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ABSTRACT The nonexponential Oswald. 1988. Proc. Natl. Acad. Sci. complex trajectories using percolation
closed-time distributions observed for USA. 85:1503-1507; Condat, C. A., theory. We assume that the gating tran-
ionic channels have been explained and J. Jackle. 1989. Biophys. J. sition depends on marginally con-
recently by quasi-one-dimensional 55:915-925; Levitt, D. G. 1989. Bio- nected conformational states leading
models of structural diffusion (Millhaus- phys. J. 55:489-498). We generalize to the observed spread in time scales.
er, G. L., E. E. Salpeter, and R. E. this treatment by allowing for more

INTRODUCTION

The closed-time densities of unitary currents in ion chan-
nels, as revealed by single channel recording, are usually
heterogenous. Whether the gating kinetics is best repre-
sented by a sum of exponentials, related to a few kinetic
states (McManus et al., 1988, 1989; Horn and Korn,
1989) or by a (fractal) continuum of states (Liebovitch
and Sullivan, 1987; Liebovitch, 1989) is still controver-
sial. Simplified models of protein dynamics such as defect
diffusion may help to understand how local interactions
between the many atoms in a protein ultimately lead to
global changes in structure and function (Lauger, 1988).
Recently three one-dimensional random walk models of
structural fluctuations in channel proteins have been
proposed (Millhauser et al., 1988; Condat and Jackle,
1989; Levitt, 1989). The gating transition is assumed to
occur when the effective conformational variable assumes
a particular value or values within a narrow range. One of
the essential predictions of the one-dimensional approach
is the algebraic long-time decay of the closed-time density
f(t) - t-1-5. The NG 108-15 channel (McGee et al., 1988)
indeed shows this behavior over four decades in time.
However, to obtain four decades, one has to assume a

linear chain of about 100 states, N - (t/t,)0 5. It is
therefore desirable to construct models which account for
more complex trajectories. In this communication we

show that the dynamic behavior of the channel can be
explained alternatively as the signature of a percolating
network.

Proteins are molecular networks of hydrogen bonds.
Almost all C=-O and NH groups of the polypeptide
backbone are hydrogen bonded, typically 90% (Baker and
Hubbard, 1984). A conformational change implies a shift
in the network structure depending on the flexibility of
the bonds involved. Hydrogen exchange experiments

demonstrate a large spread in the stability of hydrogen
bonds (Englander and Kallenbach, 1984). A large-scale
conformational change connecting two given conforma-
tional states i and j may proceed through a series of local
rearrangements of bonds. A rigid bond encountered along
the path forces the system to turn back. An alternative
path has to be selected. The trajectory of a protein in
conformational space may thus resemble the walk of an

ant in a labyrinth. Such connectivity problems can be
handled by percolation theory: If a network of conducting
wires is diluted by randomly removing the conducting
elements, one observes that the overall conductivity van-

ishes at a critical concentration of intact wires (Zallen,
1983; Stauffer, 1985). A percolation cluster of connected
sites near its threshold is shown in Fig. 1.

MODEL

In the following we consider structural transitions i - j in
conformational space controlled by hydrogen bonds in
analogy to the local unfolding model of hydrogen
exchange. If the bond fluctuations are fast compared to
the structural change, one can write the structural transi-
tion rates Wij in the following form (Nakanishi et al.,
1974):

1+l ijK W° (1)

Kij is the dissociation constant of the H bond controlling
the transition i -- j and W° denotes the transition rate in
the case of an open bond. In hydrogen exchange experi-
ments one generally observes a fast and a slowly exchang-
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the effective medium approximation (Movaghar and
Schirmacher, 1981). Within this approximation the
global behavior of such a system is well described. The
dynamics of the channel is thus explained as a network
property and not by the construction of an active site.

In particular one derives the survival fraction of the
system ¢(t). This denotes the probability that the protein,
initially in the closed set, still occupies this set after a time

t. The Laplace transform of 0(t), ¢(p) = jo' e-P'k(t)dt,
can be written in the form:

(4)+(p) =
I

p + m(p)

The relaxation kernel m(p) is given by the self-consistent
equation (Schirmacher, 1987, 1988):

m(p)=Zap 1

m(p) + p W+1

(4a)

FIGURE I Computer generated two-dimensional percolation cluster of
connected sites on a square lattice (Z = 4) at the threshold xc = 0.59.

ing component (Nakanishi et al., 1974). We may thus
approximate the distribution of dissociation constants by
two sets of mobile (Kij - K.) and rigid (Kij z 0) hydrogen
bonds. The probability density of rates p( W) is then given
by:

p(W) = x 6(W - W) + (1 - x) 6(W - W,). (2)

0 < x < 1 is the concentration of mobile bonds associated
with the rate W., and W, << W. denotes the transition rate
constrained by a rigid bond.
We first assume W, = 0. We further split the set of

conformational states {i} into two macrosets ICil, {Oi}
corresponding to the experimentally observed closed and
open channel states. These assumptions lead to a typical
percolation problem. A global transition {C;} tOil
involves a sequence of allowed local transitions i -- j.

Percolation implies the existence of a pathway linking the
two macrosets. The evolution of the system in conforma-
tional space can be described by a master equation

dni - nEWini + HW n.

dt T i Iijn.
ti

(3)

ni denotes the occupation probability of state i. The
dimension of the conformational space D and the coordi-
nation number Z of the transition i -- j is arbitrary. The

case D = 1, Z = 2, Wij = WO leads to one-dimensional
diffusion (Condat-Jickle model, 1989; Millhauser et al.,
1988; Levitt, 1989). Eq. 3 can be solved analytically using

ap is a density renormalization constant (ap = 0.368 for
D = 3) which accounts for double counting and ( ... )
denotes the average over the distribution of rates p(W).
For the model of Eq. 2, Eq. 4a can be written in the
following form:

m(p) = Zapx I 1

m(p) + p W.

which gives

m(p) *W-o + [(2+ W0)2 + WOP -

(4b)

(5)

This type of kernel was first derived by Gotze et al. (1981)
using a self-consistent mode coupling theory. e is the
separation parameter denoting the distance from the
percolation threshold. In particular: e = x/x0 - 1. x is the
fraction of flexible bonds and xo = l/Z ap denotes the
critical concentration of flexible bonds. Inversion of the
Laplace transform leads to the following +(t), shown in
Fig. 2:

Fe-W.1 t < 1/WI
0(t) [e-(f2/4)Wo{(irWtot-5 Ee(E2/4)wOterfc[E( Wt)O5] It > I/ Wo

(6)

The model, depending on e > 0, describes a continuous
dynamical transition (Gotze et al., 1981). Below the
threshold (e < 0) one obtains a nonergodic term in ¢(t):
O(t - oo) = 1El 0, implying that the two macrosets are

dynamically disconnected. Above and below the thresh-
old, ¢(t) has a region of algebraic decay with exponent
0.5. Because the closed-time density is given by the time
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FIGURE 2 Survival fraction in the closed state +(t) at different values
of e = ±0.1, ±0.01, 0 according to Eq. 6.

derivative of -¢(t), one obtains the result of the one-
dimensional model: f(t) 't `5. However, the power law
is now explained as the signature of a dynamical transi-
tion. Its validity range (I/WO, 1 /e2Wj) depends on the
distance from the percolation threshold. The observed
four decades imply ei < 10-2. The protein is thus close to
the percolation limit.

DISCUSSION

We have shown that a percolation model of structural
transitions reproduces the quasi-one-dimensional power
law observed for the NG 108-15 channel. Physically this
results from the highly ramified structure of the percola-
tion cluster containing dead ends and bottle necks. The
power law is a critical phenomenon, and thus a special
case. Below and above the threshold a fit by a few
exponentials will account for the data. A small distance
from the percolation limit may guarantee restricted flexi-
bility consistent with stability and function. Each main
chain residue has the potential to form approximately
three hydrogen bonds (C=O [two], NH [one], Baker and
Hubbard, 1984). Associating each transition i - j with
one H bond, we obtain Z = 3. For D = 3 this implies xc =
0.91 close to the value xc = 1 for one-dimensional motion.
Z = 4 (including the side chains) would give xc, = 0.68.
Thus, a substantial fraction of H bonds has to be flexible
to give e> 0. The relevance of H bonds can be determined
by investigating the voltage and pH dependence of Kij.
Further a decrease in temperature should drastically
reduce the number of flexible bonds. The distribution
p(W) could be measured by hydrogen exchange experi-
ments.
We have also considered the case of a finite WI << WO.

This results in a final decay of +(t) with rate WI even for
E < 0 and may account for data such as displayed in Fig. 2
of McManus et al. (1988).
We would like to comment on the notions "non-

Markovian" and "fractal" which appear in the controver-
sial discussion mentioned in the introduction. In our
model we start from a set of microscopic Markovian rate
equations. The averaging procedure reduces the number
of states to essentially two, open and closed. This reduc-
tion leads to a non-Markovian description. Eq. 4 trans-
formed into the time domain reads:

d ¢(t) = f'm(t - t'),(t')dt'. (7)dt

m(t) is the Laplace transform of m(p). Eq. 7 is non-
Markovian because it samples all transition rates of the
trajectory in the past t' leading to the final transition at
time t. Here, the microscopic trajectory is a fractal object
(percolation cluster) which implies a nonexponential time
dependence of +(t). The time-dependent rate k(t) =
-d/dt ln +(t) is not a simple power law, k(t) a t-x (Eq.
6). In the regime where +(t) = t-05 one has of course
k(t) = t-'.
Our concept of nonuniform, clustered protein trajecto-

ries, leading to a hierarchy of processes is supported by
molecular dynamics (Levitt, 1983) and Monte Carlo
simulations (Go and Nogutchi, 1989) and by experiments
performed on small proteins (Ansari et al., 1985; Careri
et al., 1986; Iben et al., 1989). The protein dynamics
approach explains nonexponential relaxation not as a
singular feature of channel proteins but as a natural
consequence of local heterogeneity in protein structures.
Finally, one has to show how the formal concept of
nonuniform protein trajectories applies to three-dimen-
sional changes of the channel structure, such as sliding of
helices (Catterall, 1988).
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