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ABSTRACT The gating kinetics of sin-
gle-ion channels are generally modeled
in terms of Markov processes with rela-
tively small numbers of channel states.
More recently, fractal (Liebovitch et al.
1987. Math. Biosci. 84:37-68) and dif-
fusion (Millhauser et al. 1988. Proc.
Natl. Acad. Sci. USA. 85:1502-1507)
models of channel gating have been
proposed. These models propose the
existence of many similar conforma-
tional substates of the channel protein,
all of which contribute to the observed
gating kinetics. It is important to deter-
mine whether or not Markov models

provide the most accurate description
of channel kinetics if progress is to be
made in understanding the molecular
events of channel gating. In this study
six alternative classes of gating model
are tested against experimental single-
channel data. The single-channel data
employed are from (a) delayed rectifier
K+ channels of NG108-15 cells and (b)
locust muscle glutamate receptor
channels. The models tested are (a)
Markov, (b) fractal, (c) one-dimen-
sional diffusion, (d) three-dimensional
diffusion, (e) stretched exponential,
and ( f ) expo-exponential. The models

are compared by fitting the predicted
distributions of channel open and
closed times to those observed experi-
mentally. The models are ranked in
order of goodness-of-fit using a boot-
strap resampling procedure. The re-
sults suggest that Markov models pro-
vide a markedly better description of
the observed open and closed time
distributions for both types of channel.
This provides justification for the con-
tinued use of Markov models to explore
channel gating mechanisms.

INTRODUCTION

Ion channels are transmembrane proteins that form ion-
selective pores in lipid bilayer membranes. The opening
and closing of these pores may be observed using patch
clamp recording (Hamill et al., 1981). The theory of
stochastic processes (Cox and Miller, 1965) enables one

to relate the apparently random opening and closing of a

channel to its underlying gating mechanism. Description
of the gating mechanisms of ion channels provides one

with important clues about the molecular processes

whereby channel gating is controlled either by transmem-
brane voltage, or by binding of neurotransmitters to
receptor sites.

Hitherto ion channel gating mechanisms have gener-

ally been modeled in terms of Markov processes with
relatively small numbers of open and closed states of the
channel (Colquhoun and Hawkes, 1981, 1982; Horn,
1984). The essence of Markov (M) models is that, for any
single step in the gating mechanism, the transition proba-
bility (i.e., the microscopic equivalent of the rate con-

stant) is time independent.
Considerable progress has been made, both theoreti-

cally and experimentally, in interpretation of channel
gating kinetics in terms of such models. Early studies
employed relatively simple models with, for example, a

single, open state and two closed states of the channel.
However, in several systems, the numbers of open and of

closed states (No and Nc, respectively) have turned out to
be somewhat larger. For example, Kerry et al. (1987,
1988; also see Ashford et al., 1984) have shown that at
least four open states and four closed states are required
to explain the gating kinetics of the quisqualate-sensitive
glutamate receptor channel (qGluR) of locust muscle.
Likewise, McManus and Magleby (1988) have inter-
preted the kinetics of Ca2"-activated K+ channels in
terms of three or four open states and six to eight closed
states, and Blatz and Magleby (1986a, 1989) have inter-
preted the gating of the fast Cl- channel of rat skeletal
muscle in terms of a model with five closed states and two
open states.

More recently, there have been several suggestions that
channel gating mechanisms might not be adequately
described by simple Markov models. Alternative models
proposed have the common feature of stressing that
proteins may exist in many conformational substates
(Frauenfelder et al., 1988), with each substate contribut-
ing to the observed channel gating kinetics. Liebovitch
and colleagues (Liebovitch et al., 1987a, b; Liebovitch
and Sullivan, 1987, Liebovitch, 1989a, b) have investi-
gated fractal (F) models of ion channel gating, as have
French and Stockbridge (1988). McManus et al.
(1988, 1989) and Korn and Horn (1988; also Horn and
Korn, 1989) have questioned the validity of such models.
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Millhauser et al. (1988a, b) have suggested that diffusion
(D) models may provide a better explanation of channel
kinetics than M models. Although, strictly speaking, D
models are still Markov processes, D models differ from
the M models described above with respect to the much
larger numbers of approximately equivalent channel
states that they contain. Millhauser et al. (1988a, b) have
focused on one-dimensional (DI) models in which, for
example, there may be a linear array of several hundred
closed states, only one (or a few) of which is directly
linked to the open state(s) of the channel. Lauger (1988)
has investigated a similar model (D3) in which the many
equivalent closed states form a three-dimensional lattice.

In this paper we describe how we have tested M, F, and
D models against experimental data recorded from two
different channels, one receptor gated and one voltage
gated. We also describe the testing of two other classes of
model, one of which, to the best of our knowledge, has not
previously been investigated in the context of ion channel
gating kinetics. Given that our understanding of protein
dynamics is incomplete, we feel that the only way to
discriminate between alternative gating models is by
careful statistical analysis of single channel data. To this
end we have analyzed the gating kinetics of the two
channels, the locust muscle qGluR (Kerry et al.,
1987, 1988) and a delayed rectifier-type K+ channel from
NG108-15 cells (McGee et al., 1988), in terms of six
different classes of gating models. A preliminary account
of this work has appeared in abstract form (Ball et al.,
1989).

Equipment Corp., Maynard, MA). The files of dwell times were
transferred to a model MC5500 computer (Masscomp, Westford, MA),
which was used for all data analysis. The analysis programs were written
in Fortran 77 and drew on the Numerical Algorithms Group library
(Oxford, UK) of numerical subroutines.

Dwell time histograms
Dwell time histograms were constructed using exponential binning, as
described by Kerry et al. (1988). Briefly, the minimum (t,,) and
maximum (e,,.t) dwell times for a histogram were used to calculate the
bin width ratio

(1)g=- (tmax/tmidn) / s

where m is the number of bins. The ith bin is then defined by

taiings t < tming

and is of width

tmn(g i-)

(2)

(3)
and is centered about

(4)

Exponential binning of the data permits a wide range of dwell times
(e.g., from 0.15 ms to 10 s for the K+ channel data) to be incorporated in
the same histogram. It is also of importance with respect to the fitting of
dwell time distributions (see below). The dwell time histograms were

displayed on log-log plots (McManus et al., 1987; Kerry et al., 1988).
Normalization of the histograms to unit area was carred out to enable
comparison of histograms from datasets of different total numbers of
events.

METHODS

Experimental
Glutamate receptor channels were recorded using the megaohm patch
clamp, as described by Kerry et al. (1987). A two-electrode voltage
clamp was used to maintain the membrane potential at -110 mV, and
the muscle was pretreated with concanavalin A to block desensitization.
The gigaohm patch clamp method (Hamill et al., 1981) was used to
record single, K+ channel openings from cell attached patches of
NG 108-15 cells, as described by McGee et al. (1988). Channel openings
were elicited in response to 20-s depolarizations to 0 mV, the membrane
being hyperpolarized to - 120 mV for 10 s before each depolarization.
Single-channel currents were filtered at 5 kHz and stored either on FM
tape at 30 in./s (qGluR) or on video tape using a PCM (Sony Corp.,
Tokyo, Japan) and VCR (K+ channel).

Data reduction
Single-channel recordings were filtered at 3 kHz on playback, and
analyzed using the dual-threshold crossing method as described by
Kerry et al. (1987). The open and closed (dwell) times were written to
disc. Data were subsequently processed to exclude all dwell times of
duration less than tmin (Colquhoun and Sigworth, 1983) by combination
of the two adjacent intervals with the intervening brief (<tW.) interval.
The data reduction was carried out on a PDP 1/34 computer (Digital

Fitting dwell time distributions
General aspects of fitting dwell time probability density functions
(PDFs) to observed distributions are described here. Details of the PDFs
for different gating models are described in the following Theory
section. Model PDFs were fitted to dwell time histograms using the
maximum likelihood method (see e.g., Colquhoun and Sigworth, 1983;
McManus et al., 1987). Let f(t) represent the dwell time PDF to be
fitted. Then the log-likelihood of observing a set of dwell times ti, i
1, . . ., n for a model with parameter vector is given by

n

L(O) = log TIf(til),
i-I

which can be rewritten (dropping the for convenience) as

n

L = E log f(ti).
i-I

(5)

(6)

To evaluate L in this manner would be rather computationally demand-
ing for the datasets under consideration, where n is of the order of
10,000. Instead, a close approximation to L is obtained by considering
the binned data (see e.g., Blatz and Magleby, 1986b), i.e., if there are m
bins, with bin j containing yj events, centered about tj, the log-likelihood
is given by

(7)Eyj log f(tj).
j_,

1,2n aJo-u l

ti= tnungi-12
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Maximization of L with respect to the parameters than yields the
"best" estimate of the model parameters 9. Maximization was carried
out using a simplex algorithm (NAG subroutine E04CCF). Searching
for the maximum was carried out on a transformed parameter space (O)
where the transformation - h (0) was defined for each model to

prevent evaluation of L for physically meaningless parameter values.
Details of the transformations used are given below.

Having estimated 9, fits to the distributions were checked by superim-
position of the observed (fw) and calculated (fj1) distributions.
Cumulative errors were evaluated (McManus and Magleby, 1988) as
defined by

Ej = f..k(o,k -f l,k1)/ fl,k, (8)
k-i

where Yk is the number of events in bin k.

Discrimination between
alternative models
The primary aim of this study was to discriminate between fits of
alternative forms of PDF to the same observed dwell time distributions
so as to select the model giving the best description of the data. To do
this we used the Schwarz criterion (SC) (Schwarz, 1978; Landaw and
DiStefano, 1984) as a measure of the goodness of fit of model to data. In
the current context the SC is given by

SC =-L + 2Np,r ln M, (9)

where L is the maximum log-likelihood, Npr is the number of free
parameters in the model, andM is the number of observations. Thus - L
is more negative the better the fit, and '/2Np., In M is a positive penalty
term which increases with the number of free parameters in the model.
The SC is therefore closely related to the AIC (Akaike, 1974) employed
by e.g., Horn (1987) to distinguish between alternative channel models,
the difference being that the penaly term is larger in the SC. Ball and
Sansom (1989) presented evidence suggesting that the SC leads to
correct model selection more frequently than the AIC. If the SC's from
fitting model X and model Y to the same data are SCx and SCy,
respectively, then we can define an SC predictor Px/y such that

Px/y = SCy - SCX

= (Ly - Lx) + '/2(Npr,y- Npar.x) In M. (10)

Thus, if model X describes the data better than model Y, Px/y is positive;
if both models describe the data equally well the predictor is zero; and if
model Y gives the better description the predictor is negative.

It is clearly desirable to have some measure of how robust the SC
ranking of models is to sampling variations in the dwell time dataset. To
this end, we have employed the bootstrap resampling procedure of Efron
(1981, 1982), which was first applied to channel data by Horn (1987). It
should be noted that this procedure is based upon the assumption that
the channel dwell times are independently and identically distributed.
Although this is not strictly the case (successive dwell times may be
correlated), it is unlikely to cause problems as models are fitted under
the assumption of independent data values. To perform the bootstrap-
ping, the original vector of dwell times is resampled, with replacement,
to produce, e.g., 50 equivalent resampled datasets. Within each resam-

pled dataset some original dwell times are unrepresented, some are

represented once, some twice, and so on. The expected proportion of
dwell times in the original dataset absent from the resampled dataset is
approximately e-' (Efron, 1982), e.g., of 10,000 dwell times, -3,700
would be absent. Resampling was carried out independently for open
and for closed times. Each of the resampled datasets was used to produce

a binned dataset, which was then fitted with the PDFs for, e.g., model X
and model Y. Thus, 50 values of Px/y were generated. A histogram of
these was constructed and fitted with a normal distribution. The mean

and variance of the normal distribution were then used to estimate the
probability that Px/y > 0, given the bootstrap resampling. In this
manner one may obtain a "significance" level for the SC ranking of two
different models fitted to a particular dataset.

THEORY

In this section we describe the different gating models,
and outline the derivation of the corresponding PDFs. It is
also necessary to take into account the effect of omission
of dwell times less than tmin or greater than tmax on the
agreement between observed distributions and fitted
PDFs. Here we are not concerned with a full correction
for event omission (see, e.g., Roux and Sauve, 1985; Blatz
and Magleby, 1986b; Ball and Sansom, 1988a, b, for
accounts of such corrections for M models) but, rather,
with scaling of the PDFs fitted such that the integral
between tmi and tmax is equal to unity. This is the same

scaling as has been applied to the dwell time histograms.
If the unscaled PDF is f(t), then let the corresponding
cumulative distribution function be F(t). The scaled PDF
is given by

g(t) =
Prob

Sf(t) f(t)
Prob (tmin - t < tmax) F(tmax) - F(tmin)' (11)

and it is this scaled PDF that is fitted to be observed
distribution using the maximum likelihood procedure
outlined above. For convenience we will, in the following
sections, discuss the different models in terms of the
closed time distributions. It should be understood that
exactly parallel arguments can be applied to the open
time distributions.

Markov (M) models
The theoretical background to this class of models has
been described in detail by several authors (Colquhoun
and Hawkes, 1981, 1982; Horn, 1984). The basic assump-
tions are (a) a small number of distinct channel states;
and (b) time-invariant transition rates. If there are N,
closed states, the closed time PDF is the sum of at most N,
exponential decays

(12)
Nc

f(t) (ai/ri) exp (-t/Ti),
i-I

where the parameters ai and ri may be derived from the
closed-state transition matrix (Qr) for the gating mecha-
nism, as described by Colquhoun and Hawkes (1982).
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The scaled PDF is
Nc

EL(atiTi) exp (-tITi)
i-1

g(t) =

ai [exp (-tmin/ir) - exp (-t /.ITi)]
i-I

(13)

and this is used to evaluate the log-likelihood via Eq. 7.
The transformation applied to the parameter space is

(14)02i- (aI' _ 1)1/2

42i = 10 Tr,

where i = 1, . , N, and with the additional constraint
that V = 1. This ensures that all ai values range
between 0 and 1 and that all ri values are positive.

Fractal (F) models
These have been explored in some detail by Liebovitch
and coworkers (Liebovitch et al., 1987a, b; Liebovitch,
1989a). The basic assumption is that once the channel
closes, the reopening rate is dependent on the time spent
closed, such that the rate of reopening declines as the
closed time increases. Thus the Markov condition of
constant transition rates is broken. If the rate of reopen-
ing of the channel is k(t):

k(t)
C 0,

then the time dependence is given by

k(t) -At'D,

where A is the kinetic setpoint and D is the fractal
dimension of the model, falling in the range 1 s D < 2.
Thus, the value of D determines the extent to which the
PDF is stretched over a wider range of closed times than
would be the case for a monoexponential PDF. Note that
D = 1 yields k(t) A, i.e., the simplest M model, with a

single closed state of mean lifetime A -'. The PDF for the
F model is

f(t) At'-D exp [-At2-D/(2 D)]. (16)

For D = 1 this reduces to a single exponential with time
constant 1/A. As D increases the PDF is stretched
towards higher dwell times. The corresponding scaled
PDF is

maximization of L is

= log A

[D-1]1/202 = 2L ' (18)

thus ensuring that A is positive and that D falls in the
allowed range.

Diffusion (D, and D3) models
In these models, once the channel has closed, it is viewed
as diffusing away from the gateway state (that from
which reopening may occur) via transitions among a large
number of equivalent closed states. We have examined
two types of diffusion model: the one-dimensional (DI)
model of Millhauser et al. (1988a, b) and the three-
dimensional (D3) model of Lauger (1988).
The DI model consists of a linear array of closed states

X A A A ,
CNC CNC- I . . . . . . C2 C1 0,

A A A A

where :3 is the rate of opening from the gateway state Cl,
and where X is the interconversion rate between any pair
of closed states. N, is large, e.g., -50 or more. Strictly
speaking this is still a Markov process, albeit with a large
state space, so it is straightforward to set up the closed-
state transition matrix Q,c (see Appendix 1) and hence to
evaluate a, and r1 (i = 1, ..., Nc - 50) for substitution in
Eqs. 12 and 13. Of course, there are in this case only two
free parameters, and X, which are transformed during
maximization of L using

X, = logoa

02 = log A (19)

to ensure positive values for both rate constants.
The D3 model is similar, with : and X defined as before,

but with the closed states arranged on three-dimensional
lattice (Fig. 1). We examined the simplest version of this
model, with N, = 3 x 3 x 3 = 27. By exploiting the
symmetry properties of the transition matrix Q<, it is
possible to reduce this to an equivalent model with Nc =

nine closed states (Appendix 2). The a1 and ri values are
evaluated as before. The same parameter transformations
are employed as for the DI model.

At' -D exp [-At2-D/(2 - D)]
g(t) exp [-At 2 D/(2 - D)] - exp [-Atm ID/(2 - D)]

(17)

The transformation applied to the parameters during

Williams-Watts (W) model
This class of model has been used to explain nonexponen-
tial relaxation phenomena in complex condensed matter
systems, e.g., dielectric relaxation in polymers and glasses
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C C' C

// /

c c~c /~c
z

- Open

c - 7~~~
I/C

c c~u~c

during maximization is

01 = log r

'k2 = (O / - 1) 1/2 (23)

ensuring that r remains positive and ,B within the range
specified above.

0

3 x 3 x 3 lattice

( 27 closed states )

-2

-4

-6

B D= 1.0

D = 1.5
D = 1.9

XI "

FIGURE I Diagram of the three-dimensional diffusion model (D3)
(Lauger, 1988) in its simplest form, with 27 energetically equivalent
closed states. The closed states are arranged in a 3 x 3 x 3 lattice, and
the (- closed) transition rate is A. There is a single, closed gateway state
from which the channel can open, with opening rate ,B.

(Shiesinger and Montroll, 1984; Klafter and Blumen,
1985; Klafter and Shlesinger, 1986). As discussed by
Frauenfelder et al. (1988) glasses are thought to have
similar conformational substate properties to proteins,
and so it seemed appropriate to investigate W models as a
possible explanation of the relaxation of a channel after
closing. Klafter and Shlesinger (1986) have shown that
several different types of underlying molecular processes

give rise to the W model, which is characterized by
stretched exponential relaxation kinetics. In terms of a

channel dwell time PDF this may be written as

0)c0

0

-2

-4

-6

0

-2

-4

-6

C X =0,001
O.o.I

=10.0

E p= 1.0

p 0.5

0.3

0 +1 +2 +3 +4

log t / ms

D X =o.ooi

X -10.0

O.

,~~~~~=o,O,

F D = 0.5

D = 0.02

- D = 0.0008

0 + 1 +2 +3 +4

log t / ms

f(t) =
0

exp [-(t/r)#], (20)

where 0 < 1 and where r is the gamma function. Note
that if d = 1 then this reduces to a simple monoexponen-
tial PDF, which is stretched to cover a greater range of t
values as decreases. The scaled PDF is

g(t) f(t)
(21)

F(tma) - F(tmin)(

where

F(t) = F(//3) exp [-(t/r),] dt, (22)

this integral (an incomplete gamma function)being evalu-
ated numerically. The parameter transformation adopted

FIGURE 2 Calculated PDFs for the six different classes of gating
model. In each case, the scaled PDFs (tmin = 0.1 ms, t,,,x 10,000 ms)
are displayed on a log-log plot. (A) PDFs for three Markov (M) models,
with N = I (a = 1.0, T = 1O ms, solid line); N = 3 (a1 = 0.6, rl = 0.1
ms; a2 = 0.3 T2 = 3.0 ms; a3 = 0. 1, T3 = 100 ms, dotted line); and N- 6
(a, = 0.6, i1 = 0.1 ms; a2 = 0.2, T2 = 0.5 ms; a3 = 0.1, r3 = 2.5 ms;
a4 = 0.05, 74 - 12.5 ms; a5 = 0.04, T5 = 62.5 ms; a6 = 0.01, T6 = 312.5
ms, dashed line). (B) PDFs for three fractal (F) models, with A = 0.1
ms'-' in each case. Solid line D = 1.0; dotted line D = 1.5; and dashed
line D = 1.9. (C) PDFs for one-dimensional diffusion (DI) models, with
N = 100 and /3 = 0.1 ms-' in each case. Solid line A = 0.001 ms-1;
dotted line X = 0.1 ms-'; and dashed line X = 10.0 ms-'. (D) PDFs for
three-dimensional diffusion (D3) models, with N = 3 x 3 x 3 - 27 and
B = 0.1 ms 'in each case. Solid lineX = 0.001 Ims '; dotted lineA = 0.1
ms'1; and dashed line A = 10.0 ms-'. (E) PDFs for Williams-Watts
(W) models, with r 10 ms in each case. Solid line ,B= 1.0; dotted line
,B = 0.5; and dashed line ,B = 0.3. (F) PDFs for expo-exponential (E)
models, with A - 0.1 ms' in each case. Solid lineD - 0.5 ms-1; dotted
line D - 0.02 ms-'; and dashed line D = 0.0008 ms-'.
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A - M Model Fit

E - W Model Flt

-1 0 +1 +2 +3
log t / ms

B - F Model Flt

I~

F - E Model Fit

-1 0 +1 +2 +3
log t / ms

kinetics by Horn (1987). It holds some similarities to the
F model in that the reopening rate of the closed channel is
time dependent

k(t)
C- 0

but in the E model the opening rate decreases exponen-
tially with increasing time

k(t) = A exp (-Dt). (24)

(The A and D nomenclature is used to highlight the
relationship to the F model.) Horn (1987) has suggested
that this may be interpreted in terms of the rate of
reopening of the channel being proportional to the level of
a diffusible substance, the concentration of which
decreases exponentially subsequent to closing. In this
interpretation D is the rate constant for the decline of this
substance, and A is the reopening rate immediately after
closing. The PDF for the E model is therefore

f(t) = A exp (-Dt) exp [A (exp (-Dt) - 1)/D], (25)

which upon scaling for event omission yields:

FIGURE 3 Closed time distribution for qGluR. In each graph the
observed distribution is shown as points with the fitted PDF as the
superimposed curve. The parameters for the fitted curves are in Table 1.
The fits for the six different classes of model are shown. (A) Markov;
(B) fractal; (C) one-dimensional diffusion; (D) three-dimensional dif-
fusion; (E) Williams-Watts; and (F) expo-exponential.

A exp (-Dt) exp [A (exp (-Dt) - 1)/D]
g(t) = exp [A (exp (-Dtmjn) 1)/D]

- exp [A (exp (-Dt.,) I)/DD]
(26)

The parameters are transformed during maximization of
L so that both A and D remain positive using

X, = log A

(27)
Expo-exponential (E) model 2 = log D

This model was originally proposed by Easton (1978) as

an explanation of the macroscopic kinetics of the Na+ and
of K+ currents of squid giant axon. More recently it has
been discussed in the context of single-channel gating

Comparison of predicted PDFs
Fig. 2 illustrates the shapes of the PDFs predicted by the
different classes of model, as seen on log-log scales. For

TABLE 1 GluR closed time PDFs

Model Parameters SC Rank Pd.

M al 0.186 =rz0.453 ms 1.864 x i0' 1 0.921
a2=0.319 T2-7.40ms
a3 = 0.444 7T3 - 23.5 ms
a4= 0.051 r4 146ms

F A = 0.147 msD-1 D - 1.46 1.871 x i0' 2 0.894

DI , B= 4.95 ms1' X 198 ms-' 1.905 x I05 4 0.852

D3 j B1.47ms-' X=0.710ms-' 1.933 x 105 6 0.812

W T = 0.272 ms # = 0.323 1.873 x 105 3 0.945

E A =0.0753ms' D-0.0166ms-' 1.917 x lIO 5 0.974

The model parameters and the SC are defined in the text. Pw is the probability of observation of a closing between the minimum and maximum dwell
time durations (see Eq. 11).
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each model, it is possible to change the model parameters
such that a single-exponential decay is stretched out to
cover a much wider range of dwell times. Thus, in
qualitative terms each model is capable of explaining the
wide ranges of dwell times observed experimentally. So, it
is the more detailed differences in the shapes of the
resultant PDFs that allow us to discriminate between the
models in terms of how accurately they account for the
observed dwell time distributions.

RESULTS

Locust muscle qGluR
Open and closed time distributions derived from qGluR
recordings made in the presence of 0.1 mM glutamate
were analyzed. The recordings were from six separate
membrane patches. After imposition of a minimum dwell
time of tmin = 0.2 ms, the dataset consisted of 48,814
openings. For the open time distribution tmax = 100 ms,
for the closed time distribution tmax = 1,000 ms.

Closed time distribution
Channel-closed times range from 0.2 ms to 1 s. The
observed distribution of closed times (Fig. 3) shows
distinct shoulders at -0.5, 30, and 300 ms, as would be
expected if an M model explains the gating kinetics.
As described by Kerry et al. (1988) the "best" fit to the

closed time distribution for an M model has Nc = 4
exponentially decaying components (Fig. 3 A) The time
constants (Table 1) are relatively well separated, hence
the distinct shoulders in the fitted curve, which corre-

spond well with those in the observed distribution. The
model agrees excellently with the data for both the long-
and brief-duration extremes of the distribution.
The F model also gives a reasonable fit to the data (Fig.

3 B), but the frequency of long closings is underpredicted.
The fractal dimension, D = 1.46, is midway between the
two limits, thus stretching the predicted PDF out over the
range of qGluR closed times. The lower value of P0,,b (the
probability of a closed time duration falling between tmin
and tmax) than that for the M model (Table 1), reflects the
greater frequency of omission of brief closings for the F
model fit.
The two diffusion models yielded less convincing fits to

the data (Fig. 3 C and D). Both considerably underesti-
mated the frequency of long duration closings. The fit for
the DI model had X >> /. This corresponds to the situation
in which, once closed, the channel rapidly "diffuses"
amongst the closed states before (eventually) reopening.
This corresponds to a case explored in detail by Mill-
hauser et al. (1988a) who predicted that under such
conditions, the PDF would be approximately proportional
to t-1/2 for dwell times of intermediate duration. The
log-log slope at t = 0.2 ms for the PDF is -0.6, which is
in agreement with this prediction. The log-log slope of the
observed distribution for longer duration closings (30-
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FIGURE 4 Open time distribution for qGluR. (A) The observed distribution is shown with the PDFs for the four best-fitting models (M, F, W, and E).
The parameters for the curves are given in Table 2. (B) The corresponding cumulative error curves. (C) The distributions of SC predictors for the F,
W, and E models compared with the M model (the solid squares represent the heights of the bars of the predictor histograms), along with fitted
normal distributions (see Table 3).
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TABLE 2 GluR open time PDFs

Model Parameters SC Rank P.W

M al = 0.402 T, = 0.440 ms 5.250 x 104 1 0.771
a2 = 0.523 r2- 1.26ms
a3 = 0.075 =3 3.01 ms

F A - 0.873 msD-' D = 1.28 5.255 x 104 3 0.680

DI ,B = 0.909 ms' X = 0.0131 ms-' 5.388 x 104 4 0.827

D3 = 0.887 ms-' X = 0.00427 ms' 5.390 x 104 5 0.819

W r 0.304ms # = 0.585 5.251 x 104 2 0.737

E A = 1.20ms-' D=0.417ms-' 5.251 x 104 2 0.738

1,000 ins) is -2.5, which is inconsistent with the significantly better fit. Given the pronounced shoulders in
predictions of Millhauser et al. (1988a). This discrepancy the observed distribution, this is not altogether surpris-
presumably underlies the failure of the DI model to ing.
account for the long closings.
The D3 model also yields a poor fit to the long closings Open time distribution

(Fig. 3 D). For this fit ,f3 X, i.e., immediately after
closing, the channel has approximately equal probabili- The observed qGluR open time distribution is illustrated
ties of reopening and of "diffusing" into the closed-state in Fig. 4 A. It is stretched over a greater time range than
lattice. for a single exponential distribution (compare with Fig.

Turning to the W model (Fig. 3 E), this adequately 2 A), but there are no distinct shoulders. The open times
accounts for both brief and long closings, but fails to fit range from 0.2 to -30 ms in duration.
the shoulders on the distribution. The value adopted by The M model fit has N. = 3 components, as originally
d = 0.323 sufficiently stretches the exponential distribu- noted by Kerry et al. (1987). The time constants are
tion to cover the range of closed times. relatively close together (Table 2), which is consistent

Finally, the E model fit (Fig. 3 F) is also stretched with the absence of pronounced shoulders in the distribu-
across the range of closed times, by a combination of low tion. The M model PDF fits the data well, for both long
values for both A and for D. However, the observed and for brief openings.
frequencies of both brief and long closings are greatly Three other models (F, W, and E) also give reasonable
underpredicted. fits to the data (Fig. 4 A), although all three predict the
The six different fits to the qGluR closed time distribu- frequency of long openings less accurately than does the

tion may be ranked by their SC's. This reveals the M M model. Examination of the cumulative error curves
model to be the best fit (rank 1), with the F model ranked (Fig. 4 B) suggests that the M model gives the best fit,
second. The results of bootstrap analysis of the model with W and E next best, and then the F model. On the
rankings are discussed below. Examination of the SC basis of the SC's one would adopt the same ranking
values for the M and F fits (Table 1) reveals a consider- (Table 2). The W model fit has d = 0.585, thus stretching
able difference, suggesting that the M model gives a the exponential, but to a lesser extent than for the closed

TABLE 3 Predictor ratios from boostrap analysis

Predictor ratio (± SD)

Dataset PM/F PM/D, PM/D3 PM/W PM/E

GluR, closed times 742 4070 6860 963 5300
(±53) (±140) (±220) (±61) (±130)

GluR, open times 43.2 1500 1530 6.2 13.5
(±10.8) (±50) (±50) (±7.7) (±8.6)

K channel, closed times 308* 114 2220* 2170 18700
(±30) (±16) (±100) (±130) (±500)

K channel, open times 284 1770 187 491 1170
(±34) (±80) (±21) (±33) (±210)

50 bootstrap resampled datasets were used in all cases except two: * where 39 and * where 41 were used respectively.
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times. The value ofD = 1.28 for the F model again gives a

small deviation from a single-exponential PDF.
The two diffusion models (DI and D3) both yield poor'

fits (Table 2) to the data. In both cases X << d which means

that the open states other than the gateway state are

rarely sampled, and so the PDFs are approximately
equivalent to single exponential decays. The DI fit was for
N. = 50 open states. We also fitted a D1 model with 100
open states, but no significant improvement was

obtained.
To distinguish between the M, F, W, and E model fits

to the qGluR open time data, the bootstrapping procedure
was employed, the results of this analysis being presented
in Fig. 4 C, and in Table 3. The distributions of PM/X in
Fig. 4 C are all centered to the right of zero, which is
consistent with the M model providing the best descrip-
tion of the data. By fitting normal curves to the predictor
distributions, one can estimate the probability, given the
bootstrap resampling, that the M model provides a better
description of the data. For the F model, PM/F = 43.2,
with probability 1 - 3.2 x 10'5. For the W model,
PM/W = 6.2, with probability 0.79. Finally, for the E
model, PM/E = 13.5, and the probability is 0.95. Conse-
quently, we have =80% "confidence" that the M model
fits the data better than its nearest rival. Thus, use of the
bootstrap resampling distribution of the SC predictor
allows a decision to be made, even in the situation where
the difference in the fits of two models is small.

NG108-15 K+ channels
Delayed rectifier-type K+ channel openings were

recorded in response to a 20-s membrane depolarization.
All events other than the initial and the final closed times
are included in the dataset, which derives from two
membrane patches. After setting tmin = 0.15 ms, the total
number of openings is 14,642. For the closed times, tma =

s; for the open times tmax 1000 ms.

Closed time distribution
The observed closed times range from 0.15 ms to 10 s in
duration (Fig. 5 A). The distribution has several small
shoulders, although they are not marked. On a log-log
scale, the slope of the distribution is -1.55 (correlation
coefficient r = -0.997).

At least N, = 6 closed states are required to fit an M
model to the data (McGee et al., 1988). The time
constants of the PDF (Table 4) are relatively close
together, especially for the faster components, which is
consistent with the absence of pronounced shoulders on

the distribution. The value of Pob, = 0.509 shows that
-50% of the closings are briefer than tmin. This is partially
a result of adopting a high value of tmin during data

reduction. This was necessary given the low (18 pS)
conductance of the channel.

Tables 3 and 4 show that the only other models giving
satisfactory fits to the K+ channel data are F and D1. The
resultant fits are shown alongside the M model fit in Fig.
5 A. All three models account for the whole range of
closed times. The cumulative error plots (Fig. 5 B) sug-

gest a model ranking M > DI > F, which is consistent
with that based on the SC values (Table 4).
The F fit requires more detailed examination. The

fractal dimension is very close to the upper limit
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FIGURE 5 Closed time distribution for K+ channel. (A) Observed
distribution and PDFs for M, F, and DI models (see Table 4). (B) The
corresponding cumulative error curves. (C) SC predictor distribution
for comparison of M and D, models.
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TABLE 4 K + channel closed time PDFs

Model Parameters SC Rank Po,

M a, =0.568 T,=0.122ms 2.151 x 104 1 0.509
a2 = 0.226 12 - 0.347 ms
a3 = 0.101 13 - 1.86 ms
4 = 0.067 To4= 12.0 ms
as -0.029 rs= 116ms
6 = 0.008 T6 - 121Oms

F A = 0.543 msD-' D - 1.985 2.178 x 104 3 1.06 x 10-"

DI, 6.22 ms' A- 2.81 ms-' 2.156 x 104 2 0.535

D3 =2.35ms-' A=0.0843ms-' 2.321 x 104 4 0.711

W r = 1.20 x 10-6 ms = 0.152 2.413 x 104 5 0.543

E A = 0.300 ms-' D = 0.0290 ms-' 3.936 x 104 6 0.956

(D 1.985). One result of this is that numerous brief
closings are predicted, giving P0b = 1.06 x 10-'5. This is
somewhat unrealistic, as it is easy to show (e.g., by
simulation) that the response time of the patch clamp
amplifier would reduce such brief closings to a "blur" of
noise which would be readily detected at the experimental
level. Inspection of the original single channel recordings
(see, e.g., Fig. 2 of McGee et al., 1988) shows this not to
be the case. On the basis of this, plus the cumulative error

plot (Fig. 5 B) the F model is excluded from further
consideration.
The DI model provides a somewhat better description

of the data. The model parameters (Table 4) are such that
- X, i.e., there are approximately equal probabilities of

the channel reopening or of diffusing among the array of
closed states just after the channel has closed. Millhauser
et al. (1988a) predicted that under such conditions the
PDF would be approximated to by a r-3/2 power function,
which is consistent with the log-log slope of the observed
distribution (see above). The bootstrap procedure is
therefore of some importance in distinguishing between
the M and Di models. This yielded a mean predictor value
of PM/D, = 114, corresponding to a probability of 1 -

5.2 x 10-'3. Note that the D, fit corresponds to N, = 100
closed states. A corresponding fit with Nc = 50 states was
almost identical. It therefore seems unlikely that increas-
ing the number of closed states to e.g., 200 would yield a

significantly better fit, although we have not explored this
in detail. Thus, the M model appears to provide the best
description of the K+ channel closed time data.

Open time distribution
The open time distribution is shown in Fig. 6 A. There is a
clear excess, over a single exponential, of brief openings,
and also a small shoulder at -100 ms. The openings range
from 0.15 to something over 100 ms in duration.

The M model fit to the data confirms the earlier
analysis of McGee et al. (1988) in requiring No = 3
components. The fit is excellent, both for the long and for
short openings. Model F (Table 5) yielded an adequate fit
to the data, with fractal dimension D = 1.34 (cf. D = 1.28
for qGluR open times), but did not reproduce the should-
ers on the observed distribution. Models DI, W, and E
gave poor fits to the data. The most convincing alternative
to the M model was the D3 model, the fit of which is
shown in Fig. 6 A. The D3 fit reproduces the excess of
brief openings, but does not fully account for the long
openings, as can be seen by inspection of the cumulative
error plot (Fig. 6 B). The parameter values (Table 5) are

such that f, - X. Interestingly, this differs from the two fits
obtained by Lauger (1988), for nicotinic acetylcholine
receptor and for K+ channel closed times, in both of which
cases ,8/X % 30. Application of the bootstrap analysis
(Fig. 6 C) gives PM/D3 = 187, corresponding to a probabil-
ity of - 2.7 x 1 0`9. It would therefore seem reasonable
to conclude that the M model gives the best fit to the
data.

Overall ranking of models
The fits given by the six models to the four dwell time
distributions were all analyzed by the bootstrap procedure
to yield distributions of the SC predictors, the means and
standard deviations of which are given in Table 3. The
standard deviations provide a measure of the extent to
which the predictor value is dependent on the dataset
sampling errors. The mean predictor values were used to
rank the six models for each dataset. The resultant model
rankings are listed in Table 6. The only consistent pattern
that emerges is that the highest rank is always given to the
M model. The second rank position is shared between the
F, W, D1, and D3 models. So we conclude that the gating
kinetics of both channels are best described by the stan-
dard M models.
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account for the allosteric properties of enzymes and other
A proteins (Monod et al., 1965).

0 F > |Other models, the "not M" models (Fig. 7), are consis-
tent with the existence of a large number of conforma-
tional substates of similar energy. The F, D, W, and E

ct. -2 \models discussed in this paper fall into this class.
a' { \ | Although the initial definition of the F model (Liebovitch
0 et al., 1987a) may appear to be something of an algebraic

-4 L \ I convenience, Liebovitch (1989a) has recently pointed out
the relationship of this class of models to D-type models.

n-\ M Fractal models of the dynamics of condensed matter
"3 \t systems have been discussed in more general terms by

-6 Shlesinger (1988). Lauger (1988) has suggested that the
- 1 0 + 1 +2 +3 multiple closed states of D models may represent migra-

tion of a side-chain packing defect through the channel
l og t / ms protein molecule. Although the W model is more empiri-

cally based, Klafter and Blumen (1985), for example,3 I I have pointed out that a variety of microscopic mecha-
CD B D3 nisms, including defect diffusion, may underly the

CD /observed kinetics. It has been stated that evidence sup-
1 - M~ | porting a large number of conformational substates comes

m f Mfrom a variety of studies on protein molecules. Although
LLJ, , this is true, to argue that this implies that channel gating

0 kinetics will reveal such substates is to take an oversim-
- 1 0 + 1 +2 +3 plistic a view of protein dynamics. In their recent review,

log t / ms Frauenfelder et al. (1988) point out that proteins should
be viewed as existing in distinct conformational states,

40 | each of which gives rise to a hierarchy of conformational
c substates (CSs). At physiological temperatures, the CSs

W20 would be expected to interconvert rapidly, and so would
be unlikely to be detectable on the time scale of channel

0 0, 60 . 180,240 ,gating kinetics. For instance, one reason for supposing the
existence of CSs is the observation of nonexponential

0 60 120 180 240 300 ligand rebinding kinetics after, e.g., photodissociation of
PM/D carbon monoxide from myoglobin. However, such nonex-

M/D3 ponential ligand binding kinetics are generally measured
at low temperatures (1600K and below). At 3000K,
nonexponential relaxation might only be expected on a

FIGURE 6 Open time distribution for K+ channel. (A) PDFs fitted for nonexonal relaxto It only be exected ona
M and D3 models compared with the observed distribution. (B) Cumu- time scale of 100 ps or less. It would seem, therefore, that
lative error curves for the two fits. (C) Distribution of SC predictor one cannot provide conclusive support for not-M models
PM/D3 of channel gating on the basis of studies of protein

dynamics. One must resort, therefore, to statistical analy-
sis of experimental channel data.

By such statistical analysis we have provided support
DISCUSSION for the M model of channel gating. A similar conclusion

has been reached by Korn and Horn (1988) and by
In general terms, there are two types of models that may McManus et al. (1988), both ofwhom compared M and F
be used to interpret the gating kinetics of ion channels models. Therefore, independent analyses of dwell time
(Fig. 7). The Markov (M) model, dating back to Hodgkin distributions for at least seven different ion channel
and Huxley (1952) and to Fitzhugh (1965), attempts to species have provided support for M models. This conclu-
explain channel gating kinetics in terms of transitions sion is supported by several studies of correlations
between a small number of discrete conformational between successive channel dwell times (Ashford, et al.,
states. As such, it is analogous to, for example, the use of 1984; Labarca et al., 1985; McManus et al., 1985; Kerry
models involving discrete conformational states to et al., 1987, 1988; Ball et al., 1988; Blatz and Magleby,

Sansom et al. Ion Channel Gating Models
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TABLE 5 K + channel open time PDFs

Model Parameters SC Rank Pd.

M al 0.214 =l 0.302 ms 4.325 x 104 1 0.903
a2 = 0.320 T2 = 5.02 ms
a3 - 0.466 73 - 13.7 ms

F A = 0.197 msD-1 D = 1.34 4.347 x 104 2 0.919

DI ,B=0.16ms-' X 0.00112ms1 4.483 x 104 5 0.978

D3 ,B = 4.25 ms-' X = 1.68 ms-' 4.347 x 104 2 0.703

W r - 0.917 ms , 0.451 4.366 x 104 3 0.951

E A - 0.164 ms-' D - 0.0522 ms-' 4.417 x 104 4 0.933

1989). This phenomenon is readily explained in terms of
M models with multiple-gateway states (Fredkin et al.,
1985; Colquhoun and Hawkes, 1987; Ball and Sansom,
1988b). By using a semi-Markov framework (Cinlar,
1969), the other models considered could be modified to
contain multiple-gateway states in order to explain such
correlations. Furthermore, the diffusion models could be
modified so that, e.g., the closed-closed transition rates
were not all exactly equal. Although this might improve
the fit of such models to the data, it would tend to blur the
distinction between diffusion models and "classical"
Markov models.

In fitting the PDFs for the different models to the
observed distributions, we have only made a preliminary
correction for the effect of omission of brief openings and
closings. To make a more rigourous correction, it would
be necessary to extend the theory of event omission that
has been worked out for M models (Roux and Sauve,
1985; Blatz and Magleby, 1986b; Ball and Sansom,
1988a) to the other classes of models. This could be done
using the theoretical framework described by Milne et al
(1988).

Overall, both our analysis and that of other workers in
the field (Horn and Korn 1989; McManus et al., 1989)
support the continued use of M models to interpret
channel gating kinetics. This is of some importance,
inasmuch as powerful methods of fitting M models to
experimental data have been developed Horn and Lange,
1983; Ball and Sansom, 1989). The stage has been
reached at which analysis of channel data in terms of M
models is beginning to provide important information
concerning the molecular events controlling channel gat-

TABLE 6 Summary of model rankings

Dataset Model ranking

GluR,closed times M > F > W > DI > E > D3
GluR,opentimes M > W > E > F > DI > D3
K+channel,closed times M > DI > F > W > D3 > E
K+channel,opentimes M > D3 > F > W > E > DI

Channel
Open

I

III

III

Ct.

Channel
C osed

M

Ct4

not M

NA. A\AA\
CN

FIGURE 7 Diagram illustrating the difference between M and "not M"
gating models. The peaks and troughs represent the energy profile of the
channel, for both the open (left) and closed (right) states. In the M
models, the relatively small number of channel states (troughs) are of
different energy levels and are separated by relatively high activation
energies (peaks). In the not-M models there are many energetically
equivalent substates, with low activation energies separating them for
one another. It has been assumed that there is a single, open gateway
state and a single, closed gateway state, and that the activation energy
barrier separating them is relatively high. Three situations are illus-
trated. (1) Both the open and closed states are described by M models;
(11) only the open states are described by an M model; and (III) both the
open and closed states are described by not-M models.
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ing, e.g., the pharmacology of receptor-channel activation
by different agonists (Papke et al., 1988; Ogden et al.,
1987). Answering questions about the conformational
substates of channel proteins, however, may require the
development of more subtle probes than those provided by
single-channel recording.

APPENDIX 1

Derivation of the transition matrix
for the D, gating model
The transition probability rates for a channel gating model may be
summarized in a transition rate (Q) matrix, as described by, e.g.,
Colquhoun and Hawkes (1981, 1982). This is an N x N matrix, where
N is the total number of channel states, where q,i i : j is the transition
rate for step i-j, and qii = - 2 ioqi , i.e., the leading diagonal gives the
decay rates of the channel states. The Q matrix may be partitioned into
submatrices

Q= [QIOQO] (A1)

such that Qc, describes the closed-state to closed-state transitions, etc.
This partitioned form of the Q matrix may then be used to (numerically)
evaluate the a,'s and ri's of the dwell time PDFs (see, e.g., Colquhoun
and Hawkes, 1981, for details).
The DI gating model can readily be expressed in terms of the relevant

Q matrix. If, for example, we consider the gating mechanism:

0 X A A A
0.- Cl C2 ..... I CNC,

where the closed states are numbered C, 1 to CNC = NC, then the rules
for generating QO, (where (QO )1.j is here the i, jth element of Q.Z) are:

QCc)Ij = -Q + X)

(QM) i,=-2X i=2,.. N,

(Q,c)i,i+=I i=1,...,N - 1

(QC)Ji.1i = X i = 2,..*, Nc (A2)
with all other elements of Q,, set to zero. Once Q0,, has been generated,
the corresponding PDF can be evaluated using the standard methods.

APPENDIX 2

Derivation of the transition matrix
for the D3 gating model
Here we deal with the derivation of the Q;c matrix for a 3 x 3 x 3 D3
gating model. Extension to the 5 x 5 x 5 and higher-order models is
straightforward.
The simplest way to generate the Qcc matrix for the mechanism

illustrated in Fig. 1 is to devise a set of rules comparable to those in Eq.
A2, yielding a 27 x 27 matrix. However, by consideration of the
symmetry properties of the gating mechanism (Fig. 8), one can arrive at
a simpler 9 x 9 Q,, matrix. This saves on subsequent computing time.

9 6 3
8 5 2

4J ... Open

8 5 2

9 6 3
Laqer 3 Layer 2 Laqer 1

Closed States

FIGURE 8 Diagram of the nine types of closed state derived from the
3 x 3 x 3 D3 gating model by symmetry considerations. Thus there is
one each of type 1, type 4, and type 7 states, and there are four each of
types 2, 3, 5, 6, 8, and 9. So, for example, there are four ways in which
the channel can move from a type 1 state to a type 2 state but, once the
channel occupies a type 2 state, there is only one way in which it may
move back to a type 1 state. Hence, (Q,O), 2= 4X but (Q,)2.1 = X (see Eq.
A3).

The Q<c matrix that thus arrived at is:

-(5+0) 4 0 1 *0 0 0 0 0

1 -4 2 0 1 0 0 0 0

0 2 -3 0 0 1 0 0 0

1 0 0 -6 4 0 1 0 0

Q'c = 0O 1 0 1 -5 2 0 1 0

O 0 1 0 2 -4 0 0 1

O 0 0 1 0 0 -5 4 0

O 0 0 0 1 0 1 -4 2

O 0 0 0 0 1 0 2 -3

(A3)

The corresponding PDF is then generated by the standard methods.
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