-diffusion coefficients. However, precise compari-
sons between theory and experiment (and especially the
separation of direct interactions, hydrodynamics, and
viscosity effects) must await more systematic experimen-
tal studies.

6. CONCLUSIONS

The most significant conclusion of Abney et al. (1989)
was that the self diffusion of membrane proteins should
be viewed as the diffusion of interacting particles. Here,
we extend this conclusion to the process of mutual diffu-
sion. We have demonstrated that interactions between
proteins are sufficient to produce a fewfold modulation in
the mutual-diffusion coefficient. The sign of this modula-
tion depends critically on the nature of the interaction.
Pure repulsions cause the mutual-diffusion coefficient to
increase with density. In composite potentials, attractions
cause D™ to decrease at low densities, while repulsions
reverse this trend at high densities. Note that the high
density results are especially relevant to biological sys-
tems where proteins are found under very crowded condi-
tions.

We have also demonstrated that, in dilute solutions,
hydrodynamic interactions serve somewhat to offset the
modulation produced by direct hard-disk forces.

The effects of interactions on the mutual-diffusion
coefficient have probably been observed experimentally;
this statement is based on the fact that systematic differ-
ences are often observed between FRAP (self) and PER
(mutual) diffusion coefficients. However, a systematic set
of experiments will have to be performed before we can
compare the predicted density dependence of the
mutual-diffusion coefficient with real data.

Finally, we note that most biological membranes con-
tain more that one species of protein. In addition, there
may or may not be obstacles in the form of anchored
proteins and extramembranous structures. Future work
must bridge the gap between our single protein analysis
and these more complicated systems.
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