Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 Mar;68(3):988–996. doi: 10.1016/S0006-3495(95)80274-2

Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers.

J Dai 1, M P Sheetz 1
PMCID: PMC1281822  PMID: 7756561

Abstract

Many cell phenomena involve major morphological changes, particularly in mitosis and the process of cell migration. For cells or neuronal growth cones to migrate, they must extend the leading edge of the plasma membrane as a lamellipodium or filopodium. During extension of filopodia, membrane must move across the surface creating shear and flow. Intracellular biochemical processes driving extension must work against the membrane mechanical properties, but the forces required to extend growth cones have not been measured. In this paper, laser optical tweezers and a nanometer-level analysis system were used to measure the neuronal growth cone membrane mechanical properties through the extension of filopodia-like tethers with IgG-coated beads. Although the probability of a bead attaching to the membrane was constant irrespective of treatment; the probability of forming a tether with a constant force increased dramatically with cytochalasin B or D and dimethylsulfoxide (DMSO). These are treatments that alter the organization of the actin cytoskeleton. The force required to hold a tether at zero velocity (F0) was greater than forces generated by single molecular motors, kinesin and myosin; and F0 decreased with cytochalasin B or D and DMSO in correlation with the changes in the probability of tether formation. The force of the tether on the bead increased linearly with the velocity of tether elongation. From the dependency of tether force on velocity of tether formation, we calculated a parameter related to membrane viscosity, which decreased with cytochalasin B or D, ATP depletion, nocodazole, and DMSO. These results indicate that the actin cytoskeleton affects the membrane mechanical properties, including the force required for membrane extension and the viscoelastic behavior.

Full text

PDF
988

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashkin A., Dziedzic J. M. Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7914–7918. doi: 10.1073/pnas.86.20.7914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashkin A., Dziedzic J. M. Optical trapping and manipulation of viruses and bacteria. Science. 1987 Mar 20;235(4795):1517–1520. doi: 10.1126/science.3547653. [DOI] [PubMed] [Google Scholar]
  3. Ashkin A., Dziedzic J. M., Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987 Dec 24;330(6150):769–771. doi: 10.1038/330769a0. [DOI] [PubMed] [Google Scholar]
  4. Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J. 1992 Feb;61(2):569–582. doi: 10.1016/S0006-3495(92)81860-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev. 1990 Oct;70(4):1029–1065. doi: 10.1152/physrev.1990.70.4.1029. [DOI] [PubMed] [Google Scholar]
  6. Berk D. A., Hochmuth R. M. Lateral mobility of integral proteins in red blood cell tethers. Biophys J. 1992 Jan;61(1):9–18. doi: 10.1016/S0006-3495(92)81811-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bo L., Waugh R. E. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J. 1989 Mar;55(3):509–517. doi: 10.1016/S0006-3495(89)82844-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bray D., Chapman K. Analysis of microspike movements on the neuronal growth cone. J Neurosci. 1985 Dec;5(12):3204–3213. doi: 10.1523/JNEUROSCI.05-12-03204.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bray D., Heath J., Moss D. The membrane-associated 'cortex' of animal cells: its structure and mechanical properties. J Cell Sci Suppl. 1986;4:71–88. doi: 10.1242/jcs.1986.supplement_4.5. [DOI] [PubMed] [Google Scholar]
  10. Bretscher M. S. Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J. 1989 May;8(5):1341–1348. doi: 10.1002/j.1460-2075.1989.tb03514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooper J. A. The role of actin polymerization in cell motility. Annu Rev Physiol. 1991;53:585–605. doi: 10.1146/annurev.ph.53.030191.003101. [DOI] [PubMed] [Google Scholar]
  12. Edds K. T. Effects of cytochalasin and colcemid on cortical flow in coelomocytes. Cell Motil Cytoskeleton. 1993;26(3):262–273. doi: 10.1002/cm.970260309. [DOI] [PubMed] [Google Scholar]
  13. Edidin M., Kuo S. C., Sheetz M. P. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science. 1991 Nov 29;254(5036):1379–1382. doi: 10.1126/science.1835798. [DOI] [PubMed] [Google Scholar]
  14. Edidin M., Zúiga M. C., Sheetz M. P. Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3378–3382. doi: 10.1073/pnas.91.8.3378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans E. A. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J. 1983 Jul;43(1):27–30. doi: 10.1016/S0006-3495(83)84319-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Evans E. A., Skalak R. Mechanics and thermodynamics of biomembranes: part 2. CRC Crit Rev Bioeng. 1979 Nov;3(4):331–418. [PubMed] [Google Scholar]
  17. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  18. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  19. Gordon-Weeks P. R. Control of microtubule assembly in growth cones. J Cell Sci Suppl. 1991;15:45–49. doi: 10.1242/jcs.1991.supplement_15.7. [DOI] [PubMed] [Google Scholar]
  20. Ho C., Williams B. W., Kelly M. B., Stubbs C. D. Chronic ethanol intoxication induces adaptive changes at the membrane protein/lipid interface. Biochim Biophys Acta. 1994 Jan 19;1189(2):135–142. doi: 10.1016/0005-2736(94)90058-2. [DOI] [PubMed] [Google Scholar]
  21. Hochmuth R. M., Evans E. A. Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis. Biophys J. 1982 Jul;39(1):71–81. doi: 10.1016/S0006-3495(82)84492-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hochmuth R. M., Mohandas N., Blackshear P. L., Jr Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J. 1973 Aug;13(8):747–762. doi: 10.1016/S0006-3495(73)86021-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hochmuth R. M., Wiles H. C., Evans E. A., McCown J. T. Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment. Biophys J. 1982 Jul;39(1):83–89. doi: 10.1016/S0006-3495(82)84493-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kucik D. F., Kuo S. C., Elson E. L., Sheetz M. P. Preferential attachment of membrane glycoproteins to the cytoskeleton at the leading edge of lamella. J Cell Biol. 1991 Sep;114(5):1029–1036. doi: 10.1083/jcb.114.5.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuo S. C., Lauffenburger D. A. Relationship between receptor/ligand binding affinity and adhesion strength. Biophys J. 1993 Nov;65(5):2191–2200. doi: 10.1016/S0006-3495(93)81277-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kuo S. C., Sheetz M. P. Force of single kinesin molecules measured with optical tweezers. Science. 1993 Apr 9;260(5105):232–234. doi: 10.1126/science.8469975. [DOI] [PubMed] [Google Scholar]
  27. Kuo S. C., Sheetz M. P. Optical tweezers in cell biology. Trends Cell Biol. 1992 Apr;2(4):116–118. doi: 10.1016/0962-8924(92)90016-g. [DOI] [PubMed] [Google Scholar]
  28. Mooradian A. D., Smith T. L. Membrane disordering effect of ethanol on cerebral microvessels of aged rats: a brief report. Neurobiol Aging. 1993 May-Jun;14(3):229–232. doi: 10.1016/0197-4580(93)90005-v. [DOI] [PubMed] [Google Scholar]
  29. Pasternak C., Elson E. L. Lymphocyte mechanical response triggered by cross-linking surface receptors. J Cell Biol. 1985 Mar;100(3):860–872. doi: 10.1083/jcb.100.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Popov S., Brown A., Poo M. M. Forward plasma membrane flow in growing nerve processes. Science. 1993 Jan 8;259(5092):244–246. doi: 10.1126/science.7678471. [DOI] [PubMed] [Google Scholar]
  31. Schmidt C. E., Chen T., Lauffenburger D. A. Simulation of integrin-cytoskeletal interactions in migrating fibroblasts. Biophys J. 1994 Jul;67(1):461–474. doi: 10.1016/S0006-3495(94)80502-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schmidt C. E., Horwitz A. F., Lauffenburger D. A., Sheetz M. P. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol. 1993 Nov;123(4):977–991. doi: 10.1083/jcb.123.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schnapp B. J., Gelles J., Sheetz M. P. Nanometer-scale measurements using video light microscopy. Cell Motil Cytoskeleton. 1988;10(1-2):47–53. doi: 10.1002/cm.970100109. [DOI] [PubMed] [Google Scholar]
  34. Schut T. C., Hesselink G., de Grooth B. G., Greve J. Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Cytometry. 1991;12(6):479–485. doi: 10.1002/cyto.990120603. [DOI] [PubMed] [Google Scholar]
  35. Seeger S., Monajembashi S., Hutter K. J., Futterman G., Wolfrum J., Greulich K. O. Application of laser optical tweezers in immunology and molecular genetics. Cytometry. 1991;12(6):497–504. doi: 10.1002/cyto.990120606. [DOI] [PubMed] [Google Scholar]
  36. Sheetz M. P., Baumrind N. L., Wayne D. B., Pearlman A. L. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones. Cell. 1990 Apr 20;61(2):231–241. doi: 10.1016/0092-8674(90)90804-n. [DOI] [PubMed] [Google Scholar]
  37. Sheetz M. P. Cell migration by graded attachment to substrates and contraction. Semin Cell Biol. 1994 Jun;5(3):149–155. doi: 10.1006/scel.1994.1019. [DOI] [PubMed] [Google Scholar]
  38. Sheetz M. P. Glycoprotein motility and dynamic domains in fluid plasma membranes. Annu Rev Biophys Biomol Struct. 1993;22:417–431. doi: 10.1146/annurev.bb.22.060193.002221. [DOI] [PubMed] [Google Scholar]
  39. Steubing R. W., Cheng S., Wright W. H., Numajiri Y., Berns M. W. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. Cytometry. 1991;12(6):505–510. doi: 10.1002/cyto.990120607. [DOI] [PubMed] [Google Scholar]
  40. Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
  41. Vasiliev J. M. Spreading of non-transformed and transformed cells. Biochim Biophys Acta. 1985;780(1):21–65. doi: 10.1016/0304-419x(84)90006-4. [DOI] [PubMed] [Google Scholar]
  42. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  43. Waugh R. E., Hochmuth R. M. Mechanical equilibrium of thick, hollow, liquid membrane cylinders. Biophys J. 1987 Sep;52(3):391–400. doi: 10.1016/S0006-3495(87)83227-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Waugh R. E. Surface viscosity measurements from large bilayer vesicle tether formation. I. Analysis. Biophys J. 1982 Apr;38(1):19–27. doi: 10.1016/S0006-3495(82)84526-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Waugh R. E. Surface viscosity measurements from large bilayer vesicle tether formation. II. Experiments. Biophys J. 1982 Apr;38(1):29–37. doi: 10.1016/S0006-3495(82)84527-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weiner O. H., Murphy J., Griffiths G., Schleicher M., Noegel A. A. The actin-binding protein comitin (p24) is a component of the Golgi apparatus. J Cell Biol. 1993 Oct;123(1):23–34. doi: 10.1083/jcb.123.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weiss L., Asch B. B., Elkin G. Effects of cytoskeletal perturbation on the sensitivity of Ehrlich ascites tumor cell surface membranes to mechanical trauma. Invasion Metastasis. 1991;11(2):93–101. [PubMed] [Google Scholar]
  48. Yumura S., Fukui Y. Filopodelike projections induced with dimethyl sulfoxide and their relevance to cellular polarity in Dictyostelium. J Cell Biol. 1983 Mar;96(3):857–865. doi: 10.1083/jcb.96.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zigmond S. H. Recent quantitative studies of actin filament turnover during cell locomotion. Cell Motil Cytoskeleton. 1993;25(4):309–316. doi: 10.1002/cm.970250402. [DOI] [PubMed] [Google Scholar]
  50. de Brabander M., Nuydens R., Ishihara A., Holifield B., Jacobson K., Geerts H. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy. J Cell Biol. 1991 Jan;112(1):111–124. doi: 10.1083/jcb.112.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES