Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1979 Jul;292:363–372. doi: 10.1113/jphysiol.1979.sp012856

Influence of potassium, sodium, perfusion pressure, and isoprenaline on renin release induced by acute calcium deprivation

John C S Fray 1, C S Park 1
PMCID: PMC1280863  PMID: 490364

Abstract

1. These studies were conducted in isolated perfused rat kidneys to determine the influence of perfusion pressure, isoprenaline, K, and Na on renin release stimulated by acute Ca deprivation.

2. Removing Ca from the perfusion medium for 10 min stimulated renin release and reintroducing Ca returned it toward control values.

3. Lowering concentration of Ca in the perfusion medium from 5 to 0 mM increased the effectiveness of low perfusion pressure (50 mmHg) and isoprenaline (2·43 μM) in stimulating renin release.

4. At higher perfusion pressure (150 mmHg), renin release was inhibited in perfusion medium containing 2·5 mM-Ca but not in medium containing no Ca. In fact, high perfusion pressure stimulated renin release when the perfusion medium was without Ca.

5. Raising concentration of K in the perfusion medium partially inhibited the renin release induced by Ca deprivation. Adding 5 mM-EGTA to Ca-deprived medium stimulated a greater rate of renin release than that of Ca-deprived medium alone. This greater renin release was also partially inhibited by raising K concentration in the perfusion medium.

6. Lowering concentration of Na in the perfusion medium from 145 to 25 mM partially inhibited the renin release induced by Ca deprivation in the presence of low perfusion pressure or isoprenaline.

7. These findings support the hypothesis that a decreased concentration of Ca in the cytoplasm of the juxtaglomerular cell stimulates renin release and increased Ca inhibits renin release. The sequence of events which leads to changes in cytoplasmic Ca might depend on the concentration of Ca in the perfusion medium, the renal perfusion pressure, the membrane potential of the juxtaglomerular cells, and Ca—Na exchange mechanisms.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre J., Pinto J. E., Trifaró J. M. Calcium movements during the release of catecholamines from the adrenal medulla: effects of methoxyverapamil and external cations. J Physiol. 1977 Jul;269(2):371–394. doi: 10.1113/jphysiol.1977.sp011907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker P. F., McNaughton P. A. Kinetics and energetics of calcium efflux from intact squid giant axons. J Physiol. 1976 Jul;259(1):103–144. doi: 10.1113/jphysiol.1976.sp011457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  4. Baumbach L., Leyssac P. P. Studies on the mechanism of renin release from isolated superfused rat glomeruli: effects of calcium, calcium ionophore and lanthanum. J Physiol. 1977 Dec;273(3):745–764. doi: 10.1113/jphysiol.1977.sp012121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benninger C., Einwächter H. M., Haas H. G., Kern R. Calcium-sodium antagonism on the frog's heart: a voltage-clamp study. J Physiol. 1976 Aug;259(3):617–645. doi: 10.1113/jphysiol.1976.sp011486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blaustein M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol. 1977 May;232(5):C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [DOI] [PubMed] [Google Scholar]
  7. Blaustein M. P. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. doi: 10.1007/BFb0034293. [DOI] [PubMed] [Google Scholar]
  8. Brading A. F. Calcium-induced increase in membrane permeability in the guinea-pig taenia coli: evidence for involvement of a sodium-calcium exchange mechanism. J Physiol. 1978 Feb;275:65–84. doi: 10.1113/jphysiol.1978.sp012178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bülbring E., Kuriyama H. The action of catecholamines on guinea-pig taenia coli. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):115–121. doi: 10.1098/rstb.1973.0014. [DOI] [PubMed] [Google Scholar]
  10. Chen D. S., Poisner A. M. Direct stimulation of renin release by calcium. Proc Soc Exp Biol Med. 1976 Sep;152(4):565–567. doi: 10.3181/00379727-152-39441. [DOI] [PubMed] [Google Scholar]
  11. Cochrane D. E., Douglas W. W. Histamine release by exocytosis from rat mast cells on reduction of extracellular sodium: a secretory response inhibited by calcium, strontium, barium or magnesium. J Physiol. 1976 May;257(2):433–448. doi: 10.1113/jphysiol.1976.sp011377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daniel E. E., Paton D. M., Taylor G. S., Hodgson B. J. Adrenergic receptors for catecholamine effects on tissue electrolytes. Fed Proc. 1970 Jul-Aug;29(4):1410–1425. [PubMed] [Google Scholar]
  13. Davis J. O., Freeman R. H. Mechanisms regulating renin release. Physiol Rev. 1976 Jan;56(1):1–56. doi: 10.1152/physrev.1976.56.1.1. [DOI] [PubMed] [Google Scholar]
  14. Deth R., Casteels R. A study of releasable Ca fractions in smooth muscle cells of the rabbit aorta. J Gen Physiol. 1977 Apr;69(4):401–416. doi: 10.1085/jgp.69.4.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ettienne E. M., Fray J. C. Influence of potassium, sodium, calcium, perfusion pressure, and isoprenaline on renin release induced by high concentrations of magnesium. J Physiol. 1979 Jul;292:373–380. doi: 10.1113/jphysiol.1979.sp012857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fray J. C. Stretch receptor control of renin release in perfused rat kidney: effect of high perfusate potassium. J Physiol. 1978 Sep;282:207–217. doi: 10.1113/jphysiol.1978.sp012458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fray J. C. Stretch receptor model for renin release with evidence from perfused rat kidney. Am J Physiol. 1976 Sep;231(3):936–944. doi: 10.1152/ajplegacy.1976.231.3.936. [DOI] [PubMed] [Google Scholar]
  18. Fray J. S. Stimulation of renin release in perfused kidney by low calcium and high magnesium. Am J Physiol. 1977 Apr;232(4):F377–F382. doi: 10.1152/ajprenal.1977.232.4.F377. [DOI] [PubMed] [Google Scholar]
  19. Fynn M., Onomakpome N., Peart W. S. The effects of ionophores (A23187 and RO2-2985) on renin secretion and renal vasoconstriction. Proc R Soc Lond B Biol Sci. 1977 Nov 14;199(1135):199–212. doi: 10.1098/rspb.1977.0135. [DOI] [PubMed] [Google Scholar]
  20. Harada E., Rubin R. P. Stimulation of renin secretion and calcium efflux from the isolated perfused cat kidney by noradrenaline after prolonged calcium deprivation. J Physiol. 1978 Jan;274:367–379. doi: 10.1113/jphysiol.1978.sp012153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haylett D. G., Jenkinson D. H. Effects of noradrenaline on potassium reflux, membrane potential and electrolyte levels in tissue slices prepared from guinea-pig liver. J Physiol. 1972 Sep;225(3):721–750. doi: 10.1113/jphysiol.1972.sp009966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Iwatsuki N., Petersen O. H. Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline. J Physiol. 1978 Feb;275:507–520. doi: 10.1113/jphysiol.1978.sp012204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lastowecka A., Trifaró J. M. The effect of sodium and calcium ions on the release of catecholamines from the adrenal medulla: sodium deprivation induces release by exocytosis in the absence of extracellular calcium. J Physiol. 1974 Feb;236(3):681–705. doi: 10.1113/jphysiol.1974.sp010460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lester G. E., Rubin R. P. The role of calcium in renin secretion from the isolated perfused cat kidney. J Physiol. 1977 Jul;269(1):93–108. doi: 10.1113/jphysiol.1977.sp011894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Logan A. G., Tenyi I., Peart W. S., Breathnach A. S., Martin B. G. The effect of lanthanum on renin secretion and renal vasoconstriction. Proc R Soc Lond B Biol Sci. 1977 Jan 14;195(1120):327–342. doi: 10.1098/rspb.1977.0013. [DOI] [PubMed] [Google Scholar]
  26. Logan A. G., Tenyi I., Quesada T., Peart W. S., Breathnach A. S., Martin B. G. Blockade of renin release by lanthanum. Clin Sci Mol Med Suppl. 1975 Jun;2:31s–32s. doi: 10.1042/cs048031s. [DOI] [PubMed] [Google Scholar]
  27. Ma T. S., Bose D. Sodium in smooth muscle relaxation. Am J Physiol. 1977 Jan;232(1):C59–C66. doi: 10.1152/ajpcell.1977.232.1.C59. [DOI] [PubMed] [Google Scholar]
  28. Marshall J. M. Relation between the ionic environment and the action of drugs on the myometrium. Fed Proc. 1968 Jan-Feb;27(1):115–119. [PubMed] [Google Scholar]
  29. Park C. S., Malvin R. L. Calcium in the control of renin release. Am J Physiol. 1978 Jul;235(1):F22–F25. doi: 10.1152/ajprenal.1978.235.1.F22. [DOI] [PubMed] [Google Scholar]
  30. Reuter H., Blaustein M. P., Haeusler G. Na-Ca exchange and tension development in arterial smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):87–94. doi: 10.1098/rstb.1973.0011. [DOI] [PubMed] [Google Scholar]
  31. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rubin R. P. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev. 1970 Sep;22(3):389–428. [PubMed] [Google Scholar]
  33. SANDOW A. Excitation-contraction coupling in muscular response. Yale J Biol Med. 1952 Dec;25(3):176–201. [PMC free article] [PubMed] [Google Scholar]
  34. Scheid C. R., Honeyman T. W., Fay F. S. Mechanism of beta-adrenergic relaxation of smooth muscle. Nature. 1979 Jan 4;277(5691):32–36. doi: 10.1038/277032a0. [DOI] [PubMed] [Google Scholar]
  35. Somlyo A. P., Somlyo A. V., Friedmann N. Cyclic adenosine monophosphate, cyclic guanosine monophosphate, and glucagon: effects on membrane potential and ion fluxes in the liver. Ann N Y Acad Sci. 1971 Dec 30;185:108–114. doi: 10.1111/j.1749-6632.1971.tb45241.x. [DOI] [PubMed] [Google Scholar]
  36. Van Dongen R., Peart W. S. Calcium dependence of the inhibitory effect of angiotensin on renin secretion in the isolated perfused kidney of the rat. Br J Pharmacol. 1974 Jan;50(1):125–129. doi: 10.1111/j.1476-5381.1974.tb09599.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wilcox C. S. Renin release from the dog's kidney during hypermagnesaemia. J Physiol. 1978 Feb;275:25P–26P. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES