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ABSTRACT  Previous work has shown that a simple four-state membrane transport system can interact with an oscillating electric
field to become an active transport system if there is charge translocation associated with conformational changes of the
transporter and if affinities of the transporter for the ligand on the two sides of membrane are different. The relationship between the
transport flux and both the frequency of the applied field and the concentration of ligand have been examined based on the
following assumptions: the rate of the electroconformational change of the transporter is much greater than that of the ligand
association/dissociation reaction, and the oscillating electric field has a large amplitude. It was found that the transport flux
depends strongly on the frequency of the field and on the concentration of the ligand and it displays a window of broad bandwidth
both on the frequency and the concentration axes. The maximum concentration gradient, or the static head, which can be
supported by this mechanism is shown to be constant for field frequencies smaller than the rate of the electroconformational
change. The static head value diminishes completely when the field frequency exceeds the rate of the conformational change. The
presence of an optimal field frequency has been shown experimentally in several membrane enzyme systems. The theory was
applied to the description of Rb and Na pumping in human erythrocytes stimulated by an AC field. The prediction of a window for a
ligand concentration and the static head value may be tested experimentally. In addition, the rate constants and the equilibrium
constants of the four state model can be determined by measuring positions of windows, fluxes, and static head values under
different experimental conditions. These results are equally applicable to the oscillation of pressure, membrane tension, substrate
concentration, or temperature if these external parameters can induce functionally relevant conformational changes of the

transporter.

INTRODUCTION

It has previously been shown that oscillating electric
fields (in the range of 10 V/cm, 1-10° Hz) which induce
transmembrane potentials comparable in magnitude to
those of the endogenous potentials of cell membranes
can cause Na,K-ATPase to pump K*, Rb*, and Na* up
their concentration gradients and mitochondrial ATP-
ase to synthesize ATP, in the absence of other energy
sources (1-5). Recently, an electroconformational cou-
pling model for biological free energy transduction (6)
by means of the electrochemical potential gradient of an
ion (7, 8) has been proposed (9-14). In this model, a
membrane enzyme with several conformational states of
different polarization (sum of electric charges and di-
poles), is driven by the periodic field to oscillate among
its conformational states within the catalytic cycle, and
in doing so it enables the enzyme to capture energy from
the applied field to drive the reaction away from the
chemical equilibrium. Electroconformational coupling is
an example of oscillatory coupling which is frequently
reported in the literature (15-21). These oscillatory
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reactions, either spontaneous or enforced, play vital
functions in biological regulation and energy and signal
transduction. We have examined the thermodynamic
basis of the transduction of electric energy by a general-
ized membrane transport system and found conditions
for maximum energy transfer (22,23). Among other
conditions, it was found that the conformational changes
of the transporter must be at a rate much faster than
those of the transport reactions and the field oscillation
to achieve maximal efficiency. In addition, the frequency
of the AC field must not exceed the rate of the
conformational transitions. For this reason the analysis
in the papers (22,23) was carried out only for the
frequencies which do not exceed the rate of the confor-
mational transitions.

It was found experimentally (1, 3), however, that the
frequency dependence of the active flux in an AC field is
a nonmonotonous one. Fig. 1, taken from Liu et al. (3),
presents the frequency dependence of electric field
stimulated pump transport of Rb* and Na* in human
red blood cells. The AC activation of the Rb* and Na*
pumping mode have optimum frequencies of ~1 kHz
and 1 MHz which has not yet been theoretically de-
scribed.
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FIGURE1 Experimental frequency dependence of the Rb* pumping
and Na* pumping in RBC stimulated by AC field of 20 V/cm. Data
taken from reference 3. Curves are drawn according to Eq. 26 with the
following parameters. For Rb*: k, = 1.25 10> s™', 8 = 10,000,
A(l -K,)/(1+A)=12510" For Na*: k,, = 1.58 10°s™", B = 80,
A(1 - K,,)/(1 + A) = 3.4107°. The number of ATPase-molecules per
RBC used for the calculation was 200.

Although the theoretical existence of an optimal
frequency for the conversion of electric energy has been
demonstrated by numerical analysis (11, 24), the relation-
ship between kinetic characteristics of the transport
scheme and the frequency of the AC field remained
unclear. To approach this problem, we have investigated
fluxes as a function of frequency in three frequency
ranges so that the total frequency range is covered. We
calculated the membrane active flux generated by the
ACfield and the static head which can be maintained by
this mechanism. It was found that the active flux has an
optimum both on the frequency and the concentration
axes. The parameters of optimum frequency and concen-
tration window were determined.

MEMBRANE TRANSPORT MODEL
Kinetic scheme

The simplest carrier mechanism is described by the four
state model 1, where the transporter expressed in 7, the
ligand in 4, and the rate constants, k;, are specified (25):

ij?

1)

Rate constants k%, and k%, are marked with asterisks to
emphasize that they have dimensions which differ from
the dimensions of other rate constants in this scheme.
This is because the flux of the particles of 4 across the
membrane surface is given by the equation

J=klci(T)) — ky (AT,). @

Here c, is the concentration of particles of 4 in the
left-hand solution, and the (7)) and (AT,) are the
concentrations of the corresponding species in the
membrane. If the term c, has the dimension of volume
concentration, say, moles per meter >, then it is obvious
that the rate constants k%, and k,, have different dimen-
sions. To avoid this inconvenience we shall change to a
dimensionless relative concentration 4’, so that the rate
constants k,, and k,, have the same dimensions. The
same is true for the right side of the membrane with
conventional concentration c, and association reaction
rate constant k%,

To switch from dimensional to dimensionless concen-
tration 4, we have to normalize the conventional concen-
tration c, by some characteristic concentration c%. As
follows from the mathematical analysis, the characteris-
tic concentration c* should be defined as

kyk
s = Vo ©
147423

Therefore,
A =c,lck 4)
and
k,=k*c* )
kyy = k3 k. 6

Now all the rate constants in the kinetic Scheme 1
have the same dimension of 1/s and the concentration 4
is presented in relative units. In the following presenta-
tion we shall maintain this convention.

Antisymmetric transporter

A particular case of Scheme 1, called the antisymmetric
transporter, is defined by assigning the following condi-
tions to the rate constants of the surface reactions,
ki =k, ky =k ¥
and conformation transitions,
ki = ks, ky =k ®
and to the equilibrium constants,

K.=K,=K,,=K,. &)
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When these conditions are met, Scheme 1 can be
described with only two rate constants, k,, and k,,, and
one equilibrium constant, K,,. All the others rate con-
stants and equilibrium constants can be expressed via
these three. In this case the kinetic equations are
drastically simplified.

If the equilibrium constant K, ( = k,/k,,) is much
smaller (or greater) than unity, i.e.,K,, < lorK,, > 1,
the case is strongly antisymmetric. In such a case, the
equations can further be simplified and the active
transport phenomenon will become more pronounced.
Where these special conditions are applied will be
mentioned explicitly.

Active transport

As before (22, 23) we assume that 4 is uncharged but
the transitions between T, and 7T, and between AT, and
AT, involve a change of polarization of the protein (or
equivalently, the intramolecular movement of charge, g,
across the membrane), and the system is responsive to
an electric pertubation (electric potential of ¢). The
state occupancies of the transporter at equilibrium will
satisfy

T/T, = Kpe ™, AT,JAT, = Kne ™, (10)

where K,, = k,/k,,, K,; = ky/k,, are the equilibrium
constants of the conformational change of the unloaded
and loaded carrier at zero electric potential and ¢ =
q$/RT.

In general, the kinetic behavior of the transporter 1
can be simulated by analytically solving the four differen-
tial equations for Scheme 1 (24, 25).

The rate constants of consecutive steps in Scheme 1
determine the overall rate of energy transduction. One
of them can be presented as the rate of the ligand/
transporter interaction k., on the two sides of mem-
brane which is given by the terms (k,4' + k,) or
(kA" + k3,). The second is the rate of conformational
transitions of the transporter &, which is given by two
values (k,, + k,,) and (k,, + k;,) for the protein un-
loaded or loaded with ligand A. In the presence of an
electric field the conformational rate constants will
include additional electrical terms A = exp (U/2). We
shall consider square-wave potential oscillations with
the amplitude {,. Therefore, the conformational relax-
ation rates k., in one half-period will be given by
(Ak,, + k,/N) and (Mk,; + ky/M) and in the second half-
period by (k,,/A + Ak, ) and (k,/N + Ak,,).

As was shown earlier (22, 23), for active transport to
occur it is necessary that the affinity of the transporter
for the transported solute is different at the two sides of
the membrane and the conformational changes are

much faster than binding rates. We accept here this
condition.

A schematic illustration of the energetics of the active
pumping process was previously presented (23). We
shall restrict the subsequent discussion to large ampli-
tude field (meaning large amplitude interaction energy
between the field and the enzyme conformation), such
that all enzyme binding sites would be facing either right
or left depending on the sign of the field. This allows us
to obtain analytic expressions for flux generated by
electric field and for the static head achieved in the
quasi-equilibrum.

ACTIVE FLUX; FREQUENCY DEPENDENCE

By using these limiting conditions, transport flux of
Scheme 1 has been solved analytically for square-wave of
large oscillations amplitude ¢, When analyzing the
frequency dependence of active transport we shall
distinguish three frequency domains: low (/), moderate
(m), and high (k). The low frequency domain covers the
frequencies between zero and the rate of surface chemi-
cal reactions k., the moderate frequency domain
covers the frequencies between the rates of surface
chemical reactions k., and conformational transitions
k..o and high frequency domain exceeds the rate of
conformational transitions. Later we shall give a more
strict quantitative definition of the borders between
these domains and define conditions for liking these
domains.

If membrane potential is zero, there is only passive
downhill flux which for arbitrary values of rate constants
is given by

J — knkuK-zs(A' _A”) (11)
PR (ks + kK (1 + Kyp) ’
+ (kA" + ky A'Kp) (1 + K]

In the presence of membrane potential square-wave
oscillations, if these oscillations are large enough, the
flux of particles of A across the membrane can be
calculated analytically in two neighboring domains simul-
taneously, either in low and moderate frequency do-
mains or in moderate and high frequency domains.

Low and moderate frequency
domains

The solution in low and moderate frequency domains
was described elsewhere (22, 23). For arbitrary values of
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rate constants the result is

S oL ek’ = kukyA")
™28 (kyy + Ky A') (ks + kpA”)
{1 —exp [—(ky, + kzsA")e]}
{1 —exp [—(k, + k“A')O]} 12)
1 —exp[—(ky + kA" + ky, + k,AM)0])

T

where 6 = 1/2f.

Eq. 12 gives the frequency dependence of the average
flux of A at low and moderate frequencies and can be
explained as follows. In the low-frequency domain, the
flux simplifies to

(Ko’ = Kad")
T+ KA+ KD S )

S

where K,, is the association constant for the left side of
the membrane and K, is the association constant for the
right side. This result demonstrates that the flux propor-
tional to the frequency with a slope that depends only on
the association constants and the concentrations. In the
moderate frequency domain the flux simplifies to

(KyA" — K, A") (14)
(1 + KA Yk, + (1 + K A") ko,

.
"2

which is independent of frequency. Hence, in this
domain the flux displays a plateau. In the antisymmetric
case it will be

_ ku(A' B Kf4A") (15)
T2(1+K,+A +K,A")

Ja
The crossing of two asymptotes J, and J,, determines
the border between these two domains:

1 (1+K,4")(1 + K,,A")
fn = ¥ Kad Vb + (L + KAy (19

It is still a general case with respect to the values of rate
constant. In the case of an antisymmetric transporter
and equal concentrations A’ = 4" = A this expression
becomes

k(K +A4)(1 +K,A)
20+ A1+ K, a7

fim =

Note that this characteristic frequency is proportional
to the only rate constant k,, preserved in this expression.
It means that k,, becomes the “natural” scale for the
frequency £ Subsequently we shall use the reduced
dimensionless frequency F = flk,,.

To make reasonable estimates for the characteristic
frequency f,, let us consider the case of strong antisym-
metry. If K, is small and A is of the order of unity, the

expression simplifies to:

fo A (18)

ko 2(1+A4)
For A = 1 this is Y. For the static head with 4’ =
K} A" = 1 the dimensionless boundary frequency deter-
mined from Eq. 16 would be ;. Therefore, even for a
very broad range of concentrations, the boundary be-
tween two domains is rather stable and approximated by
the chemical reaction relaxation rate k..

Thus, in the first two frequency domains, the flux
initially increases linearly with frequency (Fig. 2, curve
a) until the frequency approaches f,,,, and then levels off
reaching the plateau described by Eq. 14.

Moderate and high frequency
domains

For the frequencies which are comparable to or higher
than the rate of conformational relaxation k_,; (Where
frequency considerably exceeds the rate of chemical
reaction k., ) the solution can be simplified because the
sum of the population of states 7, and T, does not
change considerably in the cycle of the oscillation. The
same is true for the sum of the populations of states AT,
and AT,.

To make the final results more obvious we consider
the antisymmetric transporter as defined by Eqgs. 7-9.
Then the flux at moderate and high frequencies can be
presented as

_ . kul(6 —H)A' - (8 + H)'K,}A"]
=Iara)e-m+K.a+ane+m)y 9

‘,mh

5 10g(f/k )

FIGURE2 Frequency dependence of flux J,,, (curve a) drawn accord-
ing to Eq. 12 andJ,,, (curve b) for the antisymmetric transporter plotted
according to Eq. 18. Equilibrium constant K,, equals 0.1, concentra-
tions4’' = A" =1and g = 100.
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—where

[1 — exp (=8/7)] [1 — exp (—6/my)]

H= (1 — 1) [1 — exp (—6/7, — 0/7,)]

(20)

T, = 1/(Nky,) and 7y = 1/(Aky). (21)

Note that the Eq. 19 depends on the amplitude of
membrane potential oscillations via the term \.

Eq. 19 gives the expression for the flux J, as a
function of frequency. This flux decreases with the
frequency (Fig. 2, curve b). In the moderate frequency
domain this flux approaches the maximum value which
coincides with the plateau J,, displayed in this region by
the flux J, as determined by Eq. 14. In the high
frequency domain the flux decreases with frequency and
finally reaches the level

](oo) _ k‘l(A, _A")
T A +HK)2+A + AN

22)

It would be useful to evaluate the expansion of the flux
(Eq. 19) into series in the power of 1/f. This expansion is
rather cumbersome but it simplifies for level flow when
A’ = A" = A. The first nonvanishing term is

_ ﬁzk«ﬂ(l - Ku)
" T 796 (1 +A)

2

k14

7 ’
where B = Ak,/k,,. One can see that the flux decreases
with the second power of frequency.

(23)

The characteristic frequency f,,, which separates two -

regions, can be defined as a point where the high
frequency approximation of the flux 23 reaches a plateau
level J, as determined by Eq. 21. The resulting equation
is

szu(l - K.) I& i _ kA1 - K,,) 24)
9%6(1+A4) \f] 2(1+A)
and one can find the characteristic frequency
fmll B KN
k., 4 34 (25)

The boundary between the moderate and high fre-
quency domain is normally close to the relaxation rate of
the conformational transition k,

conf*

Flux in the total frequency range

Because the fluxes J,, and J,, have the same values in the
moderate frequency domain, we can combine these two
functions to describe the flux for the total frequency

range. This approximation can be presented as

Jlmeh
Jimh = J (26)

m

Hence, at the low frequencies the flux is given by J, at
high frequencies it is J,, and at moderate frequencies it
is approximated by the product which is close to the
plateauJ,. The plots of this function forK,, = 0.1,4 = 1,
and different values of parameter B are given in Fig. 3.
The second curve in this plot corresponds to 8 = 100 and
is a product of curves for J, and J,, presented in Fig. 2.
This function displays a sharp maximum because the
width of the moderate frequency domain is small: the
boundaries have the coordinates log (f,./k,,) = —0.56
and log (f,../k.,) = 0.66. Hence the difference between
the two coordinates only slightly exceeds unity.

Eq. 26 is better the larger the distance between these
boundary points (larger parameter). As this distance
increases, the maximum becomes broader as shown in
Fig. 3. The position of this maximum on the frequency
axis can be expressed as

fmax = Vflm fmh' (27)

CONCENTRATION DEPENDENCE

Two types of concentration dependence shall be distin-
guished: one-side and two-side concentration depen-
dence. In the first case, the concentration is changed at
one side, while the other is kept constant. In this case the
static head can be observed. In the second case the
concentrations of 4’ and A” are equal and change at the
same rate. The flux in this case is called level flow. We
shall consider both cases.

Jlmh /k14

= log(f/kM)

FIGURE3 Frequency dependence of flux J,,, for the antisymmetric
transporter drawn according to Eq. 26 with equilibrium constant K, =
0.1 and concentrations A’ = A" = 1. The curves from left to right have
the following values of parameter B: 10; 100; 1,000; 10,000; and
100,000.
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Static head

The dependence of flux on the concentration of A” with
the concentration of 4’ being kept constant is presented
in Fig. 4 for4’' = 1, K, = 0.1, B = 1000 and different
frequencies. The flux from left to right is considered
positive, therefore, it decreases with increasing concen-
tration of A”. The curves cross the abscissa and go to the
negative region indicating a change of the direction of
flux and concomitantly a change of the direction of
energy transduction as was previously described (22, 23).
Here the active transport system is transformed into an
electrical generator which can use the energy stored in
the form of a concentration gradient to produce sponta-
neous or enforced electrical oscillations.

The points where the curves cross the abscissa are the
static head points, where active pumping stops and the
system is in a state of quasi-equilibrium. The ratio of
concentrations 4”/4’ at the static head can be deter-
mined from the equation J,;, = 0, which gives

(1:"
This represents the theoretical limit of the concentra-
tion gradient that can be supported by the transport
system. In previous work (22, 23) the static head was

found in the domains of low and moderate frequencies
only where

_ (9 - H)Z(KN)Z

o (0+H) (28)

(A"A"),, = Ky/K;, (29)
or in the case of antisymmetric transporter
(A"1A")y = K3y (30

In Fig. 4 this situation corresponds to the limiting curve
1 with dimensionless frequency f/k,, = 1. The static head

Jimh /k'4

0.2

3 0.1
‘5‘ WS\

log A"
AN

FIGURE4 Flux J,,, as a function of one-side concentration A”. The
following parameters are used: K,, = 0.1, 8 = 1,000, and A’ = 1.
Dimensionless frequency f/k,, was changing with the curves: 1) 1; 2) 10;
3) 30; 4) 100; and 5) 1,000. The points where the curves cross the
abscissa give the static heads which decreases with increasing fre-

quency.

here is equal to 100. Indeed, this curve crosses the
abscissa at the point, log A" = 2. This means that the
transport system can create and maintain a 100-fold
concentration gradient of neutral particles across mem-
brane.

For low and moderate frequencies the concentration
gradient which can be supported by the transport system
is determined solely by the thermodynamic parameters
of this system. The static head point concentration ratio,
Eqgs. 29 or 30, in these regions (or at least in the domain
of low frequency if the width of moderate frequency
domain is not large enough) does not depend on
concentrations or frequency. But the general expression,
Eq. 28, depends on both of these parameters so when
the frequency increases the static head decreases until it
disappears completely, which means (4"/4"),, = 1. The
dependence of static head (4"/4"),, on frequency is
presented in Fig. 5 with the parameters 4’ = 1, K, =
0.1, and B = 1,000. In the left part of the plot the curve
reaches 100 and at the right side it levels off at 1.

Level flow

The two-side concentration dependence of active flux
where concentrations are equal to each other is called
level flow. The flux is given by the general Eq. 26 with
A" = A" = A. For the case of the antisymmetric
transporter, and low frequency, this flux can be derived
from Eq. 13:

£ - KA
= ®ur DA+ Kpd)’ Gh

Ji

This function of concentration has a maximum at the
point where A = 1 and the absolute value of this
function depends on the frequency f.

For moderate frequency the level flux in the case of

(Az/At)sh
“__wo\,
80.
60.
40.

20.

-1 1 2. 3 loatr/k )

FIGURES Frequency dependence of the static head. Parameters
K,, = 0.1 and B = 1,000.
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antisymmetric transporter can be derived from Eq. 15 as

_ ku(l - KN)A

"= AT A) (32)

The flux gradually increases as A increases but then
reaches a plateau with a characteristic transition point of
A = 1. This function does not depend on frequency
while it is confined to the moderate frequency domain.

Therefore one could expect the level flux as a function
of concentration to increase until it reaches a plateau
and then to remain on this plateau. But Fig. 6 presents
another dependence at high concentrations of A. The
curves are bell-shaped (1 and 2) or display the broad
maximum (3 and 4) but finally decrease to zero. This
behavior will be analyzed in the next section.

OPTIMUM WINDOW

The boundaries between different frequency domains as
presented by Eqgs. 17 and 25 are concentration depen-
dent. If f, and f,, are plotted for antisymmetric trans-
porter as functions of 4, we obtain Fig. 8 with the
parameters K, = 0.1 and 8 = 100. The upper curve gives
f.n and the lower curve gives f,. These lines divide the
plane A — f into domains corresponding to low, moder-
ate, and high frequencies. The structure of this plane is
such that at low concentrations all three domains are
available. If the concentration is increased then the
width of the moderate frequency domain decreases and
eventually this domain disappears.

The crossing point of these two lines may be found by
solving the equation f,, = f,,,. For large B, the critical
concentration is obtained when the moderate frequency
domain disappears:

3 2 2
/B*(1 +K.,)
Acri( - 12 K“ . (33)

N

m

14

log A

FIGURE6 Concentration dependence of flux J,,,, for K,, = 0.1, B =
1,000, and A’ = A" = 1. The parameter of the curves is dimensionless
frequency fk,,: 1) 1; 2) 10; 3) 100; and 4) 1,000.

The coordinate of this point on the frequency axis is

fu 1°[2FKL
ke iVig+Ky) (34)

The existence of a crossing point indicates that it is
possible to pass from the low frequency to the high
frequency domain without crossing the moderate fre-
quency domain. This point is somewhat analogous to the
critical point in the phase transition theory. In our case it
means that for the large concentrations there is no
plateau of the frequency dependence for level flux.

This explains the observation made in the end of the
preceding section. When we investigate the concentra-
tion dependence of flux, even if at low concentrations,
we start at the point belonging to the moderate fre-
quency domain, when this concentration increases we
inevitably leave this domain and enter either the low
frequency or high frequency domain. In both cases the
flux will decrease with concentration.

The division of the plane f — A into different domains
suggests that in some regions of this plane the energy
transduction can proceed with the highest rate and
efficiency. We shall call this region the optimum fre-
quency and concentration window. This window must be
somewhere in the moderate frequency domain. But it
cannot include very low concentrations because as was
demonstrated in the Eq. 32, the flux at low concentra-
tions would be too low. The transition point between low
and high fluxes isA4,,,,, = 1.

Therefore the most promising region is the part of the
moderate frequency domain in Fig. 7 to the right of the
vertical line passing through A = 1 or log A = 0. The
position of maximum flux in this optimum window is of
utmost interest. To avoid very cumbersome formulas we
find this position approximately. The frequency coordi-

High frequency

Av

X Moderate frequency
-

o

°

Low frequency

-1. 0. 1. 2.
log A

FIGURE7 Frequency domains on the plane frequency-concentration.
The upper curve is f,,(4) drawn according to the Eq. 25 and the lower
curve is fi,,(4) drawn according to the Eq. 18 with the parameters K, =
0.1 and B = 1,000. These lines divide the plane f — 4 into domains
corresponding to low, moderate, and high frequencies.
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nate of the maximum f,,, must be close to f_,. Hence

fuu 13 [ 28K
k. 4V3(1+K.) 35)

The concentration corresponding to this maximum may
be taken as the geometrical mean of 4,,,,, and A4,

) ETS;
Amu = 12 K“ . (36)

To check these predictions we present in Fig. 8 4 the
three-dimensional plot of level flux as a function of
frequency and concentration. Parameters of this func-
tion are K,, = 0.1 and B = 100. This surface displays a
rather sharp “hill.” The position of this hill becomes
clearer in Fig. 8 B where this function is presented as a
density plot. The cross-mark on this plot shows the
position of the top of the hill as calculated with Eqgs. 35

‘Jlmh/km

log A
N

2.5 log(r/kM)

FIGURES8 Flux/J,, as a function of dimensionless frequency f/k,, and
concentration A’ = A" = A for K,, = 0.1 and B =100. (4)
Three-dimensional plot. (B) Optimum frequency and concentration
window presented as a density plot. The height of the function
Jmn(f, A) at each point is shown by the degree of shading. The cross
marks the position of the maximum flux. It has the coordinates
{10g( foudkis) = —0.008 and log A,,, = 0.667} which were calculated
according to Egs. 27 and 36.

and 36. These coordinates are { log (f,./k..) = —0.008
and log 4, = 0.667]. The cross-mark is located in the
center of the window proving that Egs. 35 and 36 give a
good approximation.

DISCUSSION

We have demonstrated that the rate and the efficiency of
energy transduction by the electroconformational cou-
ple mechanism can be optimized if the proper frequency
and concentration “windows” are selected. In these
windows the flux reaches the highest values as is shown
by the three-dimensional plot in Fig. 8 4. The optimum
frequency and concentration window is clearly pre-
sented in Fig. 8 B.

To illustrate this pheonomenon with a real biological
experiment, we have used the data on AC field stimula-
tion of Rb* and Na* pumping in human erythrocytes (3).
These data are presented in the Fig. 1. As was described
above, from this dependence, one can find the rate
constant k,, which determines the left border of the
optimum window on the frequency axis and B which
determines the right border of the frequency window.
For Rb* these parameters were found to be k,, = 1.25 X
10° s and B = 10,000, and for Na* they were k,, =
1.58 x 10° s™' and B = 80. If the number of ATPase
molecules per RBC is 200, then the coefficient
A1 -K,)/(1+A) determing the magnitude of the
fluxes may be calculated. For Rb it was 1.25 x 1072 and
for Na* it was 3.4 x 107°. In spite of the good coinci-
dence of experimental points with the theoretical predic-
tions this plot should be considered a qualitative exam-
ple because the theory was developed for the pumping
of neutral particles. We believe that the same mecha-
nism should work in the case of ion pumping, though
some additional features become important in the latter
case (manuscript to be published).

If the concentration difference exceeds the static
head, energy is transduced in the opposite direction,
turning the transporter into a kind of electric field
generator. The analysis of frequency dependence of the
static head demonstrated that at small and moderate
frequencies the static head is constant while at high
frequencies it decreases and disappears completely.
This means that energy can be absorbed from the AC
field and stored in the form of a concentration gradient,
if the external field oscillates with low and moderate
frequencies only.

The results obtained here for the electrical oscilla-
tions are applicable to the oscillation of pressure,
membrane tension, concentration, temperature etc.
Many kinds of oscillations can become a driving force for
pumping of neutral (23) or charged (manuscript submit-
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ted for publication) particles up the gradient of their
electrochemical potential and hence can be used by this
mechanism in the process of energy transduction as a
source of energy. For example, the acoustic signal
transduction into membrane potential was recently ana-
lyzed in detail (see following paper).
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