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ABSTRACT An understanding of the
distance dependence of the lateral dif-
fusion coefficient is useful in comparing
the results of diffusion measurements
made over different length scales, and
in analyzing the kinetics of mobile
redox carriers in organelles. A dis-
tance-dependent, concentration-de-
pendent diffusion coefficient is defined,
and it is evaluated by Monte Carlo

calculations of a random walk by
mobile point tracers in the presence of
immobile obstacles on a triangular lat-
tice, representing the diffusion of a lipid
or a small protein in the presence of
immobile membrane proteins. This
work confirms and extends the milling
crowd model of Eisinger, J., J. Flores,
and W. P. Petersen (1986. Biophys J.
49:987-1001). Similar calculations for

diffusion of mobile particles interacting
by a hard-core repulsion yield the dis-
tance dependence of the self-diffusion
coefficient. An expression for the range
of short-range diffusion is obtained,
and the distance scales for various
diffusion measurements are summa-
rized.

INTRODUCTION

Various cellular mechanisms have been shown to require
lateral diffusion of membrane components (McCloskey
and Poo, 1984; Peters, 1985; Edidin, 1987). The long-
range lateral diffusion of mobile species in a cell mem-
brane can be obstructed by the presence of immobile
species, and the effect of these obstacles can be described
by percolation theory. According to this theory (Stauffer,
1985; Feder, 1988), if the obstacles are immobile and
randomly distributed, the long-range diffusion coefficient
of the mobile species goes to zero when the area fraction c

of obstacles is greater than the percolation threshold cp.
At high concentrations of obstacles, long-range diffu-

sion is blocked, but short-range diffusion is still possible.
The question thus arises, when is diffusion long-range?
Or, more generally, how does the lateral diffusion coeffi-
cient depend on the distance over which diffusion is
measured? These questions arise in both experimental
and physiological contexts.

In measurements of lateral diffusion by fluorescence
photobleaching recovery, diffusion is measured over a

distance comparable with the radius of the photobleached
area (t 1 gm or more), whereas for excimer formation or

other short-range interactions the distance is of the order
of the average initial separation between reactants (typi-
cally 1-10 nm for excimer formation.) As Eisinger et al.
(1986) ,1have shown, the effect of obstacles is much
different in these two cases.

Electron transfer in chloroplasts (Millner and Barber,
1984), endoplasmic reticulum (Gut et al., 1982), and
mitochondria (Hackenbrock et al., 1986; Lenaz and Fato,

1986; Lenaz, 1988) is thought to require lateral diffusion
of mobile redox carriers. The concentration of proteins in
these membranes is high, so that long-range diffusion will
be hindered. But if short-range diffusion is sufficient, a

mobile-carrier mechanism is possible even above the
percolation threshold.

Domains in cell membranes (Kleinfeld, 1987; Hui,
1987) may also influence lateral diffusion (Yechiel and
Edidin, 1987; Cowan et al., 1987; Jacobson et al., 1987;
Wolf, 1988). Domains may result from lateral phase
separation in a lipid or lipid-protein mixture, or from
protein segregation imposed by the cytoskeleton or other
barriers. The treatment presented here applies to domains
which exclude the diffusing species. A different treatment
is required if the tracer can diffuse in both phases.
The topic of long-range versus short-range diffusion

coefficients in lateral diffusion has been discussed quali-
tatively by several authors, including Galla et al. (1979),
Kuo and Wade (1979), McCloskey and Poo (1984),
Hackenbrock et al. (1986), Lenaz and Fato (1986), and
Lenaz (1988). The question has been treated more quan-

titatively for two-dimensional diffusion by Eisinger et al.
(1986), and for three-dimensional diffusion by Gaylor et
al. (1979), among others (Pusey and Tough, 1985). Here
we present a model of two-dimensional diffusion using
Monte Carlo calculations and percolation theory. In the
calculations, lattice sites are randomly obstructed; the
obstructions are identified with immobile integral and
peripheral proteins. A point tracer executes a random
walk on the obstructed lattice, and the diffusion coeffi-
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cient is obtained from the mean-square displacement
(r2(t)) of an ensemble of tracers. A preliminary version
of this work was presented at the 1987 Biophysical
Society meeting (Saxton, 1987a).

METHODS

Monte Carlo calculations were carried out for the diffusion of point
tracers in the presence of mobile or immobile point obstacles on the
triangular lattice as previously described (Saxton, 1987b). Obstacles are
placed at random lattice points at the required concentration. A tracer is
placed at a random unoccupied point and carries out a random walk,
moving to unobstructed nearest-neighbor points. Values of (r2) are
recorded periodically. For each initial distribution of obstacles, at least
100 tracers are used; for the shortest runs, 1,600 tracers are used. The
calculation is repeated for 50-400 initial distributions of obstacles. A
256 x 256 triangular lattice is used, and periodic boundary conditions
are imposed. The logarithmic correction described earlier (Saxton,
1987b) is not used, so that the distance-dependent diffusion coefficients
include contributions from the long-time tail in (r2(t)).

Several calculations are made for each concentration of obstacles,
with different total times and time increments. Typically, D * was
calculated for 1-128 time steps with an increment of 1 step, 1-512 time
steps with an increment of four steps, and so on to 32,768 time steps. For
longer runs, much coarser intervals were used.

For clarity, duplicate points are omitted in the graphs. To show the
statistical error, all data points for c - 0.2 are plotted in Fig. 3 for 10
different runs of five different lengths. Another indication of the
statistical error is the occasional discontinuity in the curves, repre-
senting the transition between separate runs.
A more quantitative error estimate is the value of D *(O,r) = 1. For

704 data points for times between I and - 106, D* = 1.0034±0.0049
(mean ± SD), and 0.9879 c D* ' 1.0195.

In the self-diffusion calculations, particles are placed randomly on the
lattice at the required concentration and carry out a random walk, as
described previously (Saxton, 1987b). A particle can move to any
adjacent site not occupied by another particle.
The Monte Carlo calculations yield the mean-square displacement

r2) of an ensemble of noninteracting diffusing particles as a function
of time t, and D *(r) is then found from Eq. 2. The unit of distance is the
lattice spacing Q, and the unit of time is the reciprocal of thejump rate F.
All diffusion coefficients D* are normalized to one in the absence of
obstacles; the normalization factor is D(O) = rQ2/4.

This section is organized as follows. First, we show
plots of the mean-square displacement (r2(t)) of diffus-
ing particles in the presence of immobile point obstacles
as a function of time, obtained from the Monte Carlo
calculations. Then, we consider the range of short-range
diffusion and present a scaling law for the cluster size
(r2(oo)) at high concentrations of obstacles. Next, we
define and calculate the distance-dependent diffusion
coefficient D*(c,r) and the time-dependent diffusion
coefficient D*(c,t). We then discuss the effect of obstacle
size on the diffusion coefficient, and finally we show the
distance dependence of the self-diffusion coefficient for
point particles.

Values of (r2(t))
At low concentrations of obstacles, all vacancies are
connected by a continuous path and form an infinite
cluster. A tracer can eventually diffuse to any vacancy,
and for long times the mean-square displacement (r2(t))
is linear in time, as shown in Fig. 1 a.
At high concentrations of obstacles, above the percola-

tion threshold cp, only isolated clusters of vacancies are
present. Each tracer is trapped on some finite cluster, and
long-range diffusion is blocked. For large t, (r2)
approaches a finite limit (r2(o)), the average size of a
finite cluster, as shown in Fig. 1 b. This size depends on
the concentration of obstacles and is proportional to the
average radius of gyration of a cluster. The percolation
threshold cp is defined as the highest concentration of
obstacles for which an infinite cluster of vacancies exists.
For the triangular lattice, cp = 1/2 (Stauffer, 1985).

Scaling law for (r2(o))
As shown in the Appendix, the range of diffusion above
the percolation threshold can be obtained from percola-
tion theory:

RESULTS

We consider the random walk of a point tracer in the
presence of immobile obstacles on a triangular lattice.
Obstacles are present at an area fraction c, defined as the
fraction of blocked lattice sites. (This notation is often
used in the lattice gas literature. In the percolation
literature, the fraction of vacancies or conducting sites is
p, the percolation threshold is pc, and the fraction of
blocked sites is q = 1 - p = c.)
To make contact with results of percolation theory, this

paper treats the case of point obstacles. The effect of
obstacle size is discussed briefly, but this problem will be
treated in more detail in a later paper.

(r2(oo) ) = 0.100E -2.5278, (1)

where e = Ic - cpl is the distance from the percolation
threshold. This curve, and Monte Carlo values of
(r2(oo) ), are shown in Fig. 2.

Distance- and time-dependent
diffusion coefficients
We define a normalized, distance-dependent diffusion
coefficient (Gaylor et al., 1979; Havlin et al., 1983) by

D*(c,r) = (r2(t))/t. (2)

At low concentrations of obstacles, (r2 ) is linear in t, and
the definition reduces to the usual distance-independent
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FIGURE 1 Mean-square displacement (r2) as a function of time t for diffusion of a point tracer on the triangular lattice in the presence of immobile
point obstacles. The unit of length is the lattice constant Q; the unit of time is the reciprocal of thejump rate r. (a) Area fractions c of obstacles at and
below the percolation threshold. (b) Area fractions at and above the percolation threshold. Note change in vertical scale. The value of (r2 (ao) ) for c -

0.70 is also shown.

diffusion coefficient D*(c). Here D*(c,r) is normalized so

that D*(O,r) = 1. Numerical values of D*(c,r) can be
obtained directly from the Monte Carlo results shown in
Fig. 1.
The physical meaning of a distance-dependent diffu-

sion coefficient' is as follows. If we produce a labeled
molecule at t = 0 and measure its diffusion over a distance
r, we obtain D*(r). In a photobleaching experiment, the
label is the bleached species; in a pulsed gradient spin
echo NMR experiment, the precession frequency of a

nuclear spin; in a diffusion-coupled chemical reaction, the
chemically reactive diffusing species.

Consider an idealized picture of electron transfer by a

mobile redox carrier. At t = 0, a source molecule transfers
an electron to a carrier. The activated carrier diffuses a

distance r to a sink molecule and transfers an electron to
the sink. The diffusion coefficient is then D*(r). For a

large number of sources and sinks in a steady state, the
same picture holds, but r is the average distance between
source and sink molecules. (In the experiments of Cha-
zotte and Hackenbrock [1988], then, dilution of mito-
chondrial components with exogenous lipid affects the
diffusion coefficient through both r and c.)
We assume ideal labeling: a label that the experimen-

ter can see but the molecules cannot. More formally, a

labeled molecule is distinguishable from an unlabeled
molecule, but the presence of the label has no effect on the
interaction of the labeled species with any other species in
the membrane. Because the interactions are unaffected,

the molecules see no concentration gradient, and self-
diffusion is measured. (The importance of the distinction
between self-diffusion and concentration diffusion is dis-
cussed by Scalettar et al., 1988.)
The closest approach to an ideal label is attained in a

pulsed gradient spin echo NMR measurement. In a
photobleaching measurement, the ideality of the label
depends on the detailed photochemistry of the bleaching
process (particularly whether there is a change in the
charge of the label on photobleaching).

Numerical results for D *(c,r) are shown in Fig. 3. If no
obstacles are present, D *(O,r) = 1 for all r, by the choice
of normalization. At low concentrations of obstacles,
below the percolation threshold, D*(c,r) approaches a

constant value D*(c) as r -, o. This value is the asymp-

totic slope of the corresponding curve in Fig. 1. At high
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'Another definition of D* was used in the preliminary version of this
paper (Saxton, 1987a) and in the percolation literature (Gefen et al.,
1983; Pandey et al., 1984): D*(c, r) = d(r2(t))/dt. At low concentra-
tions of obstacles, the definitions are practically equivalent. At high
concentrations of obstacles, (r2(t) ) -(r2(o) ), and DT* - 0 faster than
D* - (r2(oo) )/t does. Eq. 2 is consistent with the physical picture of
producing a label at t = 0 and measuring its diffusion over a distance r.

FIGURE 2 Theoretical and Monte Carlo values of (r2(o)) as a function
of the distance e from the percolation threshold (see Appendix).
(Squares), Monte Carlo results for site percolation on the triangular
lattice, with Ic - cpl. (Triangles), Monte Carlo results for bond
percolation on the honeycomb lattice, with e = lb - bj. (Solid line),
Scaling law (Eq. 1). (Dotted line), Cluster enumeration for site percola-
tion on the triangular lattice (Eqs. A2 and A3).
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FIGURE 3 Distance dependenceofthe diffusion coefficient at the iindcated oncentrations ofobstacles, for diffusion of a point tracer on the triangular
lattice in the presenmc of immob;l point obsacls. Unlabded curves in a are identified in the expanded plot b. To show the statistical error, individual
data points are shown for c - 0.2, for 10 different nums of five different lengths.

concentrations of obstacles, above the percolation thresh-
old, D*(c,r) - 0 at some finite r(cD); r(c) decreases with
the concentration ofobstacles, as was shown in Fig. 2. In a
continuum model, the limit of D* as r 0 would be

(Gaylor et al., 1979).
We can also take the data of Fig. I and plot D* as a

function of c with time as a parameter, as shown in Fig. 4.
As t increases, D* decreases, until the percolation thresh-
old (cp = 0.50) appears as t -. m. Part of this family of
curves could be realized experimentally. IfD is measured
by fluorescence quenching (Blackweli et al., 1987), the
time parameter in Fig. 4 corresponds to the ratio of the
fluorescence lifetime of the probe to the jump time in the
pure lipid. The limit t - o is measured in photobleaching
experiments.

Effect of obstacle size
Fig. 5 shows the distance dependence of the diffusion
coefficient for point tracers in the presence of immobile

1.0

D

1.0

point obstacles, and hexagonal obstacles of radius R = 1,
2, 4, 8, and 16 (Saxton, 1987b). The fraction of blocked
sites is fixed at 0.3. So the total number of obstructed sites
is constant, but as R increases they are grouped into
fewer, larger hexagons.
As the size of the hexagons increases, the effect of the

obstacles becomes smaller. The D*(r) curve falls off more
slowly, because the average distance between hexagons
increases, and a tracer has to diffuse farther to encounter
an obstacle.
Note the strong dependence of D*(r) on obstacle size,

as was found by Eisinger et al. (1986). Calculations of the
concentration-dependent self-diffusion coefficient of mo-

bile hexagons showed a much weaker dependence on R
(Saxton, 1987b).

Self-diffusion
The results presented so far describe diffusion of point
tracers in the presence of immobile obstacles. Similar

D

0.0 20.0 40.0 60.0 80.0 100.0

c

FIGURE 5 Distance dependence of the diffusion coefficient for diffusion
of a point tracer on the triangular lattice in the presence of immobile
point or hexagonal obstacles. The fraction of blocked points is fixed at
0.3, but they are grouped into hexagonal obstacles of radius R = 0-16.
A 512 x 512 lattice was used in these calculations.
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FIGURE 4 Concentration dependence of the diffusion coeffient at the
indicated times for diffusion of a point tracer on the triangular lattice in
the presence of immobile point obstacles. (a), t - 1; (b), t - 10, (c), t -
102; (d), t - 103; (e), t - 10.
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1.0 ...., I ,. .. . distance dependence of D* will not be strong. But two
c = 0.1 factors could increase the effect. First, protein distribu-

0.8 02 tions are not necessarily uniform; local protein concentra-

0.6 0.3 tions could be above the percolation threshold even if the
D' ---- --- - 0.4 average concentration is not. Second, the estimates are

0.4 0.5 for integral proteins; one must also consider the effect of
_ 0.6 peripheral proteins. If a peripheral protein is tightly

0.2 0 bound to the membrane, it obstructs and is obstructed just
as an integral protein is, so its area fraction must be

0..0 05 1.0 2.0 2.5 included. Loosely bound peripheral proteins will act as

r transient obstacles; their effect is approximately the prod-
uct of their area fraction and the fraction of time they are
bound to the membrane. The published values for the

FIGURE 6 Distance dependence of the diffusion coefficient for self- area fraction of integral proteins are therefore lower
diffusion of point particles on the triangular lattice at the indictd limits on the area fraction of obstacles.
concentrations. Horizontal lines at the right show limiting values for
r-Xo (Saxton, 1987b).

.w * Sol ,_a

calculations can be carried out in which all particles are

mobile, yielding the concentration-dependent, distance-
dependent self-diffusion coefficient, shown in Fig. 6. Here
D *(c,r) falls off very rapidly, and reaches its asymptotic
value (Saxton, 1 987b) within one or two lattice constants.
As before, in a continuum model the value of D*(c,O)
would be one. A theoretical expression for D*(c,r) shows
similar behavior (Abney et al., 1989).

DISCUSSION

Biological membranes
How close are biological membranes to the percolation
threshold? In those membranes for which estimates are
available, the average concentration is below the percola-
tion threshold. Estimated area fractions for several mem-
branes are given in Table 1. These values suggest that the

TABLE 1 Estimated area fractions of Integral proteins

Membrane c Reference

Red blood cell* 0.17 Golan et al., 1984
0.30 Eisinger and Scarlata,

1987
Rod outer segment 0.23 Dratz and Hargrave, 1983
"Average biomembrane" 0.25 Grasberger et al., 1986
BHK cell* 0.28-0.33 Quinn et al., 1984
Mitochondrial inner 0.4-0.5 Sowers and Hackenbrock,
membrane1 1981

*Inside the membrane, the contribution from glycophorin is negligible.
At the surface, the area occupied is significant and depends on the
conformation of glycophorin.
*Endoplasmic reticulum, Golgi, and plasma membrane. It is assumed
that the proteins are cylinders of height 5 nm and density 1.32 g/cm3.
Calculations of c from protein concentrations and diameters are
reviewed by Slater (1987).

Distance scales of diffusion
measurements
In Fig. 2, as the area fraction of obstacles increases, the
range (r2(ao)) of diffusion decreases. The distance r is
given in lattice constants. If we assume that each lattice
point in the triangular lattice corresponds to one phos-
pholipid, and take the lattice spacing Q to be 0.8 nm

(Eisinger et al., 1986), we can translate Fig. 2 into
physical units and find that for c 2 0.6, diffusion is
blocked at distances beyond -5 nm. Thus, in a photo-
bleaching experiment (on a scale -I m) both the diffu-
sion coefficient and the fractional recovery would be close
to zero. But diffusion measurements by excimer forma-
tion would show a nonzero diffusion coefficient, provided
that the concentration of probe was high enough that
more than one probe molecule would be present in a

connected region.
Distance scales are summarized in Table 2. In a

diffusion measurement, the length scale may be deter-
mined by an externally imposed length, the size of the
membrane, or the concentration of interacting species in a
bimolecular process. Many techniques impose a time
scale T instead of a length scale, so that the corresponding
length scale is r = v44Dri for unimolecular processes, and
r ;8~7ii for bimolecular processes.

Typical distances between molecules linked by redox
carriers in mitochondria are 10-30 nm (Hackenbrock et
al., 1986; Lenaz, 1988).

Comparison with experiment
The model predicts that if no obstacles are present, the
diffusion coefficient is independent of distance (apart
from corrections for the long-time tail in the velocity
autocorrelation function, discussed in Methods). The
model therefore does not account for reported differences
in diffusion coefficients of pure lipids depending on the
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TABLE 2 Approximate distance scales of diffusion
measurements

Experiment Length or time scale Distance Reference

Excimer formation Probe concentration 1-10 nm a
Quasielastic scat- Momentum transfer; 2 nm b

tering of cold energy resolution
neutrons

ESR line broaden- Probe concentration 2-8 nm c
ing

Electron-electron Probe concentration 11 nm d
double resonance

Probe reorientation Vesicle size 100-800 nm e
Pulsed gradient Time delay between 0.6-1.1 grm f

spin echo NMR pulses
Spot photobleach- Radius of photo- 0.5-10 um g

ing bleached spot
Pattern photo- Period of pattern 0.5-50 um h

bleaching

a. Eisinger et al., 1986.
b. Pfeiffer et al., 1988; Karger et al., 1988.
c. Trauble and Sackmann, 1972; Davoust et al., 1983.
d. Feix et al., 1987.
e. Smith et al., 1981; Gawrisch et al., 1986.
f. Kdrger et al., 1988.
g. Axelrod, 1985.
h. Koppel and Sheetz, 1983.

method of measurement (Kuo and Wade, 1979; Crawford
et al., 1980; Feix et al., 1987; Pfeiffer et al., 1988). These
differences may well be artifactual, the result of differ-
ences in sample preparation, hydration, temperature,
perturbation of lipids by probe molecules, or calibration.
(ESR and excimer fluorescence measurements, for exam-
ple, yield a collision rate; this is converted to a diffusion
coefficient by assuming a jump distance, typically taken
to be 0.8 nm [Traiuble and Sackmann, 1972].) If the
differences in D*(r) for pure lipids were shown to be real,
the explanation would require a more detailed model,
allowing continuum diffusion and taking lipid structure
into account.

Yechiel and Edidin (1987) measured the diffusion
coefficient of NBD-phosphatidylcholine in fibroblasts by
fluorescence photobleaching recovery. They found that
the diffusion coefficient increased with the spot size of the
laser beam, and reached a plateau at large radii. As the
beam size was varied from 0.35 to 5.0,um, D increased by
a factor of 2, and the fraction of label mobile on the time
scale of the experiment decreased. They attributed these
results to the existence of protein-rich domains f 1 ,um in
diameter.

In contrast, the model predicts that D*(c,r) decreases
with r. Similar results were obtained by Gaylor et al.
(1979) in their Brownian dynamics calculations of
strongly interacting colloidal particles in three dimen-
sions, and by Abney et al. (1989) in their theory of
two-dimensional self-diffusion.

In the model, the probe molecule is assumed to be
excluded from the obstacles. To describe these experi-
ments, the model must be extended to allow diffusion in
both regions and to include the partition coefficient of the
probe between the regions. The potential importance of
the partition coefficient is suggested by the observation of
Yechiel and Edidin (1987) that the mobile fraction of
NBD-phosphatidylcholine depends on the beam radius,
but that of the lipid analogue dil-C14 does not (see also
Wolf [1988]).

Eisinger et al. (1986) measured short-range lateral
diffusion in erythrocytes by formation of excimers of
pyrenedodecanoic acid. The minimum diffusion coeffi-
cient was 2.6 Am2/s, and the best fit was obtained for 5.4
,um2/s. Bloom and Webb (1983) measured long-range
lateral diffusion in erythrocytes by fluorescence photo-
bleaching recovery, and found a value of 0.82 IAm2/s for
the lipid analogue diI[5] (3,3'-dioctadecylindodicarbo-
cyanine iodide). So the observed ratio D*(r -)/
D*(r 0) = 0.15. This ratio is not rigorously established:
no common calibration standard was used in the two
experiments, and the probes used were different. Note
that Bloom and Webb (1983) found that the diffusion
coefficient of rhodamine B phosphatidylethanolamine
was about twice as large as that of diI[5].

But the model predicts a much smaller effect. For band
3 in an erythrocyte, R = 5 (Saxton, 1987b, Eq. 9), and c =

0.17-0.30 (Table 1). Calculations as in Fig. 5 give
D*(r oo)/D*(r 0) = 0.66-0.82. The disagreement

between the model and experiment, if it is real, may well
be the result of the limitations of the model: a purely
hard-core interaction might not be sufficient to describe
lateral diffusion. A hard-disk model of self-diffusion
appears to account for about half of the observed concen-

tration effect (Saxton, 1987b, 1988).2 The diffusion coef-
ficient may be affected by factors not yet included in the
model, such as perturbation of lipid fluidity by proteins,
and the influence of Coulomb forces and lipid-protein
interactions on diffusion.

APPENDIX

Range of short-range diffusion
When the concentration of obstacles is above the percolation threshold,
there is no infinite cluster, and any diffusing particle is trapped in some
finite cluster of vacancies. The particle is free to diffuse in that cluster,
and the range of diffusion is the size of the cluster.
The range of short-range diffusion can be obtained from percolation

theory (Stauffer, 1985, section 5.2). Near the percolation threshold cp,

(r2(oo) = Aof-2p, (Al)

2In Figs. 6 b and 7 b of Saxton (1987b), the gramicidin concentrations
are too high by a factor of 2. This does not affect the conclusions. I thank
M. F. Blackwell for pointing out the error.
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where e - IC cpl is the distance from the percolation threshold, , -

5/36 and v = 4/3 are scaling exponents, and Ao is a constant. (The
fraction of sites belonging to the infinite cluster is P(e) - ep, and the
correlation length is t e -'. The radius of gyration is proportional to the
correlation length, leading to the exponent 2v in Eq. Al; the exponent jt
comes from averaging over cluster sizes.)
At very high concentrations of obstacles, far from the percolation

threshold, (r2(oo) ) deviates from this scaling law. But here the clusters
of vacant sites are small, and we can calculate (r2(oo) ) exactly by
enumeration of clusters. We count the number n(s,t) of clusters with s
vacancies and t perimeter sites, and calculate the radius of gyration
rG(s,t) of each cluster. If c is the probability that a site is blocked, and
I - c is the probability that a site is vacant, then the probability per
lattice site of finding a cluster of s vacant sites surrounded by t blocked
perimeter sites is n(s,t) (I - c)c'. At a given concentration c of blocked
sites, then, the mean-square radius of gyration is

(r2(c)) = sn(s, t)(1 - c)'c'r2(s, t)] ( - c) (A2)

(Feder, 1988, section 7.5; Stauffer, 1985, section 3.2). The range of
diffusion is related to the mean-square radius of gyration by

(r2(c*)) = 2(rG(c)) (A3)

(Mitescu and Roussenq, 1983).
Thus we know the form of (r2(oo) ) as a function of c for c- cp and

for c -1. The results are shown in Fig. 2, a log-log plot of Monte Carlo
values of (r2(oo)) versus f, and the two theoretical limits. In Eq. Al, the
exponent is fixed at its theoretical value, and the constant A0 is obtained
by a least-squares fit to the Monte Carlo data, giving Eq. I in the text.
To obtain the other theoretical limit, we use the program of Redner
(1982) to enumerate clusters up to s - 12, and calculate (r2(oo) ) from
Eqs. A2 and A3.

Also shown in Fig. 2 are values of (r2(ao)) from bond percolation on
the honeycomb lattice (Saxton, 1989). In bond percolation, bonds are
blocked at random, and the percolation threshold b, is defined as the
highest fraction of blocked bonds for which an infinite cluster of
unblocked bonds exists. Then, if b is the fraction of bonds blocked, E =

lb - b¢j. For the honeycomb lattice, with a coordination number of 3,
b- 0.34729. The close agreement of the two sets of points for small eis
expected from the principle of universality: critical behavior is indepen-
dent of the details of lattice structure, and depends only on the
dimensionality of the lattice (Stauffer, 1985).
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