Abstract
1. Cells were dissociated from rat pituitary pars intermedia, maintained in culture, and subjected to electrophysiological study.
2. Recorded membrane potentials varied widely (range — 18 to about — 80 mV). They were relatively insensitive to changes in external Na but were rapidly and reversibly lowered by excess K.
3. Action potentials were elicited by passing current through intracellular recording electrodes. They were reversibly blocked by tetrodotoxin (TTX, 2 × 10-6 M) or by removal of Na from the recording solution and thus appeared to be Na spikes. Cells yielding action potentials in response to depolarization had relatively high membrane potentials (about — 65 mV) which may be representative of the true resting membrane potential of pars intermedia cells.
4. Spontaneous action potentials were recorded extracellularly from nearly all the many isolated pars intermedia cells studied with a microsuction electrode. Their amplitude was reduced by TTX (0·1-2 × 10-6 M). Electron microscopic examination of cells producing action potentials showed them to be hormone-containing parenchymal (gland) cells.
5. Dopamine (10-6 M), a presumed physiological inhibitor of secretion of melanocyte stimulating hormone (MSH) from pars intermedia cells, decreased the frequency of spontaneous action potentials but not their amplitude. Similar effects were seen with noradrenaline (10-6 M), another inhibitor of MSH secretion, whereas isoprenaline and 5-hydroxytryptamine (5-HT), which do not inhibit MSH secretion, had no effect.
6. Action potentials may be involved in stimulus-secretion coupling in pars intermedia cells.
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Glitsch H. G. Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent cations. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):389–409. doi: 10.1098/rstb.1975.0018. [DOI] [PubMed] [Google Scholar]
- Baker P. F., Rink T. J. Catecholamine release from bovine adrenal medulla in response to maintained depolarization. J Physiol. 1975 Dec;253(2):593–620. doi: 10.1113/jphysiol.1975.sp011209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumgarten H. G., Björklund A., Holstein A. F., Nobin A. Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary. Z Zellforsch Mikrosk Anat. 1972;126(4):483–517. doi: 10.1007/BF00306908. [DOI] [PubMed] [Google Scholar]
- Biales B., Dichter M. A., Tischler A. Sodium and calcium action potential in pituitary cells. Nature. 1977 May 12;267(5607):172–174. doi: 10.1038/267172a0. [DOI] [PubMed] [Google Scholar]
- Björklund A., Falck B., Hromek F., Owman C., West K. A. Identification and terminal distribution of the tubero-hypophyseal monoamine fibre systems in the rat by means of stereotaxic and microspectrofluorimetric techniques. Brain Res. 1970 Jan 6;17(1):1–23. doi: 10.1016/0006-8993(70)90305-7. [DOI] [PubMed] [Google Scholar]
- Björklund A., Moore R. Y., Nobin A., Stenevi U. The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res. 1973 Mar 15;51:171–191. doi: 10.1016/0006-8993(73)90371-5. [DOI] [PubMed] [Google Scholar]
- Bower A., Hadley M. E., Hruby V. J. Biogenic amines and control of melanophore stimulating hormone release. Science. 1974 Apr 5;184(4132):70–72. doi: 10.1126/science.184.4132.70. [DOI] [PubMed] [Google Scholar]
- Bower A., Hadley M. E. Ionic requirements for melanophore-stimulating hormone (MSH) release. Gen Comp Endocrinol. 1972 Aug;19(1):147–158. doi: 10.1016/0016-6480(72)90015-9. [DOI] [PubMed] [Google Scholar]
- Brandt B. L., Hagiwara S., Kidokoro Y., Miyazaki S. Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol. 1976 Dec;263(3):417–439. doi: 10.1113/jphysiol.1976.sp011638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis M. D., Hadley M. E. Spontaneous electrical potentials and pituitary hormone (MSH) secretion. Nature. 1976 Jun 3;261(5559):422–423. doi: 10.1038/261422a0. [DOI] [PubMed] [Google Scholar]
- Dawson D. C., Ralph C. L. Light-evoked neural activity in the intermediate lobe of the pituitary of Rana pipiens: electrophysiological evidence for a neural pathway linking the eyes with the pars intermedia. Neuroendocrinology. 1974;15(5):267–280. doi: 10.1159/000122317. [DOI] [PubMed] [Google Scholar]
- Dean P. M., Matthews E. K. Electrical activity in pancreatic islet cells: effect of ions. J Physiol. 1970 Sep;210(2):265–275. doi: 10.1113/jphysiol.1970.sp009208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean P. M., Matthews E. K. Glucose-induced electrical activity in pancreatic islet cells. J Physiol. 1970 Sep;210(2):255–264. doi: 10.1113/jphysiol.1970.sp009207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W., Kanno T., Sampson S. R. Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: an analysis employing techniques of tissue culture. J Physiol. 1967 Jan;188(1):107–120. doi: 10.1113/jphysiol.1967.sp008127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968 Nov;34(3):451–474. doi: 10.1111/j.1476-5381.1968.tb08474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W. Stimulus-secretion coupling: variations on the theme of calcium-activated exocytosis involving cellular and extracellular sources of calcium. Ciba Found Symp. 1978;(54):61–90. doi: 10.1002/9780470720356.ch4. [DOI] [PubMed] [Google Scholar]
- Douglas W. W., Taraskevich P. S. Action potentials (probably calcium spikes) in normal and adenomatous cells of the anterior pituitary and the stimulant effect of thyrotropin releasing hormone [proceedings]. J Physiol. 1977 Oct;272(1):41P–43P. [PubMed] [Google Scholar]
- Gerschenfeld H. M. Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol Rev. 1973 Jan;53(1):1–119. doi: 10.1152/physrev.1973.53.1.1. [DOI] [PubMed] [Google Scholar]
- Hadley M. E., Davis M. D., Morgan C. M. Cellular control of melanocyte stimulating hormone secretion. Front Horm Res. 1977;4:94–104. doi: 10.1159/000400354. [DOI] [PubMed] [Google Scholar]
- Hagiwara S. Ca-dependent action potential. Membranes. 1975;3:359–381. [PubMed] [Google Scholar]
- Howe A. The mammalian pars intermedia: a review of its structure and function. J Endocrinol. 1973 Nov;59(2):385–409. doi: 10.1677/joe.0.0590385. [DOI] [PubMed] [Google Scholar]
- Iwata T., Ishii S. Chemical isolation and determination of catecholamines in the median eminence and pars nervosa of the rat and horse. Neuroendocrinology. 1969;5(3):140–148. doi: 10.1159/000121856. [DOI] [PubMed] [Google Scholar]
- Kehoe J., Marder E. Identification and effects of neural transmitters in invertebrates. Annu Rev Pharmacol Toxicol. 1976;16:245–268. doi: 10.1146/annurev.pa.16.040176.001333. [DOI] [PubMed] [Google Scholar]
- Kidokoro Y. Spontaneous calcium action potentials in a clonal pituitary cell line and their relationship to prolactin secretion. Nature. 1975 Dec 25;258(5537):741–742. doi: 10.1038/258741a0. [DOI] [PubMed] [Google Scholar]
- Llinás R., Steinberg I. Z., Walton K. Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2918–2922. doi: 10.1073/pnas.73.8.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews E. K., Sakamoto Y. Electrical characteristics of pancreatic islet cells. J Physiol. 1975 Mar;246(2):421–437. doi: 10.1113/jphysiol.1975.sp010897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner H. P., Schmelz H. Membrane potential of beta-cells in pancreatic islets. Pflugers Arch. 1974;351(3):195–206. doi: 10.1007/BF00586918. [DOI] [PubMed] [Google Scholar]
- Meites J., Lu K. H., Wuttke W., Welsch C. W., Nagasawa H., Quadri S. K. Recent studies on functions and control of prolactin secretion in rats. Recent Prog Horm Res. 1972;28:471–526. [PubMed] [Google Scholar]
- Oshima K., Gorbman A. Pars intermedia: unitary electrical activity regulated by light. Science. 1969 Jan 10;163(3863):195–197. doi: 10.1126/science.163.3863.195. [DOI] [PubMed] [Google Scholar]
- Pace C. S., Price S. Bioelectrical effects of hexoses on pancreatic islet cells. Endocrinology. 1974 Jan;94(1):142–147. doi: 10.1210/endo-94-1-142. [DOI] [PubMed] [Google Scholar]
- Saavedra J. M., Palkovits M., Kizer J. S., Brownstein M., Zivin J. A. Distribution of biogenic amines and related enzymes in the rat pituitary gland. J Neurochem. 1975 Sep;25(3):257–260. doi: 10.1111/j.1471-4159.1975.tb06962.x. [DOI] [PubMed] [Google Scholar]
- Taraskevich P. S., Douglas W. W. Action potentials occur in cells of the normal anterior pituitary gland and are stimulated by the hypophysiotropic peptide thyrotropin-releasing hormone. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4064–4067. doi: 10.1073/pnas.74.9.4064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilders F. J., Mulder A. H., Smelik P. G. On the presence of a MSH-release inhibiting system in the rat neurointermediate lobe. Neuroendocrinology. 1975;18(1):125–130. doi: 10.1159/000122390. [DOI] [PubMed] [Google Scholar]
- Tilders F. J., Smelik P. G. Direct neural control of MSH secretion in mammals: the involvement of dopaminergic tubero-hypophysial neurones. Front Horm Res. 1977;4:80–93. doi: 10.1159/000400353. [DOI] [PubMed] [Google Scholar]
- Tischler A. S., Dichter M. A., Biales B., DeLellis R. A., Wolfe H. Neural properties of cultured human endocrine tumor cells of proposed neural crest origin. Science. 1976 May 28;192(4242):902–904. doi: 10.1126/science.179139. [DOI] [PubMed] [Google Scholar]

