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ABSTRACT Quantitative ion channel
model evaluation requires the estima-
tion of voltage dependent rate con-

stants. We have tested whether a

unique set of rate constants can be
reliably extracted from nonstationary
macroscopic voltage clamp potassium
current data. For many models, the
rate constants derived independently
at different membrane potentials are

not unique. Therefore, our approach
has been to use the exponential volt-
age dependence predicted from reac-

tion rate theory (Stevens, C. F. 1978.
Biophys. J. 22:295-306; Eyring, H., S.
H. Lin, and S. M. Lin. 1980. Basic
Chemical Kinetics. Wiley and Sons,
New York) to couple the rate constants

derived at different membrane poten-
tials. This constrained the solution set
of rate constants to only those that also
obeyed this additional set of equations,
which was sufficient to obtain a unique
solution. We have tested this approach
with data obtained from macroscopic
delayed rectifier potassium channel
currents in voltage-clamped guinea pig
ventricular myocyte membranes. This
potassium channel has relatively simple
kinetics without an inactivation process
and provided a convenient system to
determine a globally optimized set of
voltage-dependent rate constants for a

Markov kinetic model. The ability of the
fitting algorithm to extract rate con-
stants from the macroscopic current

data was tested using "data" synthe-
sized from known rate constants. The
simulated data sets were analyzed with
the global fitting procedure and the
fitted rate constants were compared
with the rate constants used to gener-
ate the data. Monte Carlo methods
were used to examine the accuracy of
the estimated kinetic parameters. This
global fitting approach provided a use-

ful and convenient method for reliably
extracting Markov rate constants from
macroscopic voltage clamp data over

a broad range of membrane potentials.
The limitations of the method and the
dependence on initial guesses are

described.

INTRODUCTION

Ion channel gating models are useful for quantitatively
describing gating behavior and drug-channel interactions,
providing clues to channel structure, and serving as aids in
the design of experimental tests to further probe their
behavior (Hodgkin and Huxley, 1952; Armstrong, 1981;
Hille, 1977; Hondeghem and Katzung, 1977; Stuhmer et
al., 1989). Most voltage-gated ion channels in excitable
cells can be described in terms of Markov models where
the open and closed states are interconnected by rate
constants which are functions of membrane potential but
are not functions of time (Ross, 1972; Colquhoun and
Hawkes, 1983; Korn and Horn, 1988; McManus et al.,
1988; for exception, see Liebovitch and Sullivan, 1987).
The voltage dependence of the rate constants arises from
sensitivity of the channel protein conformational changes
to the transmembrane electrical field. Thus, either formal
charges or dipoles within the protein structure are
influenced by changes in the membrane potential and the
rate constants characterize the energy barriers separating
the channel conformers.
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Horn and colleagues (1984, 1987) have recently made
significant progress in the development and selection of
kinetic models using single-channel data. While single-
channel observations can, in some cases, provide a direct
measure for specific rate constants in a kinetic model, it is
often impossible to obtain sufficient data to fully deter-
mine all the kinetic parameters for a gating model over a

wide voltage range (Horn and Vandenberg, 1984; Kunze
et al., 1985). Bauer et al. (1987) recently pointed out that
stationary single channel data are "not a particularly rich
source of information about the kinetics of channel gat-
ing" when trying to determine rate constants for complex
gating models; and that nonstationary data provide an

additional source of kinetic information. They suggest
that for ion channels with only one open state there is
sufficient kinetic information in the observed open chan-
nel probability time course to extract rate constants from
a Markov model provided certain conditions can be
fulfilled. Appropriately scaled macroscopic current repre-

sents the average nonstationary probability of channel
opening as a function of time at a particular membrane
potential, and thousands of single channel records may be
required to obtain the the same kinetic information.
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Furthermore, some ion channels, such as delayed rectifier
potassium channels in heart, are present in low numbers
in the cell membrane (Clapham and DeFelice, 1985), and
are therefore very difficult to characterize using single
channel recording methods. Thus, an approach for
extracting useful kinetic information from macroscopic
data is needed.
Two central questions are addressed in this paper: Can

a unique set of rate constants be reliably extracted from
nonstationary macroscopic voltage clamp current data?
To what degree of certainty can the rate constants be
estimated? It should be pointed out that we have not
attempted to select among various models. This structural
identifiability problem is addressed very elegantly by
Horn and colleagues (1984, 1987) for certain ion channel
models.
To address these questions we have developed a global

fitting procedure to extract the rate constants of a given
Markov model from macroscopic ion channel currents in
voltage-clamped membranes. The term global implies
using comprehensive data sets which include experimen-
tal information from a broad range of conditions (mem-
brane potentials, etc) to limit the possible solutions for the
model system. This assumes that there is information
contained in the data that can constrain a fit and that this
information is lost if a model is fitted at each membrane
potential individually. Thus, the fitting algorithm selected
rate constants from the solution set of all possible rate
constants that can describe the data by constraining the
possible solutions to be exponential functions of mem-

brane potential as predicted from reaction rate theory
(Eyring et al., 1980; Stevens, 1978). This approach
reduced the number of possible solutions and allowed
convergence to a unique set of rate constants that fulfill
the constraints of the data and the predefined voltage
dependence. To test this global fitting approach for
kinetic analysis of macroscopic currents, we have ana-

lyzed whole-cell delayed rectifier currents measured in
voltage-clamped guinea pig ventricular myocytes with the
three-state Markov model described by Bennett et al.
(1985, 1986). This simple model was used because the
analytical solution is known. However, because the ana-

lytical solutions are not possible for most other more

complicated channel models, we used numerical integra-
tion methods for the sake of generality in extending this
approach to more complex models. Using this model, we

first fit K currents from guinea pig ventricular myocytes
to obtain reasonable parameters for further simulations.
The fitted parameters were then used to synthesize
ensembles of macroscopic currents. These simulated data
sets were then subjected to the global fitting procedure to
test whether the known rate constants could be extracted
reliably. Monte Carlo methods (Motulsky and Ransnas,
1987; Horn, 1987) were used to determine the accuracy

with which the rate constants could be extracted from
whole cell currents by using the global fitting approach.
The "robustness" of the method was tested using ran-

domly selected initial guesses during multiple fitting runs
to determine the ability to converge to a unique solution.

METHODS

Cell preparation and voltage clamp
experiments
Guinea pig ventricular myocytes were obtained using a
Langendorif perfusion technique similar to that described
by Mitra and Morad ( 1985). Isolated cells were stored for
subsequent use at 37°C as described elsewhere (Roden et
al., 1988). To isolate potassium (K) currents and to
eliminate non-K currents during depolarizing voltage
steps, cells were superfused in a solution containing (in
millimolar) N-methyl-d-glucamine 150, KCI 4.5, MgCl2
2.0, CaCl2 0.1, CdCl2 0.1, glucose 12.5. The pH of this
solution was 7.4 and the temperature was 230C. LaCl3
(30 ,uM) was added to the external solutions to remove
component(s) of a time-dependent current that contami-
nates the delayed rectifier current (Balser and Roden,
1988). Sodium currents were eliminated by the replace-
ment of sodium by N-methyl-d-glucamine. Calcium-
dependent currents were eliminated by the combination
of a low external calcium concentration, the presence of
the Ca channel blockers Cd++ and La'++, and intracellu-
lar EGTA. Macroscopic currents were measured using
the standard whole-cell configuration of the patch-clamp
technique (Hamill et al., 1981). Patch electrodes mea-
sured 4-8 Mg and contained (in millimoles per liter) KCI
150; MgCl2 2; N-2-hydroxy-ethyl-piperazine N'-2-etha-
nesulfonic acid (Hepes) 10; CaCl2 1; ethylene glycol-
bis-(,B-aminoethyl ether N,N,N',N'-tetraacetic acid
(EGTA) 1 1; MgATP 5; K2ATP 5. The pH was adjusted
to 7.2 with potassium hydroxide. The largest K currents
in these experiments were usually <300 pA and required
>1 s to reach this magnitude. If the pipette access
resistance tripled after GO seal formation and patch
rupture, then without any series resistance compensation
the voltage drop across the access resistance was <8 mV.
The effects of this series resistance could be partially
compensated using series resistance compensation cir-
cuitry in the Axopatch amplifier which reduced the actual
voltage errors to <5 mV. Whole cell current records were
filtered at 50-100 Hz (-3 dB; four-pole Bessel filter),
digitized at 150-200 Hz and stored on the hard disk drive
of an IBM PC/AT computer. The digitized records were
subsequently digitally filtered at 10 Hz before analysis.
This filtering did not compromise measurement of the
channel gating kinetics; the smallest system time constant

434 Biophysical Journal Volume 57 March434 Biophysical Journal Volume 57 March 1990



(fastest component) corresponded to a frequency compo-
nent of <5 Hz.

Models
Analytical solutions for the rate constants of all but the
simplest state models cannot be derived without making
simplifying assumptions. Hence, the evaluation of realis-
tic models of channel gating requires numerical methods.

In the general case of a Markov gating model with N
states, the probability of occupying a particular state, Pi,
at any time, t, and voltage, V, is determined by a system of
linear first-order differential equations. For such a gating
model, where each state is potentially connected to all
other states, the equations are as follows:

N

dP,/dt= E [kj15 Pi(t, V)]
j_-
N

+ E [k,j * Pj(t, V)] i = 1, 2,. .. N- 1; i j (1)
i-1

N-I

dPN/dt =- [dPi/dt]. (2)
1,

k,j is the rate constant leading to state i from statej, and is
a function of membrane potential.

In a three-state catenary model for the delayed rectifier
(Bennett, et al., 1985), the state diagram and the system
of equations are as follows:

k2, k32
Cl C2 03

k,2 k23

dP,/dt = -k21 PI + k12P2 (3)

dP2/dt = k2lPI - (kl2 + k32)P2 + k23P3 (4)

dP3/dt = -dP1/dt - dP2 /dt. (5)

As shown, this system of three simultaneous differential
equations has four unknown rate constants; hence at any

single membrane potential the system is underdetermined
with respect to the rate constants. Unique values of the
rate constants which define the probability of occupying
the open state at a single membrane potential cannot be
determined. Therefore, a unique solution for the rate
constants cannot be found when fitting the integrated
solution for the open state P3(t, V) to the time course of
the macroscopic current at a single membrane potential
because multiple correct solution sets exist. The rate
constants found by a parameter search procedure will
thus depend on the initial parameter guesses. The prob-
lem of underdetermination at single membrane potentials
increases as more states and rate constants are added.
To circumvent this problem, we developed a procedure

that globally fits the time course of the macroscopic data
at several membrane potentials simultaneously. We made

the standard assumption that the transmembrane electric
field can promote or impede both formal and induced
charges (or dipoles) in the protein and the rate constants
for surmounting these energy barriers are described from
reaction rate theory (Eyring et al., 1980) by a form of Eq.
6. Thus, the rate constants (ki,) were expressed as func-
tions of membrane potential as described by Stevens
(1978):

k1j = exp {Aij + Bij V + Cj>V2}. (6)

This formulation indicates that the rate of transition
between two states depends on the electrical field across

the channel (V) and on three parameters (Ai1, Bij, Cii)
that describe the potential energy barriers between the
states. Aij reflects the energy barrier height in the absence
of an electrical field, Bfj represents the energy barrier
height that exists due to charge-field and dipole-field
interactions, and C1j represents the contribution of total
distortion polarization or field induced dipoles. In the
limiting case of a low transmembrane field strength, the
squared voltage term may not be required, and Eq. 6 may
be simplified to the following form:

kij exp {Aij + B,j VI. (7)

Either of these additional equations was sufficient to
constrain the possible solutions for the rate constants.

In the three-state model discussed above with the four
independent rate constants (k12, k21, k23, and k32), if the
rate constants were expressed as two or three parameter
functions of voltage, there were eight (Aij, B1j) or twelve
(Ai, By>, C'1) free parameters for fitting. While this situa-
tion is grossly underdetermined at a single membrane
potential, these parameterizations allow us to simulta-
neously fit the time course of the macroscopic currents at
multiple membrane potentials. Because three equations
describe the system at each membrane potential, by
fitting "globally" at four or more membrane potentials we
solve 12 or more equations in either 8 or 12 unknowns;
hence, the system is fully determined. Although many of
these concepts are well known, we are not aware of the
previous utilization of the voltage dependence predicted
from reaction rate theory to constrain the rate constants.

Global fitting procedure
To fit Markov state models to whole-cell data, it was first
necessary to scale the macroscopic current into open state
probability. Fig. 1 illustrates the estimation of steady-
state activation by analysis of tail currents which elimi-
nate the differences in driving force among activating
voltages. Potassium current was activated by a 6-s voltage
clamp step to membrane potentials between -20 and
+70 mV and then membrane potential was stepped to
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FIGURE 1 (Left) Deactivating K current tails recorded at -30 mV.
Steady-state activation of K current was achieved at different mem-
brane potentials (-20 to +70) before measuring the current tails at
-30 mV. (Right) The tail amplitudes (squares), measured as the
difference between the peak current at the beginning of deactivation and
the steady-state current after 6 s at - 30 mV, are shown as a function of
activating voltage. The solid line indicates the nonlinear least-squares fit
of a three-parameter Boltzmann equation to these data as described in
the text.

- 30 mV. The amplitudes of the deactivating tail currents
at - 30 mV were then measured (left) and were plotted as

a function of the activation test voltage (Vt¢St) to estimate
the steady-state activation curve (right). Because the
channels do not inactivate, the maximum steady-state
probability of channel opening (at membrane potentials
> + 70 mV) was estimated by fitting the steady-state
activation curve with the Boltzmann equation:

Popen(V) = I'masured /IIl,1L = [1 + exp ((V1/2 - V)/sf )] .

The fitted value of Imax was used to normalize the current
data into probability of opening. The Boltzmann equation
was used because it conveniently provided a good fit to the
data and at steady state, the system can be partitioned
into two pools, open and not open. Because we were only
interested in an objective means to obtain I.,, for normal-
ization purposes, the Boltzmann equation was adequate.
The global fitting procedure involved repeatedly com-

paring the open state occupancy of the model with that of
the data and revising the rate constant estimates iterative-
ly. Numerical integration was utilized to calculate the
open-state occupancy for each set of rate constants during
each iteration. For selected cases, simple Runge-Kutta
methods were adequate; however, in some cases at certain
membrane potentials the differential equations become
stiff; that is, the time scales on which the state occupan-
cies change may differ by orders of magnitude at particu-
lar membrane potentials, thereby causing roundoff or

truncation errors to propagate through the solution (Press
et al., 1986). Therefore, a numerical integrator, based on
the original work on stiff differential equation solutions
by Gear (1971), was utilized which automatically
employs method switching for stiff and nonstiff problems
(LSODA; Hindmarsh, 1983; Petzold, 1983). For the
parameter searches described here, the Marquardt-
Levenberg algorithm (Marquardt, 1963; Bevington,
1969) for minimizing the residual sum of squares was

used due to its relative speed and convenience. These
numerical procedures were incorporated into a general
purpose FORTRAN program (GLOBAL) which fits
gating models with up to six kinetic states. In addition to
the delayed rectifier K channel model described here, we
have used this procedure to evaluate kinetic parameters
describing gating models for the cardiac Na channel
(Bennett et al., 1989); for such models where the proba-
bility of occupying the fitted state (open state) increases
and subsequently decreases at a single membrane poten-
tial, the Marquardt algorithm frequently diverged.
Therefore, we have also implemented the GLOBAL
software with a simplex parameter search algorithm
(Nelder and Mead, 1965). The advantage of the simplex
algorithm is that it rarely diverges (Caceci and Cacheris,
1984), however, it converges on a solution very slowly and
global fits to a single data set required up to 1 wk on a

VAX 8800 (Digital Equipment Corp., Malboro, MA).
While this approach remains practical for fitting limited
numbers of experimentally derived data sets, a Monte
Carlo analysis requires fits to hundreds of simulated data
sets. Therefore, for this statistical analysis of the global
fitting approach we have used the Marquardt parameter
search algorithm and a gating model that does not include
macroscopic inactivation.
The global fitting procedure is computationally

demanding due to the necessity of repeated numerical
evaluation of a system of differential equations each time
the kinetic parameters are updated by the search algo-
rithm. Hence, globally fitting multiple sets of simulated
macroscopic data at different membrane potentials, each
containing up to 1,000 data samples, required unaccepta-
bly long execution times. We have therefore reduced the
data sets for fitting purposes. In the Monte Carlo analysis
described below, 32 sample points were selected to repre-

sent the macroscopic current at each membrane potential,
and four activating and four deactivating membrane
potentials ranging from - 50 to + 70 mV were chosen to
represent a broad range of kinetic behavior. To appropri-
ately represent kinetic features present in both of the time
constants inherent in the three-state model, at each of the
eight membrane potentials we calculated the two system
time constants for the three-state model from the rate
constants. We then collected 16 equally divided samples
with a sampling interval equal to one-fourth of faster time
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constant (Trf,t/4) at each membrane potential to represent
the early part of the ensemble current. The next 16
samples were equally spaced over a duration of four of the
slower time constants (r,10,/4) at each membrane poten-
tial. From the Nyquist sampling theorem, the highest
frequency signal detectable from a sampled data set is
equal to or less than one-half of the sampling frequency;
hence, the highest frequency we could detect after data
reduction in this manner was 12 * TfM,t}-' which was twice
the highest frequency component in the data.

Monte Carlo analysis: simulation of
macroscopic data
A standard method for determining parameter uncer-

tainty involves obtaining replicate observations of experi-
mental data. Monte Carlo simulations can be used to
investigate the statistical properties of model equations in
a similar manner (Hammersley and Handscomb, 1964).
The procedure involves using known parameters to gener-

ate large numbers of simulated data sets from the model
equations and then subjecting these data sets to the
standard form of analysis. In our case, we have assessed
the ability of the global fitting procedure to extract the
known rate constants from these simulated data sets.

Rather than arbitrarily choose rate constants to simu-
late a channel model for Monte Carlo analysis, we first
globally fitted voltage-clamp data with a three-state
model to obtain a reasonable set of parameters for genera-
tion of simulated data sets. Thus, the known rate con-

stants that generated the simulated data sets provided a

reasonable representation of potassium channel behavior.
Single channel behavior was then simulated by randomly
selecting the occupancy times for the various states at
each membrane potential from the known distributions of
lifetimes (DeFelice and Clay, 1983).

In this fashion, 90 data sets, each containing "whole
cell" ensemble average currents were generated from the
average of 1,000 single-channel simulations at eight dif-
ferent membrane potentials. Each of these 90 data sets
was then separately subjected to the global fitting proce-

dure; this allowed us to assess the variability in the rate
constants when the true rate constants underlying the
"channel" behavior were known. A similar analysis was

performed on nine simulated data sets, each consisting of
ensemble currents at the same eight voltages generated
from 10,000 single channel simulations. Approximately
200 computer h were required for the entire analysis
(enhanced IBM ATs running at 8.5-10 MHz with 80287
coprocessors).

During the fitting process, estimates of the standard
errors of fitted parameters were calculated from the
covariance matrix [the inverse of the curvature matrix, as

described for the Marquardt fitting algorithm in Beving-

ton (1969)]. In general, for nonlinear models, the errors in
the parameters are neither additive nor symmetrical and
it is impossible to calculate exact confidence limits. The
errors obtained from the covariance matrix are based on
linearizing assumptions and underestimate the true
uncertainty in the parameters (Motulsky and Ransnas,
1987; Bevington, 1969). Furthermore, we have fitted a set
of parameters which defined the voltage dependence of
the rate constants, not the rate constants directly (see Eq.
6). Because the models we have used, and because other
more complicated nonlinear models have parameters that
depend on each other in unknown ways, it is impossible to
translate the errors in the fitted parameters into errors in
the rate constants. We felt the most reliable way to obtain
an estimate of the errors in the derived rate constants was
to use Monte Carlo methods.

Sensitivity to initial guesses
It was also important to estimate to what extent the fitted
parameters were sensitive to their initial guesses, or in
other words, to test the robustness of the global fits. A
standard error was calculated from the variance (the
diagonal of the covariance matrix) obtained during fitting
the three-state model to the experimental data set. These
estimated parameter errors (EPE) provided a rough guide
to the distribution of the estimated parameters. There-
fore, we used these to explore the limits of the distribution
to determine the extent to which initial guesses (parame-
ters) might be varied from the known solution (global
minimum). Initial guesses for each parameter were ran-

domly selected 20 times from this distribution at a certain
fraction (F) of the EPE. A synthesized data set using
1,000 channels as described above was then fitted with
each of the 20 initial guesses. The fraction (F) of the
parameter error was then incremented, and another set of
20 initial guesses was generated and used for fitting. The
analysis was repeated until the initial guesses were suffi-
ciently far from the correct solution that divergence of the
fitting procedure or convergence to local minima consis-
tently occurred.

Note that the convention for naming the rate constants
(kij) differs from that given in Bennett et al. (1985, 1986).
In this paper we have conformed to the standard matrix
notation for subscripts. Thus, kij is the rate constant going
to state i from state j. This convention preserves the
proper position in the matrix formulation of the state
equations, thus rate constant k12 is in the first row and
second column of the rate constant matrix.

RESULTS

Rather than simply generate arbitrary rate constants for
a Monte Carlo analysis, we first used the global fitting
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procedure to fit whole-cell K current data to obtain a set
of voltage dependent rate constants that reasonably
described the channel kinetics (see Fig. 1). Fig. 2 shows
examples of the currents elicited by activating clamp
steps (left) from - 70 to + 10, + 30, + 50, and + 70 mV
and deactivating clamp steps (right) from + 50 to + 10,

-10, -30, and -50 mV. The digitized data (noisy
traces) are shown with the superimposed circles indicat-
ing the reduced data sets used in the global fitting
procedure. The smooth solid lines indicate the global fit to
these data using the three-state model, with a two-
parameter expression describing the voltage-dependence
of each of the four rate constants (Eq. 7). The dashed
lines indicate the fit to the same data using the three
parameter expression for the voltage dependence of the
rate constants (Eq. 6).

Using the rate constants obtained in this manner, we
then generated 90 simulated data sets, each containing
the ensemble average open state probability from 1,000
simulated single channels. Fig. 3 (top) shows the records
from two simulated data sets using the two parameter
expression for the rate constants (Eq. 7) at the four
activating and deactivating membrane potentials used
previously for fitting the experimental data (Fig. 2). The
stochastic nature of the channel gating is apparent as
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FIGURE 3 (Top) Records from two superimposed simulated data sets
at four activating and deactivating membrane potentials. Note the
gating fluctuations that are obvious from the relatively small number of
channels. (Bottom) Data samples taken from I of the 90 simulated data
sets for fitting purposes (circles) are shown; the solid lines indicate the
global fit to the simulated data. This analysis was repeated for each of
the 90 simulated data sets. Apparent deviations of the lines from the
data (circles) result because of the intrinsic channel gating fluctuations
(top panel). The line will pass through the averaged data but not
necessarily through the samples of a given single data set.

+70 A--" +50 mV, 6 sec

+10 +10

5.55.5 sa -50
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.-.4
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FIGURE 2 Time course of probability of channel opening obtained from
macroscopic K current at different membrane potentials. The currents
during voltage clamp steps from -70 to + 10, + 30, + 50, and + 70 mV
(left) and deactivating clamp steps (right) from + 50 to +10, -10,
- 30, and -50 mV were scaled into open channel probabilities by the
best-fitting estimate of IMAX obtained from the Boltzmann equation. The
noisy tracings show the data, the open circles indicate data selected for
the global fitting procedure. The smooth lines indicate a fit to the data
using the two-parameter voltage dependence of the rate constants. The
dashed lines indicate the fit to the same data using the three-parameter
expression for the rate constants. The residual sum-of-squares for the
fits using the two- and three-parameter expressions for the voltage
dependence of the rate constants were 0.054 and 0.040, respectively.

"noise" in these ensemble averages and it appeared
similar to the channel fluctuations in the experimentally
measured currents shown in Fig. 2. This suggests that
1,000 channels per cell reasonably approximates the
experimental situation for the delayed rectifier K currents
in these guinea pig myocytes. An analysis of channel
number by nonstationary fluctuation methods (Sigworth,
1980) usually provided estimates ranging from 1,000 to
5,000 delayed rectifier channels per cell (unpublished
observations). Two superimposed tracings are shown at
each potential to emphasize the variability among dif-
ferent data sets; this variability leads to the uncertainty in
the fitting process.
The bottom panels of Fig. 3 show the data samples

taken from one of the ninety simulated data sets for
fitting purposes; the lines indicate the global fit to these
simulated macroscopic data. An identical analysis was
carried out for all 90 data sets, thereby providing for
statistical analysis 90 sets of fitted parameters describing
the four system rate constants. The data synthesized from
known rate constants allowed us to test the ability of the
global fitting procedure to extract the same rate constants
from these data.
An important aspect of fitting models to data is to

determine whether the results depend on the initial
guesses used to begin the fitting process. If they do then
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the fitted results are not unique, and they represent
parameters found in a local minimum of the sum-of-
squares surface rather than the global minimum that is
desired. We tested the dependency of the answers on the
initial guesses as described in Methods. Table 1 shows the
results obtained at the sum-of-squares global minimum
and the percentage deviation away from these values that
were used as initial guesses to test the ability of the fitting
algorithm to find the global minimum. When initial
guesses were >0.5 times the maxima shown in Table 1,
convergence became increasingly rare. With these very

poor guesses the fit would often diverge and cause the
numerical integrator to become unstable. This is a severe

test of the robustness of the fit because in many cases the
guesses were quite far from the true value (up to 18,750%
different, see Table 1). A typical approach for selecting
initial guesses would be to take values that would as

closely as possible approximate the data based on an

"intelligent guess." The more systematic approach that
we have adopted indicates that certain guesses are bound
to fail at least with the Marquardt algorithm that we have
used. In practice, 70% of the randomized initial guesses

that were within a fraction of 0.25 of the maximum
deviations listed in Table 1 converged to the global
minimum. Thus, guesses in some cases as bad as 9,000%
away from the global minimum, and more typically
guesses >100% away from the global minimum would
converge. The results indicate that care must be taken to
ensure that a global minimum has been achieved, and the
results obtained in practice will depend on the parameter
search algorithm used.
The frequency distributions for each of the rate con-

stants from the model with two parameters per rate

is =p-1.02 Ptrue.-1.02 20 =

0.51 t,,.=-0.54

01°LL 0
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FIGURE 4 Relative frequency distributions for each of the four rate
constants at + 30 mV derived from fitting 90 data sets are shown. The
values of 1A and ai (means and standard deviations) obtained from fitting
each distribution with a Gaussian function are indicated in the figure
along with the true mean value (isu) for the natural logarithm of the
rate constant (expected value). Gaussian curves using these parameters
are shown superimposed on the histograms.

constant are shown in Fig. 4. Gaussian (normal) curves

are shown superimposed and the means and standard
deviations are indicated along with the actual value of
each rate constant. In all cases the estimated mean was

very similar to the true value. The greatest discrepancy
and the largest relative standard deviation, although still
rather small, occurred in the rate constant (kI2) which
leads to the distal closed state. Because these data sets
were calculated at a membrane potential of +30 mV

TABLE 1 Fitted parameters (P), associated estimated parameter errors (EPE) from covariance matrix, and the maximum
percent deviation of randomized initial guesses.

k12 k21 k23 k32
Parameter, EPE Parameter, EPE Parameter, EPE Parameter, EPE
EPE %ofP EPE %ofP EPE %ofP EPE %ofP

Two-parameter model
A 0.024,9.09 -2.15,6.77 -0.335, 2.04 -0.801, 11.7
%* 37,500 315 609 1,460

B 0.0028, 0.156 0.058,0.143 -0.023, 0.030 0.0087, 0.137
%* 5,570 250 130 1,570

Three-parameter model
A 1.83, 11.6 -0.732, 10.8 -0.689, 2.29 -0.682, 12.9
%* 630 1,475 300 1,890

B -0.033,0.223 0.034, 0.170 -0.023, 0.058 -0.024,0.120
%* 675 500 250 500

C -0.000389,0.00559 -0.0004007,0.0025 0.000423,0.00178 0.000846,0.00343
%* 1,440 625 420 350

*Maximum percent deviation of initial guess away from true value.
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where the channels were opening, it is not surprising that
this distal closing rate constant would be the least well
defined. Note that the natural logarithms of the rate
constants, and not the rate constants themselves, were

normally distributed. This is because the rate constants
are exponential functions of the fitted parameters
(kij = exp {A,> + BijV + CjV2 + errorl, see Eq. 6). Be-
cause the errors are in the exponent of Eq. 6, they are

proportional to the log of the rate constants.
The means and standard deviations of the rate con-

stants expressed as their natural logarithms are shown in
Fig. 5 as functions of membrane potential for the two
parameter (top) and three parameter (bottom) expres-
sions for the rate constants. Expressing the rate constants
in this manner shows how they change relative to one

another as functions of membrane potential. In the log-
linear case (Eq. 7; Fig. 5, top), the two rate constants
leading to the middle closed state showed the most voltage
dependence while the other two rate constants were

relatively independent of membrane potential. With the
more complex parameterization of the rate constants (Eq.
6; Fig. 5, bottom), the rate constant leading to the open
state (k2l) increased with increasing membrane potential
but saturated beyond +10 mV. This occurs as the closing
rate constants (k12 and k23) diminish and the rate con-

stant leading into the open state (k32) became dominant
especially > +50 mV. This more complicated voltage
dependence would be warranted if the membrane field
sensors were induced dipoles in the protein. The standard
deviation of each rate constant was usually greatest at one
of the voltage limits represented by the simulated data

(-50, +70). The standard deviations of the rate con-

stants were consistently smaller from fits to the 10,000
channel ensemble averages (not shown) than those result-
ing from fits to the 1,000 channel ensemble averages. The
solid lines in Fig. 5 show the actual voltage-dependence of
the rate constants used to generate the simulated data
sets. The mean rate constants fitted to the simulated data
sets were very similar to the actual values, indicating
there were no significant inconsistencies between the data
generation scheme and the global fitting procedure.

Fig. 6 shows the errors in the rate constants at the 95%
confidence limits as a function of transmembrane poten-
tial and the number of data sets fitted using the two
parameter voltage dependent equation (Eq. 7). Table 2
gives the errors for fits using two or three voltage depen-
dent parameters per rate constant. The three membrane
potentials presented in Table 2 (-50, + 10, and + 70 mV)
are representative of the error extremes (best and worst
cases). In 92% of the cases shown in Table 2 A, the errors
were below 20% and were greatest at one of the voltage
extremes. When the rate constants were expressed as
three parameter functions of membrane potential (Eq. 8,
Table 2 B), the uncertainty in estimating the rate con-

stants increased. The results indicated that in 79% of the
cases the errors were below 30%. In the worst cases (K12
and K2, at + 70 and - 50, respectively) the rate constants
were still determined within a factor of 2.25. In the
simulations using 10,000 channels, the errors in the rate
constants fell below 10%.

DISCUSSION

2.01

o.o-

tn(K ) -2.0

-4.0j

-6.0

2.0]

I(ii) -2.0-
-4.0 -
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.- I-

-50 -30 -10 10 30
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FIGURE 5 The means and standard deviations of the fot
are shown superimposed as functions of membrane p(
from the two-parameter (top) and three-parameter (I
sions for the rate constants are shown as their natural
solid lines indicate the actual voltage-dependence of th
used to generate the 90 simulations.

We have tested a method for extracting rate constants
from macroscopic voltage clamp data. We have fitted a

published model for the cardiac delayed rectifier (Bennett
c-c o et al., 1985; Gintant et al., 1985) to macroscopic delayed

C -oC 0 rectifier currents. This model provided reasonable

c c_- approximation of the kinetic features of this channel
(Fig. 2). Visual inspection of Fig. 2 suggests that the
more complex rate constant parameterization better
accommodated the data at + 70 mV; however, our objec-
tive was not to discriminate among models but to deter-
mine if the rate constants could be accurately obtained for
a given model. Hence, we did not perform a rigorous

50 70 statistical comparison of the two models which is beyond
the scope of the present paper (see Horn, 1987).
We used the fit to the experimental data set as a basis

for performing a Monte Carlo analysis to determine the
ur rate constants

Dtential. Results uncertainty in estimating rate constants using this nonlin-
bottom) expres- ear fitting procedure. Fig. 4 indicates that the natural
logarithms. The logarithms of the fitted rate constants, and not the rate
ie rate constants constants themselves, were normally distributed; hence,

the best measure of central tendency was the mean of the
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FIGURE 6 The percentage error at the 95% confidence limits as functions of membrane potential and the number of data sets. Errors were calculated
for the mean rate constants obtained from global fits to various numbers of data sets, based on the results from the simulations of 1,000 channels. The
surfaces plotted were generated by solving the expression shown at the bottom of Table 2.

TABLE 2 Percentage errors at the 95% confidence
limits for each rate constant.

A: Two-parameter voltage dependence

Membrane Potential
mV

-50
+10
+70

-50
+10
+70

B: Three-parameter voltage dependence
Membrane Potential

mV

-50
+10
+70

-50
+10
+70

k12

17
11

22

k23
s-I'

5

5

8

k2l

18
10
13

k32
s1
26
14
5

k,2

28
31
116

k23
s1
13
5

21

125
26
5

k32
s1
21
29
17

natural logarithms of the rate constants resulting from
the individual fits. Figs. 5 and 6 both indicate that the
uncertainty in parameter estimation usually increased at
one or both of the voltage limits covered by the simulated
data sets. Notably, the greatest uncertainties were in
estimating the forward rate constants (governing open-
ing, k32, k21) at negative membrane potentials where the
channels were unlikely to open. The greatest uncertainties
in the backward rate constants (k12, k23) were at positive
membrane potentials where the channels were least likely
to close. Thus as one might predict, the rate constants
were least well defined at membrane potentials where
they had the least influence on the overall gating behav-
ior. Nevertheless, the mean values obtained provide excel-
lent estimates of the true rate constants used in the
simulation.
An interesting observation was that both the forward

and reverse rate constants connecting the open state to the
first closed state (k32 and k23) were voltage dependent in
the same direction when the three (Fig. 5, bottom)
parameter representation of the voltage dependence of
the rate constants was used in the fits. However, this
figure also shows that their relative magnitudes change
dramatically with voltage. At +70 mV the rate constant
k32was dominant (opening direction). This demonstrates
"intuitive" assumptions about the voltage dependence of
the rate constants may not be reliable, and that it is -the
relative magnitude of the rate constants as a function of
voltage that dictates the overall behavior of the system. In
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Errors are shown at three membrane potentials for fits to 10 data sets %
Error - 100* {exp[ln(k1j) + 1.96a/sqrt(N)]- (k1)ll/ki
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the two-parameter model (Eq. 7), the rate constants
leading into the middle closed state had the greatest
voltage dependence. This suggests that the energy bar-
riers that the channel must overcome to enter this state
are influenced by membrane potential. This might occur

if there were charged amino acids in a particular region
that are driven into new positions by changes in the
membrane field. Evidence for such behavior has recently
been demonstrated with site directed changes in the
protein sequence of the sodium channel by Stuhmer et al.
(1989).
The certainty of parameter estimation markedly

increased as the number of channels contributing to the
simulated ensemble average currents increased from
1,000 to 10,000. The errors decreased by a factor of
-1 /sqrt( 10) when the number of channels increased by a

factor of 1O. The standard deviation was 0.327 for ln (k12)
in the two-parameter model at + 70 mV when 90 fits of
1,000 channels were used; the predicted population stan-
dard deviation for 10,000 channels was 0.1034. By fitting
nine simulated data sets generated using 10,000 channels
each, the calculated standard deviation at + 70 mV for
ln (k12) was 0.112. In general, the standard deviations
obtained from fitting the nine sets of 10,000 channel
ensemble averages were greater than the predicted values.
This may have resulted in part because we fit only nine of
the 10,000 channel simulated data sets, hence the errors

overestimated the true population standard deviation with
10,000 channels. The decrease in error with an increase in
channel number was a reflection of the improved repre-
sentation of the mean kinetic behavior of the channel
when a larger number of channels contributed to the
macroscopic current. Therefore, while this procedure is
useful for evaluating the kinetics of channels having low
or intermediate membrane density such as the delayed
rectifier, the uncertainty of the estimates will decrease
when channels with a higher membrane density (e.g.,
cardiac Na channels) are studied. Thus, in a preparation
where the channel density is low, the estimates of the rate
constants will be improved by signal averaging. We have
utilized this procedure to evaluate the kinetic parameters
describing a new model for the cardiac Na channel
(Bennett et al., 1989). In that study, the greatest differ-
ence between the fitted open state probabilities generated
by the parameters of best fit and the whole cell currents
was <1 %. Furthermore, the fitted kinetic parameters
predicted single Na channel kinetic characteristics that
agreed with those observed experimentally from single
channel recordings.

Fig. 6 suggests that for 1,000 delayed rectifier K
channels in the cell membrane, more than five data sets
should be fitted to estimate the rate constants to within
-20% of their true values at the voltage extremes. The
certainty in the pair of rate constants most distant from

the open state (k12 and k2l) was greater at membrane
potentials near the center of the range covered by the
simulated data sets. Thus, kinetic information obtained at
one membrane potential to some extent aids in deter-
mining kinetic parameters at a nearby membrane poten-
tial; hence, parameter estimation at the voltage extremes
(here - 50 and + 70) suffers from having the least
amount of overlapping kinetic information from other
membrane potentials. Therefore, to accurately assess

kinetic behavior at a particular membrane potential, the
results suggest that a window of data around the mem-

brane voltage of interest is optimal.
Inclusion of a third term (Cij) describing the voltage

dependence of the rate constants (Eq. 6), gave some small
visual improvement in the fit (Fig. 2) and reduced the
overall residual sum-of-squares, but increased the uncer-

tainty in estimating the individual rate constants. This
additional term primarily describes the saturating behav-
ior of the rate constants at the voltage extremes where
membrane electrical field induced dipole effects become
important. Therefore, addition of data at the voltage
extremes (where field-induced dipoles are more likely) or

increasing the range of voltages covered by the fitting
procedure would be appropriate when these additional
kinetic parameters are used.
When the initial guesses were increasingly far from the

correct solution, the ability of the global fitting procedure
to find the global minimum, or even converge to a

solution, decreased. The estimated parameter errors

obtained from the inverse of the curvature matrix were

quite large relative to the values of the parameters
themselves (Table 1); in some cases the error values were

two orders of magnitude larger than the fitted parame-

ters. Hence, for the robust analysis, a rather large param-
eter space was considered. In general, 70% of the cases

with initial guesses within 0.25 EPE converged to the
global minimum.

In summary, we have fitted a three-state kinetic model
to data from voltage clamped potassium current and have
tested an approach for extracting rate constants from
macroscopic ion channel data. The approach was imple-
mented in a general way to accommodate models with
greater complexity as the need arises. We found that
there was sufficient information in the macroscopic open

channel probability time course to reliably and accurately
extract the system rate constants. The Marquardt search
algorithm was reasonably robust provided the initial
guesses were not extremely bad, however care must be
taken to ensure that a global sum-of-squares minimum is
achieved. A different search algorithm (e.g., Simplex)
may be more robust, but with the cost of additional
computation time.
As models with greater complexity are utilized, the

uncertainty in determining the kinetic parameters will
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increase; however, the use of kinetic observations from
well-designed single channel or whole-cell experiments
should allow determination of specific rate constants in
more complex models, and thereby further extend the
utility of this global procedure. Even without additional
kinetic information, for more complex models we have
found the procedure to be useful for providing an initial
set of parameters (rate constants) that serve as a basis for
further experimentation and model testing. Our ultimate
goal will be to use this method to combine information
from single channel, macroscopic ion current and gating
current data to obtain a globally optimized set of kinetic
model parameters. Thus, an approach that uses both
macroscopic and single channel data combined with
methods for nonlinear model discrimination, as described
by Horn (1987), may provide an objective means for
modeling ion channel behavior. These gating models can
be used to predict biological behavior that can be further
tested experimentally.
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