Abstract
When irradiated, purple membrane from Halobacterium halobium oriented in a polyacrylamide gel produces a photocurrent. The correlation of the microsecond component (B2) of the photocurrent with the L-M optical transition was studied. It was found that the lifetimes of B2 and the L-M transition are identical over the entire pH range from 2.4 to 11.0 when measured in high salt (>5 mM CaCl2 or >40 mM KCl). Changing the temperature from 10 to 35°C, or replacing the H2O with D2O maintains this correlation. The amplitude of B2 and the L-M transition are also correlated over the pH range where both of them can be represented as a single exponential. At high pH (>8), three exponentials were required to fit both the optical and photocurrent signals. Two of them are the previously described fast and slow components of M formation, but a new intermediate with a very fast lifetime, 0.3 μs, was observed both in absorption (λ = 410 nm) and photocurrent measurements. The lifetimes of all three were found to be pH independent. This would exclude models for the L to M portion of the photocycle that explained its complex pH-dependent behavior as being due to a single pH-dependent rate constant. The area of B2, which is proportional to the number and the distance the charge moved during the transition, is almost constant from pH 5.0 to pH 8.0. It decreases to almost zero at pH 2.0 and pH 10.6 with pKs at 2.8 and 9.1. Because B2 is thought to normally reflect proton release from the membrane, this suggests at very low and high pH the photocycle does not pump protons. The pK at high pHs for the formation of the nonpumping photocycle is probably related to the formation of a new photocycle featuring the fast rising form of M.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becher B. M., Cassim J. Y. Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep Biochem. 1975;5(2):161–178. doi: 10.1080/00327487508061568. [DOI] [PubMed] [Google Scholar]
- Butt H. J., Fendler K., Bamberg E., Tittor J., Oesterhelt D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 1989 Jun;8(6):1657–1663. doi: 10.1002/j.1460-2075.1989.tb03556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang C. H., Chen J. G., Govindjee R., Ebrey T. Cation binding by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1985 Jan;82(2):396–400. doi: 10.1073/pnas.82.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dancsházy Z., Govindjee R., Ebrey T. G. Independent photocycles of the spectrally distinct forms of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6358–6361. doi: 10.1073/pnas.85.17.6358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drachev L. A., Kaulen A. D., Skulachev V. P. Time resolution of the intermediate steps in the bacteriorhodopsin-linked electrogenesis. FEBS Lett. 1978 Mar 1;87(1):161–167. doi: 10.1016/0014-5793(78)80157-4. [DOI] [PubMed] [Google Scholar]
- Dér A., Hargittai P., Simon J. Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel. J Biochem Biophys Methods. 1985 Mar;10(5-6):295–300. doi: 10.1016/0165-022x(85)90063-6. [DOI] [PubMed] [Google Scholar]
- Hanamoto J. H., Dupuis P., El-Sayed M. A. On the protein (tyrosine)-chromophore (protonated Schiff base) coupling in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7083–7087. doi: 10.1073/pnas.81.22.7083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holz M., Lindau M., Heyn M. P. Distributed kinetics of the charge movements in bacteriorhodopsin: evidence for conformational substates. Biophys J. 1988 Apr;53(4):623–633. doi: 10.1016/S0006-3495(88)83141-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong F. T., Montal M. Bacteriorhodopsin in model membranes. A new component of the displacement photocurrent in the microsecond time scale. Biophys J. 1979 Mar;25(3):465–472. doi: 10.1016/S0006-3495(79)85316-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keszthelyi L. Intramolecular charge shifts during the photoreaction cycle of bacteriorhodopsin. Prog Clin Biol Res. 1984;164:51–71. [PubMed] [Google Scholar]
- Keszthelyi L., Ormos P. Displacement current on purple membrane fragments oriented in a suspension. Biophys Chem. 1983 Nov;18(4):397–405. doi: 10.1016/0301-4622(83)80053-2. [DOI] [PubMed] [Google Scholar]
- Liu S. Y., Ebrey T. G. Photocurrent measurements of the purple membrane oriented in a polyacrylamide gel. Biophys J. 1988 Aug;54(2):321–329. doi: 10.1016/S0006-3495(88)82962-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S. Y., Govindjee R., Ebrey T. G. Light-induced currents from oriented purple membrane: II. Proton and cation contributions to the photocurrent. Biophys J. 1990 May;57(5):951–963. doi: 10.1016/S0006-3495(90)82615-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marinetti T., Subramaniam S., Mogi T., Marti T., Khorana H. G. Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1989 Jan;86(2):529–533. doi: 10.1073/pnas.86.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mowery P. C., Lozier R. H., Chae Q., Tseng Y. W., Taylor M., Stoeckenius W. Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry. 1979 Sep 18;18(19):4100–4107. doi: 10.1021/bi00586a007. [DOI] [PubMed] [Google Scholar]
- Parodi L. A., Lozier R. H., Bhattacharjee S. M., Nagle J. F. Testing kinetic models for the bacteriorhodopsin photocycle--II. Inclusion of an O to M backreaction. Photochem Photobiol. 1984 Oct;40(4):501–506. doi: 10.1111/j.1751-1097.1984.tb04624.x. [DOI] [PubMed] [Google Scholar]
- Scherrer P., Stoeckenius W. Effects of tyrosine-26 and tyrosine-64 nitration on the photoreactions of bacteriorhodopsin. Biochemistry. 1985 Dec 17;24(26):7733–7740. doi: 10.1021/bi00347a035. [DOI] [PubMed] [Google Scholar]
- Stoeckenius W., Lozier R. H., Bogomolni R. A. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1979 Mar 14;505(3-4):215–278. doi: 10.1016/0304-4173(79)90006-5. [DOI] [PubMed] [Google Scholar]
