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Computation of the Electrophoretic Mobility of Proteins

Kyung Sun Chae and Abraham M. Lenhoff
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ABSTRACT A scheme is presented for computing the electrophoretic mobility of proteins in free solution, accounting for the
details of the protein shape and charge distribution. The method of Teubner is implemented using a boundary integral formulation
within which the velocity distribution, the equilibrium electrical potential around the molecule, and the potential distribution due
to the applied field are solved for numerically using the boundary element method. Good agreement of the numerical result is
obtained for spheres with the corresponding semi-analytical specialization of Henry's analysis. For protein systems, the method
is applied to lysozyme and ribonuclease A. In both cases, the predicted mobility tensors are fairly isotropic, with the resulting
scalar mobilities being significantly smaller than for spheres of equal volume and net charge. Comparisons with previously
published experimental results for ribonuclease show agreement to be excellent in the presence of a net charge, but poorer
at the point of zero charge. The approach may be useful for evaluating approximate methods for estimating protein electro-
phoretic mobilities and for using electrophoretic measurements to obtain insight into charge distributions on proteins.

INTRODUCTION

Despite the widespread use of electrophoresis for the analysis
and separation of proteins and other biological materials, the
relation of observable electrophoretic behavior to the un-
derlying molecular structure remains incomplete. The elec-
trophoretic mobility is the key parameter characterizing the
motion of a charged particle in an electric field in free so-
lution, and although its general dependence on the size and
net charge of the particle is well known, a detailed relation-
ship is still lacking for molecules with the complexity of
shape and charge distribution of relatively rigid proteins.
Even greater complexity arises when conformational
changes are considered or when the stochastic configura-
tional aspects that arise with polyelectrolytes such as nucleic
acids are considered. Ultimately, all of these features may
also interact with a structured medium such as occurs in
polyacrylamide gel electrophoresis.

In this paper, we consider the first of these levels of analy-
sis, namely, the relation of the electrophoretic mobility of a
rigid protein in free solution to the molecular structure. The
protein electrophoretic mobility is influenced by the protein
amino acid composition, size, and shape and by the solution
ionic strength, pH, viscosity, and temperature. These param-
eters generally are reduced to a measure of the protein size
and the net charge Q, and the electrophoretic mobility is then
calculated using classical electrophoresis theory, derived for
spheres. In this approximation, macromolecules are treated
as nonconducting spheres with a uniform surface charge or
potential, and the electrophoretic mobility represents a bal-

ance between the electrostatic force driving the particle and
the hydrodynamic drag retarding it. The latter includes a
contribution due to flow of mobile ions in the double layer,
the electrophoretic retardation force, and because the charge
density involved is strongly dependent on the ionic strength,
this parameter affects the particle mobility. The dependence
is captured by a simple analysis yielding exact results in two
well known limiting situations, namely, where the Debye
thickness is either infinitely large or infinitely small (see,
e.g., Mosher et al., 1992).

For thick double layers, the electrophoretic velocity, U,
of a rigid particle of radius a in an applied electric field of
strength E is (Mosher et al., 1992)

U _ 2Eq0
E 3'i (1)

which is the Debye-Huckel approximation (Debye and
Huickel, 1924; Huckel, 1924). Here +0 is the uniform surface
potential of the particle and E and q are the dielectric per-
mittivity and the viscosity of the fluid, respectively. For very
thin double layers, the limiting approximation is from the
Helmholtz-Smoluchowski theory (von Smoluchowski,
1921) and yields

U _ Elko
E q'r (2)

The transition between these two limits is given by
Henry's (1931) formula, valid for all values of the double
layer thickness:
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where the Henry function fl, which reflects the depen-
dence on the Debye parameter, K, increases monotoni-
cally from 2/3 to 1.
One additional noteworthy factor in the classical theory of

the electrophoresis of spherical particles is the deformation
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of the electric double layer around the particle. The resulting
relaxation effect may make a significant contribution when
the thickness of the double layer is comparable with the par-
ticle radius and when the potentials are high (O'Brien and
White, 1978).

These results have been applied in several ways to inter-
preting and predicting protein electrophoretic mobilities. An
implicit assumption that is usually made is that the molecules
are spherical, although Norde and Lyklema (1978) treated
human serum albumin as a cylinder in view of its relatively
large aspect ratio. For the sphere approximation, different
approaches have been used to estimate the effective radius.
Norde and Lyklema (1978) used a value suggested by the
molecular volume plus a surrounding hydration shell,
whereas Compton (1991) extended this to account for both
hydration and asymmetry as estimated using the frictional
ratio. Mosher et al. (1989), on the other hand, estimated the
radius from the experimental translational diffusivity.
The net charge in some cases has been estimated based

on the protein amino acid composition and the intrinsic
pK. values of the different residues (Mosher et al., 1989;
Compton, 1991). Both of these studies noted the known dis-
crepancy at some pH values between this method of esti-
mating net charge and actual protein titration experiments. A
different approach was taken by Norde and Lyklema (1978),
who used their experimental data to estimate the zeta po-
tential of ribonuclease A as a function of pH and ionic
strength.

In all of these studies, two major approximations were
made, namely, that the molecules are spherical and that the
net charge or the mean surface potential adequately charac-
terizes the charge distribution. The hydrodynamic aspects are
obviously affected by the first approximation, whereas the
electrostatic and the electrophoretic retardation forces are
affected by both approximations. Several treatments are
available in which these assumptions have been relaxed;
cases studied include spheres with nonuniform surface po-
tential (Anderson, 1985; Solomentsev et al., 1993) or internal
charge (Yoon, 1991) distributions and ellipsoids with uni-
form (Yoon and Kim, 1989) and nonuniform (Fair and
Anderson, 1989) surface potential distributions.

Other studies have dealt more specifically with proteins.
The effect of shape on electrostatics was investigated by
Haggerty and Lenhoff (1991), who used detailed molecular
electrostatics computations, accounting for both molecular
shape and charge distribution, to calculate the mean surface
potential of ribonuclease A as a function of pH for com-
parison with the zeta potential estimates of Norde and
Lyklema (1978). The effect of protein shape on purely
hydrodynamic behavior, on the other hand, was studied
by Brune and Kim (1993), who calculated rotational and
translational diffusivities of lysozyme using the crystal
structure and found excellent agreement with experimen-
tal values.

Despite all of these previous efforts, none has accounted
explicitly for the effect of the details of protein shape and
charge distribution on both electrostatics and hydrodynam-

ics; consequently, it has not yet been possible to attribute
discrepancies between theory and experiment definitively to
any particular approximation. In this work, we seek to ad-
dress this shortcoming by evaluating the electrophoretic mo-
bility tensors of proteins by an application of Teubner's
(1982) approach. This method is based on the observation
that the electrical potential can be decoupled from the flow
field and considered separately. We compute both fields
using the boundary element method (BEM) and combine the
information obtained from both by numerical quadrature.
The rest of the paper is organized as follows. We first

present the integral equations for the electrostatic potentials
and hydrodynamics of macromolecules of arbitrary shape
and internal charge distribution. Next the numerical imple-
mentation of the BEM is described. As an initial test of the
method, the mobility tensor of a spherical particle in a uni-
form dielectric medium was calculated using the BEM, and
compared with the semi-analytic calculation. We then turn
our attention to the main focus of the paper, the electro-
phoretic mobility tensor of proteins. Lysozyme and ribo-
nuclease A are used as model proteins because they are
single-domain globular proteins with known three-
dimensional structures.

METHODS

Electrophoretic motion
The analysis of electrophoresis is essentially a study of the balance between
the applied electrical force and the hydrodynamic drag. In our analysis, we
follow the general scheme developed by Teubner (1982), who used the
linearity of the Stokes equation and the reciprocal theorem of Lorentz in
evaluating the forces. The hydrodynamic force on a charged particle was
decomposed into the force with all electric effects suppressed plus an excess
term, the electrophoretic retardation force, depending only on the electric
field. Two assumptions were made in simplifying the equations to estimate
mobility tensors. First, the applied field was considered small compared with
the field because of the equilibrium double layer. Neglecting the deforma-
tion of the double layer due to the applied field, the potentials around the
particle were decomposed into two independent contributions: 4i from the
equilibrium double layer and j from the j component of the ambient field.
Second, the coupling tensors (linking translational and rotational motion)
were neglected. The electrophoretic mobility was then simply obtained by
equating the total force to zero, yielding the final result:

U= (1/71)K 'GE0 (4)
for the translational electrophoretic motion of a charged particle in an elec-
tric field. Here K and E° are the translation tensor of an uncharged particle
and the spatially uniform external field, respectively, and the tensors G and
K are given by

=j ki(Vk-)(A&I+-+-x)d r
~~~~~ ~~~ aXk

Kij = - Jln dS.

(5)

(6)

Here V; represents the k component of the Stokes flow field caused by a
translating sphere with a unit velocity along the i axis and E corresponding
stress tensor, and the integrals are over the exterior volume and the surface,
respectively.

Analytical solutions of these equations exist for some simple geometries,
but more complicated cases can be treated only by approximate numerical
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methods. For the spherical particle, Yoon and Kim (1989) derived the
electrophoretic mobility using Teubner's method and the linearized Poisson-
Boltzmann equation as

3QE° 1 la4 5a61= Ka + e-c -i-- dr ,

1 +Ka [2
(7)

which is a special case of Henry's (1931) result, to be evaluated semi-
analytically.

To determine the electrophoretic mobility of arbitrary particles with
finite double layers, a numerical solution is required. A solution under
the assumptions of this section requires three boundary-value problems
to be solved: the Poisson-Boltzmann equation to obtain ti, Laplace's
equation to obtain 4, and the Stokes equation for the translation of an
uncharged particle through a quiescent fluid to obtain the velocity field
V'k and the translation tensor K. An integral formulation has been used
for each in this work, leading to a BEM solution in each case. These
aspects are discussed below.

Integral formulation

Equilibrium potential

The conceptual approach generally used to determine the equilibrium po-
tential distribution around a protein molecule in an electrolyte solution has
its origins in the work of Kirkwood (1934), but most of the implementation
in a physically realistic fashion has taken place since the early 1980s. The
present work follows the solution of Yoon and Lenhoff (1990), where much
of the other relevant work is summarized. The protein is represented as a
dielectric cavity B' with an internal distribution of point charges of mag-
nitudes qk located at positions Xk. The interior potential qf is given by the
Poisson equation

1 n
V24'q(x) = - -. , qk'(x - Xk) for x EBi.

k=1

(8)

The exterior potential ff in the domain B' is assumed to be governed by the
linearized Poisson-Boltzmann equation

V211,e(x) = K2qe(X) for x E Be. (9)

These equations are solved subject to a zero potential condition far from the
molecule, and continuity of the potential and the normal component of the
electric displacement at the bounding surface. The integral formulation and
the approach to solving it are given elsewhere (Yoon and Lenhoff, 1990).

Ambient potential

In regions of uniform dielectric constant that have no free charges, the
electrostatic potential 41 must satisfy Laplace's equation,

V24j(X) = 0. (10)

At the surface of an insulating particle ofzero dielectric constant, the electric
field normal to the surface vanishes, and although a protein molecule has
a finite dielectric constant, it is small enough relative to that of the sur-
rounding aqueous medium for the discrepancy in neglecting in the internal
field to be negligible. Far from the particle, the potential approaches the
uniform applied electric field. These boundary conditions are expressed as

to the particle. Substituting this expression in Eq. 11 gives the boundary
condition on the perturbation potential:

ll' =0 and = njEj.i ~~~~anlB (13)

The boundary integral equation for the ambient potential then becomes

(14)
ix x 4 Tr J'ian (I x-x'lI

1 raoL 1
4s J ~an x-x ldA(x') for x E Be
4in Br anIx-x'd

in the external domain and

S(xs) = ± JIB d(. 1 )dA(x')

J1 anL 1 dA(x')
2wTr an Ixx- x'lI (

(15)

on the boundary. The integral equation (15) is solved for the surface ambient
potential when surface tractions are specified. Finally, to obtain the potential
gradient throughout the external domain for use in Eq. 5, Eq. 14 is differ-
entiated with respect to the source point to give

VWP(x)= V4pw(x) +4 JIB v a dAx)

47r an (Ix-x 1)

(16)

Hydrodynamic velocity

The Stokes flow past an arbitrary particle is described by

V * vi(x) = 0, -Vpi(x) + qV2vi(x) = 0 for x E B' (17)

v I M = U and v pi = 0, (18)

where v is the velocity vector and p is the pressure. We use a Fredholm
integral equation of the first kind to solve this problem. This formulation
is straightforward because it directly involves physical variables such as the
velocities and the tractions on the boundaries. Although it is well known that
the formulation of the first kind is ill-posed, this drawback does not appear
in certain situations (Youngren and Acrivos, 1975; Hsiao, 1987; Chan et al.,
1992), including the present problem. For flow in an unbounded domain the
integral representation is given by

1 Jfkkmrr\v'()-Il- + km dA(x')i)=8'nT r r3J
(19)

1
i

rr./6j
8

I _ (n
* r)dA(x'),8irT r5

where and r = x - x' andfi is the local surface stress. If U is constant, the
no-slip boundary condition leads to the following linear integral equations:

I, = -Ejxj and aIl =-.a9n aB
(11)

From the boundary condition at infinity we can take the ambient potential
to be of the form

(x) = 7(x) + OX), (12)

where the first term represents the potential due to the applied field in the
absence of the particle and the second term represents the perturbation due

1 +
= ' -m+--krm cd (x') for xea4B.
8nJ \r r3

(20)

Thus, when the Stokes problem is formulated in this manner, fi is determined
directly and the total force F' acting on the particle is obtained from

F' = Jfi dA(x'). (21)
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In the absence of rotational motion, Eq. 21 may be written in the form

F' =- lKij Uj, (22)

where the translation tensor, Kij, is a purely geometric property of the particle.
It is dependent on its size and shape but independent of the orientation and the
fluid properties (Happel and Brenner, 1983). It is from this equation that we find
the translation tensor for use in Eq. 4.

Numerical procedures

To implement the BEM for a protein, the molecular boundary as defined by
the crystal structure was discretized into a set of flat linear triangular ele-
ments using the Molecular Surface Program of Connolly (1993). Very short
edges were removed by combining the two defining nodes at the midpoint.
Charges were placed at the locations of the ionizable side chains, with their
magnitudes depending on the solution pH as calculated using the
Henderson-Hasselbalch equation. In all BEM calculations, the values of the
unknowns on each element were written in terms of their values at nodal
points by assuming linear dependence over the element.

Although the BEM has the advantage of reducing the dimensionality of
the problem, the method is demanding in that the numerical integration
required for calculation of the boundary integrals must be performed ac-

curately and efficiently to optimize the accuracy and computation time of
the whole analysis. We have investigated the effects on performance of the
number of quadrature points. To evaluate potentials at the surface when the
maximum degree of singularity is -2, a six-point Gaussian quadrature for-
mula was used on each element, except for x; dA,, where three- or one-point
Gaussian quadrature formulae reduced the effect of the singularity. A six-
point quadrature rule, however, was used for all elements in solving the
hydrodynamic problem because the degree of singularity is just -1.

Once the surface values of the dependent variables (velocities and po-

tentials) are known, their values at any points in the domain can be found
directly by quadrature using Eqs. 16, 19, and the corresponding equation for
the equilibrium potential (Eq. 5 in Yoon and Lenhoff, 1990). The main
objective in seeking these results is to evaluate the integrals for the mobility
tensors in Eqs. 5 and 6. The functions and V; in the domain are readily
computed, but the gradient of ambient potential defmed by Eq. 16 and used
in Eq. 5 is more problematic. Nearly hypersingular behavior occurs when-
ever the source point is close to the surface on which the integrations have
to be performed. Nearly singular integrals must be transformed into non-

singular integrals or at worst weakly singular integrals before applying any

numerical quadrature. Several advanced techniques to handle hypersingu-
larities have been developed recently (Krishnasamy et al., 1990; Guiggiani
et al., 1992; Guiggiani, 1993; Liu et al., 1993; Rudolphi and Youn, 1993;
Sladek et al., 1993); of these, the kernel cancellation method (Liu et al.,
1993) was used. The method, based simply on subtracting two integral
equations, evaluated at the point close to the surface and its image point,
shows considerable improvement in accuracy for the interior field evalu-
ations at points close to the boundary. When the source point is close to the
surface, we apply this method in Eq. 16 and obtain the alternative integral
representation

V 4j(x)=v 47(xw v-\ dA(x'), (23)

27ir Jsan (lx x' I)(3
which is much more effective for calculations close to the boundary.

The volume integral in Eq. 5 was evaluated using the NAG routine
DO1GBF (Numerical Algorithms Group, Downers Grove, IL), which is
based on an adaptive Monte Carlo method. The electrophoretic mobility
tensor for an arbitrary particle was then found from Eq. 4.

RESULTS

The numerical algorithms implemented to solve the equa-

tions discussed above were tested for accuracy by comparing
them to Henry's (1931) semi-analytic result (Eq. 7) for a

sphere. Using parameters suggested by hen egg lysozyme at
pH 7, a sphere of radius 15 A with a point charge of +8 at
the center was examined. Other parameter values were: in-
terior dielectric constant e' = 4; homogeneous, isotropic me-
dium of = 78 and -1 = 8.95 X 10-4 Pa s at 25°C; Debye
length K-' = 9.61 A, corresponding to 0.1 M of a 1:1 elec-
trolyte. Table 1 shows the electrophoretic mobility of the
spherical particle as calculated using our numerical algo-
rithms for four different surface tesselations. Although the
accuracy does not improve monotonically with mesh refine-
ment, the mobility values computed using the BEM are in
good agreement with the corresponding analytical results,
and the numerical calculations thus can be applied to elec-
trophoretic mobility computations for real protein models.

For applications to proteins, we computed the electro-
phoretic mobility for hen egg lysozyme and bovine pancre-

atic ribonuclease A. Some of the parameters relevant to these
calculations are summarized in Table 2. Cases examined in-
clude both the full electrophoretic mobility calculations as

well as corresponding studies using the semi-analytic cal-
culation based on the sphere idealization. For the sphere
cases, the effective radii of the proteins were calculated from
the molecular weights assuming spherical molecules with a

specific volume of 0.74 cm'/g. The frictional ratio, which
corrects for protein asymmetry and hydration (Creighton,
1993), usually varies from about 1.0 to 1.4 for globular pro-

teins. The effective radius for both proteins becomes 16 A
when this ratio is 1.0 and 20 A when it is 1.25. The calcu-
lations of the full mobility tensors were performed for pH 7
and ionic strengths of 0.1 M for lysozyme and 0.05 M for
ribonuclease. The structures used were taken from the
Brookhaven Protein Data Bank (Bernstein et al., 1977). All
acidic residues and the COOH terminus were assumed to be
deprotonated, and all basic residues and the NH2 terminus
were assumed to be protonated, apart from His residues,
which were taken to be neutral. The tesselations used for the
proteins were both significantly finer than for the spheres
shown in Table 1; this is appropriate given the proximity of
numerous charges to the protein surface (Yoon and Lenhoff,
1990). Using the semi-analytical result for the sphere as ref-
erence, the appropriate domain size for quadrature in Eq. 5
was estimated as a 200-A cube.

Table 3 gives the computed mobility tensors of lysozyme
and ribonuclease. In both cases, the tensors show an isotropic
tendency. Moreover, because the off-diagonal elements are

small, calculation ofjust the diagonal elements of G provides
computational economy with little loss of accuracy.

TABLE 1 Numerical results for sphere

Number of Number of Electrophoretic mobility Error*
surface triangles nodal points (X 10-4 cm2/V S) (%)

240 122 1.972 2.47
720 362 1.988 1.68
960 482 2.025 0.15
1280 642 1.987 1.73

*Uanal = 2.022 X 10-4 cM2/V s from Eq. 7.
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TABLE 2 Physical and numerical parameters of the model proteins
Molecular Surface Equivalent Dielectric Number of Number of

Protein weight area (A2) radius* (A) constant surface triangles nodal points
Lysozyme 14300 5010 16.1 4 3690 1847
Ribonuclease 13700 5175 15.9 4 4884 2444
*For sphere of equal volume.

TABLE 3 Computed mobility tensors

Lysozyme (pH 7, 0.1 M) (Xl0-4 cm2/V S) Ribonuclease (pH 7, 0.05 M) (X 10-4 cm2/V s)

1.4856 -0.0335 0.0759 0.6131 -0.0218 -0.0614
-0.0379 1.154 -0.0435 -0.0039 0.6094 -0.0016
0.1377 -0.0271 1.4463 -0.0512 0.0009 0.5715

The physical significance of the computations must be
assessed by comparison with experimental data. In general,
experimental electrophoretic mobility data are average val-
ues in view of the dominance of the orientational distribution
by Brownian motion; because the rotational Peclet numbers
(Anderson, 1985) are small for the surface potential dipole
moments seen in this work, the mean electrophoretic mo-
bility can be represented by (Stigter, 1978; Teubner, 1982):

U = - Tr(K-'G)E0, (24)

where Tr denotes the trace of the tensor. Applying this to the
tensors in Table 3 shows the scalar mobility of lysozyme to
be about double that of ribonuclease. The different electro-
phoretic mobilities can arise mainly from either differences
in net charge and charge distribution or a difference in size.
Because the net charges determined for lysozyme and ribo-
nuclease at neutral pH are +8 and +4, respectively, and the
proteins' molecular weights are almost equal, the observed
difference is attributable primarily to the net charge.
We examine the predicted scalar mobilities more exten-

sively by varying the ionic strength of the electrolyte. In Fig.
1, the plot of mean mobility versus buffer concentration
shows a decrease in mobility with increasing ionic strength
for both the full molecular description of lysozyme and for
the corresponding values for spheres. For the sphere result
(Eq. 7), effective radii of 16 and 20 A were used; the former
yields a sphere of volume approximately equal to the true
molecular volume, whereas the latter leads to a much better
estimate of the electrophoretic mobility. Because of the
screening effect of the electrolyte, the surface potential
should decrease with increasing ionic strength, and this ex-
plains most of the trend observed. As regards the effective-
ness of the sphere model, a good correlation is seen between
the full calculations and the 20-A sphere results at moderate
ionic strength, but at high ionic strength the discrepancy is
much larger.
The effects of net charge and charge distribution, key pa-

rameters intrinsic to the protein that affect the electrophoretic
mobility, were investigated for ribonuclease A by comparing
calculated and measured (Norde and Lyklema, 1978) mo-
bilities at pH 7 and at the point of zero charge (pzc), for 0.05

0.2 0.3
Ionic strength (M)

FIGURE 1 Comparison of electrophoretic mobility of lysozyme at pH 7
as a function of ionic strength calculated using the full molecular description
(points) and the semi-analytical result for spheres (Eq. 7); sphere results are
shown for two values of molecular radius (lines).

M 1:1 electrolyte. The charge distribution around the pzc of
ribonuclease must be specified with some care, mainly be-
cause not all of the Tyr residues are titratable, as first found
by Shugar (1952) and Tanford et al. (1955). The latter work
suggested that three of the six Tyr residues titrate in the
normal pH range, but subsequent studies questioned this re-
sult. The controversy was resolved byNMR experiments that
determined that four of the residues are titratable (Egan et al.,
1978; Lenstra et al., 1979; Tanokura, 1983), with the last of
these providing pKa values for the titratable residues (around
pH 10). Lys residues, of which there are 10 in ribonuclease,
also titrate around pH 10, but pKa values for individual resi-
dues are not available; Tanford and Hauenstein (1956) sug-
gest an effective pK. of 10.2 for these residues, but a range
of values is possible for Lys residues in general (Nozaki and
Tanford, 1967). Using a pK. of 10.2 for all Lys residues, the
pzc is calculated to be 9.59, which is in good agreement
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TABLE 4 Scalar electrophoretic mobilities of ribonuclease A
(0.05 M)

Surface potential (mV) Mean mobility (X 10-4 cm2/V S)

Computed Computed
pH (this work) Measured* (this work) Measured*

7 19.8 9.8 0.598 0.55
9.59 -3.2 -4.6 0.035 -0.24

*Norde and Lyklema (1978). Surface potentials evaluated using Henry's
(1931) result. pH 9.59 values obtained by interpolation.

with experiment (Tanford and Hauenstein, 1956; Norde and
Lyklema, 1978; Bergers et al., 1993).
The electrophoretic mobility results are summarized in

Table 4, with positive values obtained at both pH values. This
is expected for pH 7 in view of the net charge of +4, and the
calculated mean surface potential is also consistent. At the
pzc, however, the computed mobility is slightly positive but,
interestingly, the computed mean surface potential at this
point is negative.

DISCUSSION

Assessing the value of the approach developed here requires
comparison of the computed electrophoretic mobilities of
proteins with experimental data; we do so for both ribonucle-
ase A and lysozyme. The ribonuclease data are those of
Norde and Lyklema (1978), who reported the electrophoretic
mobility in free solution of ribonuclease A at a number ofpH
values and ionic strengths of 0.01 and 0.05 M. We use only
the latter results because linearization of the Poisson-
Boltzmann equation is more questionable at 0.01 M. At pH
7 excellent agreement between computed and experimental
results is seen, whereas use of Henry's result would require
increasing the radius to about 20 A to reduce the predicted
mobility to the experimental value. As a result, the effective
zeta potential extracted from their data by Norde and
Lyklema (1978) is lower than our computed value by about
a factor of two. At the pzc, however, our computed mobility
is slightly positive, whereas the experimental value is slightly
negative. Although we have explored the effects of changing
the charge distribution, mainly by changing the Lys pK., the
computed mobilities remain positive. Possible explanations
include the existence of a distribution of pKa values for the
10 Lys residues, effects of nonlinearities, deviations from
the protein crystal structure, or possible other, unaccounted
for subtleties in modeling the electrical double layer.
The lysozyme results are comparable with the high per-

formance capillary electrophoresis data of Swedberg (1990),
obtained for 0.25 and 0.5 M ammonium phosphate buffer at
neutral pH. Unfortunately, however, because of uncertainties
regarding temperature, electroosmotic flow, and protein ad-
sorption as well as the complex nature of the electrolyte, a
detailed comparison is not meaningful, and we have been
unable to find an alternative, more appropriate data set.
The ratio of lysozyme to ribonuclease mobility at pH 7 and

suggested by the net charge, indicating that charge distri-
bution may be a significant factor. Note that although ribo-
nuclease has a relatively large dipole moment (Barlow and
Thornton, 1986), its electrophoretic mobility tensor is nearly
isotropic with very small off-diagonal elements. This is con-
sistent with the results ofAnderson (1985) and Yoon (1991),
who showed the dipole moment to have no effect on the
translational electrophoretic mobility tensor of a Brownian
sphere. The sharp drop in the mobility of lysozyme predicted
at 0.5 M ionic strength (Fig. 1) may be another indication of
the role of the charge distribution combined with molecular
shape: as the Debye length becomes smaller, much of the
double layer lies in clefts on the protein surface.
The comparison between calculated electrophoretic mo-

bilities and experimental results is satisfactory given that no
adjustable parameters are involved in the calculations. In
contrast, if the sphere model is used for the two proteins
examined here, it is necessary to use effective sphere radii
much larger than suggested by the protein volume (-20 vs.

16 A) to provide a satisfactory match with experiment at
moderate ionic strengths (see Fig. 1). The origins of this
behavior can be decomposed into hydrodynamic and elec-
trostatic components. Appropriate hydrodynamic resistances
can be attained with radii of about 18 A, but even a radius
increase of this magnitude does not reduce the surface po-

tential of an equivalent sphere far enough for the electro-
phoretic mobility (Eq. 3) to agree with experiment. Our re-

sults suggest that the past use of relatively large effective
radii with the Henry model (e.g., Norde and Lyklema, 1978;
Compton, 1991) are appropriate, but not for the reasons usu-

ally given (e.g., hydration).
There are four potential sources of error in our calcula-

tions. The first is the assumption of a classical two-dielectric
model, but an important motivation of this work is precisely
to examine the success of mobility calculations in the ab-
sence of more elaborate model features. The second is the
neglect of relaxation effects, which the results of O'Brien and
White (1978) suggest to be unimportant for parameter values
of interest for protein electrophoresis. The third lies in the
various numerical solutions used. The BEM is at its worst in
the region very close to the protein surface (Yoon and
Lenhoff, 1990), which is a significant fraction of the double-
layer region only at high ionic strengths. The domain size has
little effect on the electrophoretic mobility as long as it ex-

tends well beyond one Debye length from the surface: the
disturbances to both the applied electric field and the fluid
velocity field caused by the moving particle in an unbounded
fluid decay as r-3 (Eqs. 17 and 20), whereas the equilibrium
field decays exponentially. Overall, the results for the four
different surface tesselations (Table 1) indicate that the nu-

merical evaluation is of acceptable accuracy. However, the
accuracy can be enhanced by increasing the order of the basis
functions for the surface elements.
The final possible source of error, use of the linearized

Poisson-Boltzmann equation, rests on the assumption that
the potential of a counterion in the solvent region is less than

0.05 M ionic strength is somewhat higher than the 2:1 ratio
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U. Thus, at 25'C potentials should be less than about 25.7
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mV, although the results of O'Brien and White (1978) for
spheres suggest that this is a very conservative threshold. The
average surface potentials of lysozyme over a range of 0.01-
0.5 M in ionic strength and neutral pH indicate that the
Debye-Huckel approximation is valid except for the 0.01 M
case. As expected, average surface potentials of ribonuclease
are smaller than those oflysozyme at the same ionic strengths
due to the lower net charge. In either case, however, the low
potential condition may not be satisfied in regions where an
internal point charge is very close to the molecular surface,
but this affects too small a fraction of the domain of interest
to warrant a full nonlinear solution.

In summary, we have presented a detailed numerical
solution to the equations governing the electrophoresis of
proteins, and we have found good agreement with ex-
periment without the need for adjustable parameters, es-
pecially adjustments to the effective radius. Although this
method is too computationally demanding to be applied
to routine electrophoresis measurements, it helps to il-
lustrate both the strengths and weaknesses of the equiva-
lent sphere approach using Henry's (1931) result. It may
also be useful in more detailed investigations of charge
distributions of proteins.
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This work was supported by the National Science Foundation (grant number
CTS-9111604).
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