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Interaction Between Diffusion and Michaelis-Menten Uptake of Dopamine
After lontophoresis in Striatum

Charles Nicholson
Department of Physiology and Biophysics, New York University Medical Center, New York, New York 10016 USA

ABSTRACT A quantitative description of the behavior of a neurotransmitter in the brain extracellular microenvironment requires
an understanding of the relative importance of diffusion versus uptake processes. This paper models the behavior of dopamine
released from a small iontophoresis electrode and its voltammetric detection by a carbon fiber sensor 100 pm away as a basis
for developing a new paradigm for measuring dopamine kinetics in intact rat neostriatum. The diffusion equation incorporating
uptake, characterized by a maximum velocity Vm, and a Michaelis-Menten constant Km, was transformed to an integral equation
and solved numerically for the dopamine concentration, C. Analytical solutions were derived for limiting cases of a steady-state
free-boundary problem when C >> Km and the linear time-dependent problem when C << Km. These solutions were compared
with complete numerical solutions, both for normal uptake (Vm,x = 0.2 or 0.8 pM s-1; Km = 0.15 pM), and in the presence of
the uptake blocker nomifensine (Km = 6 pM). The results suggest that an experimental strategy for the quantitative analysis
of dopamine, and other compounds, in living tissue is to fit a family of concentration versus time curves generated with different
iontophoretic current strengths and recorded with a microsensor, to the numerical solution of the diffusion-uptake equation.

INTRODUCTION

The diffusion of substances in the brain extracellular mi-
croenvironment has importance both for the transport of
metabolic substrates and the transmission of signals via non-
synaptic communication (Nicholson, 1979; Schmitt, 1984;
Nicholson and Rice, 1991). This latter modality has also been
termed "volume transmission" (Fuxe and Agnati, 1991) and
"nonsynaptic diffusion neurotransmission" (Bach-y-Rita,
1993). The importance of such extracellular interactions for
G protein-coupled mechanisms has been postulated by Hille
(1992), whereas other recent papers have demonstrated that
both GABA (Isaacson et al., 1993) and NO (Schuman and
Madison, 1994) can function as extra-synaptic signals. But
diffusion alone, as a mechanism of signal propagation, has
limitations, because diffusing molecules eventually reach all
sites unless physically impeded by barriers. To effectively
use communication via the brain extracellular microenvi-
ronment, an uptake or inactivation process, which may itself
be subject to physiological regulation, is desirable. One of the
best known examples where both diffusion and uptake in-
teract to control the spatial and temporal distribution of a
neuroactive substance is the dopaminergic system of the
neostriatum. This system gains especial interest because of
its role in Parkinson's disease.

Parkinson's disease can be alleviated by strategies that
provide a diffuse and tonic supply of dopamine (DA) to the
striatum (Winn et al., 1989). This observation suggests that
in the normal striatum DA released from a presynaptic site
has actions beyond the immediate postsynaptic receptors.
Yet it is also known that there is an avid uptake system
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located predominantly in the presynaptic terminals (Holz and
Coyle, 1969; Justice et al., 1988; Horn, 1990; Hitri et al.,
1994) that should function to restrict severely the spatial
distribution of synaptically released DA.
To reconcile these and other facts about the neostriatum,

it is necessary to characterize precisely the relative roles of
diffusion and uptake in living striatal tissue. The technique
of fast-scan cyclic voltammetry (FCV) provides that capa-
bility and has been used effectively in the striatum, particu-
larly in the laboratory of Wightman and co-workers (e.g.,
Kelly and Wightman, 1987; Near et al., 1988; May et al.,
1988; Wightman et al., 1988; Wightman and Zimmerman,
1990; Kennedy et al., 1992a, b; Kawagoe et al., 1992; Garris
and Wightman, 1994a), where the uptake process has been
studied using stimulation of the median forebrain bundle to
activate a volume of synapses and so provide a source ofDA.
As valuable as this method is, it has the shortcoming that the
source is incompletely defined in space and time. Another
approach uses pressure ejection of DA from a micropipette
combined with chronoamperometric detection (Van
Horne et al., 1992; Luthman et al., 1993; Cass et al.,
1993). This provides a better-defined source, however
precise control is difficult and the theory has yet to be
described, so the data must presently be treated in a quali-
tative manner. The recent ad hoc model proposed by Cass
et al. (1993) to compare regional variations in sensitivity
to uptake inhibitors does not address adequately the com-
plexities of the problem (see Rice and Nicholson (1995)
for further discussion).
An approach that has the potential to remove the limita-

tions of the previous methods is to use a micro-iontophoretic
source to precisely release DA and then measure the arrival
of this substance at a separate carbon fiber microelectrode
using FCV, which provides sufficient time resolution and
confirms the identity of the DA. The method requires a
complete mathematical solution of the three-dimensional
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diffusion problem with nonlinear uptake. This paper pro-
vides this solution and demonstrates its characteristics based
on available diffusion and kinetic parameters. This theory
can be applied (M. E. Rice and C. Nicholson, unpublished
observation) to interpret experimental data obtained using
DA iontophoresis in the normal striatal brain slice and in the
6-OHDA-lesioned rat striatum, which is an animal model of
Parkinson's disease (Zigmond et al., 1992).
The present mathematical model is derived from previous

work on diffusion from an iontophoretic point source (Ni-
cholson and Phillips, 1981; Nicholson, 1992), but here the
linear uptake term of the former work is replaced with a
nonlinear expression describing Michaelis-Menten kinetics
characterized by a rate constant Vm, (,IM s-) and Michaelis-
Menten constant Km (,uM). Such kinetics, representing a high
affinity uptake system in the presynaptic terminals, are now
well accepted (Horn, 1979, 1990; Wightman and Zimmer-
man, 1990; Hitri et al., 1994). An interpretation of the kinetic
constants has been provided by Horn: "The term Km ... is
generally assumed to be a measure of the dissociation con-
stant for the binding of substrate (DA) to the membrane up-
take sites. Thus, the Km value may be taken as a reciprocal
measure of the affinity of the substrate for the uptake sites.
The Vm,, is a measure of the number of amine uptake sites
present, and it is dependent on the type and amount of tissue
present. The K., however, is independent of the total number
of uptake sites present" (Horn, 1979).
Some earlier studies (Shaskan and Snyder, 1970; Stamford

et al., 1984, 1986; Mireylees et al., 1986) postulated an ad-
ditional low affinity uptake system (Km = 8 FM; Stamford
et al., 1984), but subsequently Wightman and co-workers
dismissed this as an experimental artifact (Near et al., 1988;
Wightman and Zimmerman, 1990).
The nonlinear partial-differential equation with Michaelis-

Menten uptake describing the migration of DA has no ana-
lytical solution except in certain limiting cases, but it is
analogous with the problem of oxygen consumption by a
spherical cell, and literature on this topic provides a starting
point for deriving the numerical solution to the present prob-
lem. Specifically, the integral equation approach of Tosaka
and Miyake (1982) is used in this study.

This paper will: 1) provide a basis for the use of the dif-
fusion equation together with Michaelis-Menten kinetics; 2)
derive a numerical algorithm for the solution of this equation
for the specific problem of an iontophoretic release source for
DA; 3) verify the correctness of the algorithm by comparing
results with limiting analytical solutions; and 4) simulate the
behavior of DA in the neostriatum with this paradigm, both
as a means to explore the implications of this nonlinear sys-
tem and as a practical guide to implementing an experimental
paradigm.

THEORY AND RESULTS

Definition of concentrations

Problems involving multiphase media require careful

where comparisons arise between the kinetic parameters
measured in classical studies on slices and homogenates
using radiotracers and the parameters appearing when FCV
is used.

It is worth noting the explicit assumption that continuous
macroscopic equations are suitable for the discussion of this
problem. Using the technique of volume averaging and ap-

propriate theorems, this has been established for diffusion
with linear uptake (Nicholson and Phillips, 1981), but here
it will be assumed that this is valid for the case of nonlinear
uptake as well; this implicit assumption has been made in all
previous work. It is known that the structure of the striatum
can lead to heterogeneity, and this may account for the spatial
variability of evoked DA measurements (Garris et al.,
1994a). This variation, however, extends over dimensions of
more than 100 ,um, whereas the typical averaging volume
required by the theory has a dimension of the order of 10 ,um
(Nicholson and Phillips, 1981), i.e., the diameter of a carbon
fiber microelectrode, so the concept of local volume aver-

aging is likely to be valid.
Consider some small volume of tissue v (dm3) that is com-

posed of an extracellular phase of volume u0, an intracellular
phase of volume ui, and solids phase uS (the volume taken up
by membranes) so that v = u0 + ui + us. Then for some

substance that distributes between the two cellular phases
(assuming a negligible amount is in the solid phase) n = no
+ ni, where n is the amount of substance (,umol) in v and n0

and ni are the amounts in the extracellular and intracellular
phases, respectively. Several concentrations can be defined
as follows. Let c (,uM) be defined as total amount in v divided
by the total volume, then

n no + ni
c =-=

v uo+u +us (1)

nO ni
~~+ C

u+ iu + uS u0 + U1 + us 0

where this defines the extracellular phase average co and the
intracellular phase average ci (the concept of phase average

is defined rigorously by Gray and Lee, 1977). These averages

are obtained by measuring the amount of substance in the
respective phase and then dividing by the whole volume. But
the "extracellular concentration" and "intracellular concen-

tration" are actually intrinsic phase averages obtained by di-
viding the amount in a given phase by the volume of that
phase. This can be made explicit by introducing the variables
cO and c!, which are defined by
0 1 ~ ~ ~

c = uo nO + -= ac°+3c!. (2)
(u + Uj + us)u0 (uo + u1 + us)uj °

Here the extracellular volume fraction, a = uJ(uo + ui + uj,
and intracellular volume fraction, = ui1(uo + ui + us), have
been introduced. More commonly, in the literature on porous

media volume fraction is denoted by 4, so 40 and 4i would
be used, but a and 3will be used here to maintain continuity

definition of concentration. This is particularly true here
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total water content of brain tissue gray matter is about 85%
(Katzman and Pappius, 1973), i.e., a + (3 = 0.85. Assuming
a = 0.2 (Rice and Nicholson 1991), then f3 = 0.65 and the
volume fraction of the solids, u,/(uo + ui + us), is 0.15.

Equation for behavior of DA in
extracellular space

There are many ways to derive the partial differential equa-
tion describing the relation between diffusion and uptake.
Here a simple approach is taken based on the specific spheri-
cal geometry appropriate to this problem.
A spherical iontophoresis electrode of radius ro (cm) emits

a flux of DA, J0 (,umol cm-2 s-1). The real iontophoresis
electrode has a radius of 1-2 ,um, and the tip is a disk, because
it is the cut end of a glass capillary tube. Such a boundary
condition introduces unnecessary complexity without adding
anything to the problem, because the detailed structure of
the electrode tip plays a negligible role in the solution
when measurements are made a few micrometers away, as
they always are in practice. On the other hand, the point
source used satisfactorily in analytical solutions to linear ion-
tophoresis problems (e.g., Nicholson and Phillips, 1981) is
inappropriate for the numerical solution to be developed
here.

Consider a spherical shell at a distance r from the center
of the emitting electrode (Fig. 1). The thickness of the shell
is 8r, the areas of the inner and outer surfaces of the shell are
A(r), and A(r + Sr), and the fluxes on the inner and outer
surfaces of the shell are J(r) and J(r + 8r), respectively.
Then, performing a mass balance on the flux through the
volume element of the spherical shell:

3cl
A(r)8r = A(r)J(r) - A(r + 8r)J(r + Sr) (3)

approximating A(r + 8r) and J(r + 6r) with Taylor expan-
sions and neglecting terms in 8r2 and higher:

dA d
A(r + 6r) A(r) + - 8r; J(r + 6r) J(r) + dBr

ar ~~~~~ar

so that Eq. 3 becomes (writing A and J for A(r) and J(r),
respectively, and again neglecting terms in 6r2)

dc ( dJ aA ad(AJ)
dt =- adr aJr adr

The required relation between flux and concentration can be
described by Fick's first law recast appropriately for a porous
medium. The justification for the form used has been the
subject of discussion (e.g., Aris, 1975; Nicholson and Phil-
lips, 1981), but in essence it is necessary to recognize that the
flux is driven by the extracellular concentration gradient in
the interstices of the extracellular space, 8c°/Sr. It is as-
sumed that within the narrow clefts between cells, diffusion
is governed by the free diffusion coefficient D (cm2 s-1). The
effect of the obstructed extracellular space is accounted for
by a modified diffusion coefficient, aD/A2, where A (non-

FIGURE 1 Some concepts used in this paper. The brain extracellular mi-
croenvironment consists of the spaces between cellular elements (cell bod-
ies, fibers, dendrites, glial processes). The elements are depicted here by the
broken ellipses. A microelectrode, assumed to be a small sphere and in-
dicated by the central black circle, releases DA by iontophoresis. The DA
is constrained both by the reduced volume fraction (a) of the extracellular
space relative to the whole volume and the tortuosity (A). The tortuosity is
shown here in cartoon form as the wiggling lines emanating from the source
electrode. The wiggles are caused by the hindrance of the diffusing particles
by the cellular elements. Diffusing molecules are captured by uptake sites
(thick open circles) located primarily in presynaptic terminals. To develop
a mass-balance of the macroscopic behavior of the diffusing DA molecules,
a thin shell of thickness Sr is inscribed in the tissue at a distance r from the
center of the releasing electrode.

dimensional) is the tortuosity. Tortuosity is a measure of the
extent to which diffusing particles are hindered by the pres-
ence of obstructions, in the form of cells or their extensions
(see Nicholson and Phillips (1981) for more detail). It is also
frequently convenient to define an apparent diffusion coef-
ficient D* = D/A2. Then

dc° adJ 2co
Ja=-cD* d °; hence - =-aD* dar' air flr2 (5)

Combining Eqs. 4 and 5 and noting thatA = 4'rrr2 and dA/dr
= 8'nr

ac _ (f2c0 2 ac)
flatl ar2+r ar )

(6)

It remains to define the time derivative on the left-hand side
of Eq. 6. From Eqs. 1 and 2, this can be written:

dc fc, ic,

dic lco0 fc
or d-t=a fit + P3 I

(7a)

(7b)
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Michaelis-Menten kinetics

Classical experiments that determine the Michaelis-Menten
constants measure the entry into cells of a substance that has
been labeled with a radioactive tracer (consequently, it does
not become lost even if broken down chemically). In this
way, Vma,x is given as a function of tissue weight, which may
be the whole tissue, in which case Eq. 7a would be valid or
steps may be taken to ensure that just the intracellular mass
is considered so that Eq. 7b would be appropriate. Weight can
be translated to total volume assuming a density of 1 g cm-3
for brain tissue. In other cases, Vm. is measured in terms of
protein content, which may again be converted to volume by
making appropriate assumptions. It is clear that Vm. is not
well defined by classical experiments and that subtle differ-
ences exist in the quantities measured in different laborato-
ries. Because it is necessary to adopt some definition that
relates to the large body of existing literature, the first form
of Eq. 7a will be used here, recognizing that it may be equally
valid to multiply Vmax by 13. In any event, because 1B is ap-
proximately 0.65 (see above), the error involved in omitting
the term will not be great. Fortunately, the concentration
dependence of Km is not so ambiguous because experiments
invariably obtain Km by bathing cells in a known extracellular
concentration of substance that corresponds to c°. In reality,
in many experiments involving slices or minces, this con-
centration is not known accurately because of diffusional
effects and uncertainties about the relative sizes of the in-
tracellular and extracellular compartments (see Green, 1976;
Mireylees et al., 1986; Near et al., 1988). But in experiments
involving dispersed cells or synaptosomes, the assumption will
hold and will be assumed true here. Finally, therefore, the stand-
ard form of Michaelis-Menten kinetics (Christensen, 1975; Ru-
binow, 1975) can be used to describe the uptake

_i Vmax C0 8at Km + c (8)

where Vma is the maximum velocity of uptake (nmol s-' g-1 or
,uM s-1, where 1 g of tissue is assumed to be equivalent to 1 cm3)
and Km is the Michaelis-Menten constant (F,M).
Among the many assumptions made in deriving Eq. 8 to

describe DA uptake kinetics is the requirement that the up-
take proceeds only in the forward direction; this is the clas-
sical assumption that only the initial velocity need be con-
sidered. Measurements on tissue (Snyder and Coyle, 1969;
Holz and Coyle, 1974) suggest that this is valid for periods
of at least 2 min.

Given Eq. 8, Eq. 7a can be written as

ac ac,0 Vma C0at + ao(9)at at Km + co

Because the equations will only involve co, it is convenient
to define C cC°, so finally, combining Eqs. 6 and 9,

at= D ar2 + ar a-Km +a C~~

Nondimensional variables

It will be useful to formulate the problem in terms of non-
dimensional variables, following the paper by Lin (1976),
which will be important later.
The outer surface of the electrode is at a distance ro from

the origin, and this provides a natural measure of length to
form nondimensional distances. It is useful to introduce a
fixed concentration, Co, that will be defined later, to form the
nondimensional concentrations. nondimensional variables
then can be introduced:

r D*t C
R=-; Ta 2 U=-C

rO~~CO, (11)

and using these definitions, further nondimensional
Michaelis-Menten parameters can be defined:

ro max Km
aD*Co' Co

With these definitions, Eq. 10 becomes:

aU _ a2tU 2aU VU
aT aR2 RaR K+1U

(12)

(13)

Boundary conditions

To define the problem, an expression is needed for the spatial
derivative of U over the electrode surface at R = 1, which
is equivalent to considering the flux at r0. This can be done
using Eq. 5, and transforming variables to the nondimen-
sional coordinate system and re-arranging in the form:

- au = J0(t)r.H(7) = RR--DC (14)

where H is defined by this expression.
One way to fix the meaning of C. is by considering the

simplest diffusion problem in this geometry, namely, a prob-
lem with no uptake (Vmax = 0) and where the distribution has
reached a steady state (aC/at = 0). Eq. 10 then has the so-
lution (using Eq. 14)

(15)Jo r' 1aD* r'

If CO is chosen to be the value of C at r = ro under these
conditions, then H = 1.

lontophoresis

When a current I (amps) is applied to the iontophoresis elec-
trode and the transport number for DA at this electrode is n
(nondimensional), then a source Q(t) (,umol s-1) can be de-
fined using Faraday's electrochemical equivalent F (96485.3
C mol'm):

Q(t) =
I(t)nQ~,-F

(10)
(16)

and J. can be expressed in terms of Q and the surface area
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of the source electrode:

Q(t)
Jo (t) = 47r2 (17)

In the numerical solutions that follow, a rectangular pulse of
current will be used for I(t), but an arbitrary function of time
could serve equally well.

Numerical solution of the diffusion equation with
Michaelis-Menten uptake

Equation 10 is similar to a formulation of the mathematical
problem of oxygen diffusion and consumption in tissue or
cellular aggregates. As long ago as 1932, Roughton recog-
nized that the oxygen problem led to a nonlinear equation
with no analytical solutions (Roughton, 1932, 1952). Rough-
ton simplified the problem to one of linear uptake (i.e., up-
take proportional to concentration) for which analytical so-
lutions are relatively straightforward. From the perspective
of the present study, spherically symmetric problems are of
primary interest, and these center on oxygen consumption by
a spherical cell bathed in a constant oxygenated medium
which, for the steady-state situation, leads to a two-point
boundary value problem. One of first attempts at a numerical
solution of this type of problem was given by Lin (1976), but
it was shown by McElwain (1978), Anderson and Arthurs
(1980), and Hiltmann and Lory (1983), all using different
approaches, that Lin's solution had significant inaccuracies.
Furthermore, only Lin's paper attempted to solve the time-
dependent case.
Based on the earlier studies, Tosaka and Miyake (1982)

proposed and implemented a method that relied on first
converting the partial differential equation used by Lin to
an integral equation and then solving that problem by
standard numerical methods to yield both the steady-state
and the time-dependent solution. The validity of the ap-
proach of these authors was verified by Schultz and King
(1987) using the entirely different collocation method,
and we have checked the validity of Tosaka and Miyake's
numerics by implementing their method and reproducing
their data (L. Tao, K.-W. Tsao, and C. Nicholson, un-
published data).
The present problem differs from the oxygen consumption

problem studied by Tosaka and Miyake in the boundary con-
ditions which, in turn, affect the construction of the integral
equation, so it is necessary to derive the appropriate equation,
following the approach of Tosaka and Miyake. For consis-
tency, the formulation of the DA problem in nondimensional
variables, given above, conforms to the conventions adopted
by Lin (1976) and Tosaka and Miyake (1982).

Derivation of the integral equation

Re-arranging the order of Eq. 13, multiplying throughout by
R2, and then integrating from 1 to R results in (where p is a
variable of integration):

2au au
AR dR Ra1

= J p2aTdp + p2K+Udp.

Using the boundary condition represented by Eq. 14,

aU H(T) 1
aR R2 R2

I aud+ JR VUdl
aT~ ~K+ U~J

(18)

(19)

Integrating again between 1 and R and using integration
by parts on the expression in the curly brackets (see Tosaka
and Miyake (1982) for details) yields:

U(R) = U(l) -(1 - -H(7
R~~~~

1
R

/u vuW
R

(au vu
R PaT K+ U}UP J PaT+K+ UP

(20)

Note that, in contrast with the problem of oxygen diffusion into
a cell (Tosaka and Miyake, 1982), it is not necessary to consider
the potential singularity at R = 0 because the point is excluded
in this problem. It is required, however, to evaluate U(1). To do
this, let R -° co and assume that:

lim U(R) = 0 and

1 R2(au VU
lim 2 -T K+Ud=u-.
R--+OOR J aT K+ /

(21)

Then

U(1) = H(7)- JPau + U, dp.fP(aT K+U)P

Inserting Eq. 22 into Eq. 20 finally yields:

H(7) 1 fR a vu
U(R)= (4 _ 1= p2(+ wdpR R J a\T K+U,

- f(au vudX
- taT +K + U P

(22)

(23)

Implementation of solution

The following is based on the numerical approach of Tosaka
and Miyake (1982) and is only outlined here. The scheme for
the solution consisted of three procedures: 1) generation of
a set of nonlinear algebraic equations by approximating the
time derivative and integrals by discrete formulations; 2)
solution of the equations by an iterative nonlinear equation
solver; and 3) inversion of the resulting linear matrices by an
appropriate numerical method.
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The time derivatives in Eq. 23 were approximated by in- the radius of the source electrode, r., was 2 ,um and the source
troducing a small time increment, ATand writing the forward current was I = 100 nA (although this was varied in several
finite difference scheme: instances). For the reasons described below, Km was often

&U U(R,T+ AT) U(R,T7)
0.15 or 6.0 ,tM and Vm. was 0.2 or 0.8 ,uM s-'. When con-

dU U(R, T+AT-U(R, (24) centration versus time curves were calculated, the typical
aT AT separation between source and recording position was r

The interval [0, mo] was replaced by [0, R.], where R. is 100 Jim.
a suitably large number and the interval divided into m In the numerical methods, rx was often 400 ,am, but in-
subintervals. The integrals were then approximated by the creased when appropriate. The interval from r. to r. was
trapezoidal rule (Press et al., 1986), and a set of m + 1 usually divided into 240 subintervals. In time-dependent cal-
nonlinear equations generated at each discrete time in- culations, a time step of 0.125 s was used. These numerical
crement. calculation parameters were varied to establish that they did

This set of nonlinear equations was solved by the Newton- not compromise the calculations.
Raphson method (Press et al., 1986) which, in turn, required The numerical solution was implemented in Pascal (Bor-
the solution of a set of linear algebraic equations. This final land Turbo Pascal v. 7.0) using the algorithms described
step was accomplished efficiently using the LU decompo- in the above-mentioned chapters by Press et al. With the
sition method (Press et al., 1986). mesh and step sizes defined above, a typical calculation took

In applying the Newton-Raphson, algorithm it was found about 2 h on a PC equipped with a 60 MHz Pentium
necessary: 1) to test for the emergence of small negative microprocessor.
concentrations (U < 0) throughout the calculation and, if they
occurred, set the concentration at that point on that time step Steady-state solution: comparison with

equal to zero; and 2) to explicitly derive and implement the analytic approximations
limiting forms of VU/(K + U) and its derivative for the
conditions U > 100K or U < 0.01K. The following section will compare analytical approxima-

tions to the steady-state solutions for the diffusion equation
Parameters for numerical calculations with the numerical solutions. This both enables the accuracy

of the numerics to be checked and provides insight into the
A value ofD = 6.9 X 10-6 cm2 s-1 was used for the diffusion behavior of this nonlinear equation. The final part of the
coefficient of DA. This was based on the value ofD at 25°C paper will use these insights to discuss the time-dependent
(Gerhardt and Adams, 1982) corrected to 32°C (the tem- solution. Before commencing, it will be necessary to have
perature typically used for brain slices), assuming the tem- specific values for the uptake parameters.

perature dependence was 2% per degree. Volume fraction
(a) was taken as 0.21, and tortuosity (A) was taken to be 1.54

Established values of the Michaelis-Menten parameters

(Rice and Nicholson, 1991). This tortuosity means that the
apparent diffusion coefficient, D*, is 2.37 times smaller than Values for Vm. and Km have been obtained from preparations
D. A transport number of n = 0.01 was used for the source of homogenates, synaptosomes, or slices using [3H]DA;
electrode (Rice and Nicholson, 1989). The duration of the some representative values are given in Table 1. To make
iontophoresis was either infinite (steady-state calculations) sense of the different estimates from the literature it is nec-

or 10 s. Other parameters were varied to address different essary to convert the various units for "Vm." into a standard
issues and are described in the text and figures, but usually form, and the units of ,uM s-' have been chosen using

TABLE 1 Some Michaelis-Menten parameters for striatum

Vma Km
Species Preparation "Ymax" "Vm,." units J,M s'I ,uM Ref
Rat Homogenates 100 nmol (g pellet)-' (5 min)-' 0.33 0.4 (1)
Rat Slices 4.08-5.00 nmol (g tissue)-' min-' 0.08* 0.33-0.40* (2)
Rat Synaptosomes 25.3 pmol (100 ,jg protein)-' (2 min)-' 0.21 0.13 (3)
Rat Synaptosomes 106 (mg protein)-' min-' 0.18 0.14 (4)
Mouse Synaptosomes 7.0 nmol (g tissue)-' min-' 0.12 0.21 (5)
Mouse Homogenates 90.8 pmol, (mg protein)-' min-' 0.15 0.20 (6)
Rat In vivo 4 ,JM s'I 0.84 - (7)
Rat In vivo 4 JiM s-' 0.84* 6.0t (7)
"V "and "V units refer to the quantities quoted in the original references. V is the unit defined in this paper. To convert the measurements based
on protein content to ,uM, a value of 0.1 mg protein per mg tissue (Justice, 1988, Table 1, footnote 2, of that paper) was assumed and that 1 g of tissue
occupied 1 ml of volume (i.e., it is mainly water).
References cited: (1) Snyder and Coyle, 1969; (2) Shaskan and Snyder, 1970; (3) Holz and Coyle, 1974; (4) Schoemaker and Nickolson, 1983; (5) Ross,
1991; (6) Zimanyi et al., 1989; (7) Wightman and Zimmerman, 1990.
*Average values for high affinity system (Uptake 1).
tAfter administration of 20 mg kg-' nomifensine.
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the definition given earlier. The conversions are shown in
Table 1 along with the Km values in ,uM.
Wightman and co-workers have used a completely dif-

ferent approach to the earlier classical studies that is much
more closely related to our studies. They determined Vmax
in the intact anesthetized rat striatum using repetitive
stimulation of the median forebrain bundle and FCV com-
bined with carbon fiber microelectrodes. A range of val-
ues was obtained, but a typical estimate would be 4 ,uM
s51 for "Vmax" (Wightman and Zimmerman, 1990). In fact,
this value is actually Vmax/a according to the definition
used in this paper, so that Vmax = 0.84 ,uM s-'. These
investigators could not estimate Km with their methods
under normal conditions (but with improved techniques,
a value of Km = 0.16 ,uM was obtained recently in the
striatum by Garris and Wightman, 1994b). In the presence
of the DA uptake blocker nomifensine, Wightman and
co-workers (Wightman and Zimmerman, 1990) saw Km
rise to the measurable value of about 6 ,uM without a
significant change in Vmx..

It is evident from Table 1 that there is considerable con-
sistency among the synaptosome, homogenate, and intact
tissue determinations of Vmax and Km but that the value of Vma.
obtained with FCV is about 4 times higher (range 1-8 times).
This discrepancy is not very large, but for the purposes of
exploring the solutions of the equations presented here, two
standard values for Vma. will be used, based on data from rat
striatum, of 0.2 and 0.8 ,uM s-1 and a single value for Km of
0.15 ,uM.

The free boundary case (U >> K)

When the nondimensional concentration U is much greater
than K (i.e., C >> Ki), then the uptake term will approach a
constant, V. This appears to be a simple case, but it is not and
belongs to a class of interesting and complex problems
known as moving-boundary problems (Crank, 1984) with
only a few, specialized, analytical solutions. In the present
paper, one of the simplest solutions for the steady-state dis-
tribution is derived; however, this example will provide in-
sight into the nature of nonlinear uptake and a test of the
numerics.
The problem is formulated as steady release of DA from

a spherical electrode into a medium characterized (in non-
dimensional variables) by a constant uptake V (here Km = 0
so that C >> Km for most C). Intuitively, it is clear that there
must be a boundary at a distance B = b/r. from the center
of the electrode beyond which there is no DA. This boundary
cannot be specified without solving the diffusion problem,
however. Because this boundary does not move in the steady-
state case, this problem is referred to as a free-boundary
problem (Crank, 1984).

It is necessary to solve the following equation (from
Eq. 13):

1 d / (dU
R2dR dR -=0(5

subject to two conditions on the free boundary:

dU
U=0 and -=0 at R=B.dR (26)

The first condition is obvious, and the second is a characteristic
condition imposed on free-boundary problems (Crank, 1984).
Integrating Eq. 25 twice and using conditions (26), one obtains
(c.f. Appendix 1 of Chaplain and Stuart, 1991)

U= R2+2 --3B2]. (27)

Finally, an explicit value for B is derived by using the boundary
condition represented by Eq. 14, and this yields

B = 1+ 3-V] (28)

When translated back into the real coordinate system using Eqs.
11, 12, 14, and 17 the expression becomes

b= [rO + Q] (29)

Interestingly, if V. is defined to be the volume occupied by the
spherical electrode and VDAto be the volume where DA is to be
found, then

VDA =VO + V
max

(30)

A consequence of Eqs. 29 and 30 is that the boundary of the
territory invaded by the DA is only defined by the source mag-
nitude, the size of the iontophoresis electrode and V... In fact,
the size of the electrode can almost always be neglected for
typical parameters used here.
An important and nonintuitive consequence of Eqs. 29 and

30 is that the location of the boundary does not depend on
the diffusion properties of the medium. The amplitude of the
spatial distribution does depend on these properties, how-
ever. Translating Eq. 27 into dimensional variables results in

1 Vmax[ 3
ma=xIm2 +2- 3b2

a-D* 6 ~ r

(31)

To assess how closely the analytical solution, Eq. 31, based
on C >> Km, approximates the actual steady-state solution
obtained by numerical solution for all values of C, three sets
of curves are plotted in Fig. 2. All of the curves are for I =
100 nA with n = 0.01, and the two standard values of Vmax
are used. For the numerical calculation, two solutions are
obtained, the first with Km = 0.15 ,uM, the standard value,
and the second with Km = 6 ,uM, the value obtained in the
presence of nomifensine. It is seen that for both sets of Km
values, the analytic solution does indeed fit the full numerical
solution well for C 2 1OKm (i.e., C . 1.5 ,uM and C 2 60
,uM, respectively). It is also evident that the drastic increase
in Km causes the DA to extend much further from the source.

It is worth explicitly noting that a defined boundary at
r = b apparently only strictly exists in the case Km = 0; when
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FIGURE 2 Comparison of analytical steady-state solution (i.e., current
applied for infinite time) for Km = 0 with complete numerical solution with
two values of Km. In this figure, the ordinate is scaled logarithmically. The
solid line represents the analytical solution represented by Eq. 31 for I =
100 nA and the two values of Vm=, 0.2 ,&M s- (A) and 0.8 zM s` (B). These
solutions are computed under the assumption that Km = 0, hence, C >> Km.
The dashed lines show solutions for two realistic values of Km, 0.15 A{M
(normal value in rat striatum) and 6.0 zM (value in presence of nomi-
fensine). These solutions were obtained by numerical solution of Eq. 23, as

detailed in the text, for the time-independent case. It is seen that the normal
value of Km results in a steady-state solution that is quite close to the ana-

lytical approximation when C > 1OKm for both values of Vm. This is also
true of the value of Km appropriate for nomifensine, but in this case 10 Km
= 60 zM so that the analytical and numerical solutions diverge over most
of the range ofvalues shown. Unless otherwise stated, all calculations in this
and subsequent figures use these standard parameters: D = 6.9 X 10' cm2

s a = 0.21, A = 1.54, ro = 2 ,um, n = 0.01.

Km > 0, the boundary "creeps" forward as lower and lower
concentrations are examined. This seen in Fig. 2 (and is even
better shown in Fig. 4) for the numerical solutions with finite
Km. In practice, of course, when concentrations fall below
some small value they can can neither be detected nor ac-

tivate receptors.

The linear uptake case (K >> U)

Here the uptake limit is (defining W = V/K):

VU V
lim -->-U=WU. (32)
K>UK+U K

It follows that W can be defined in terms of the original
parameters as:

r0 Vmax
aD* Km. (33)

The time-dependent problem, represented by Eq. 13, now

can be solved analytically, and the complete solution is given
below, although only the steady-state result will be used in
this section.

FIGURE 3 Comparison of analytical and numerical steady-state solutions
(i.e., current applied for infinite time) for C << Km. In all cases, Vm, = 0.2
,iM s-'. Based on the criterion that the two solutions should agree for C '
Km/10, the maximum currents needed to satisfy this criterion for two dif-
ferent radii of the source electrode were calculated from Eq. 47 (see text).
For the standard radius (ro = 2 ,Am) of the source electrode, numerical
solutions were computed (0) and compared with the analytical solution
given by Eq. 44 for I = 300 fA and Km = 0.15 ,uM and I = 9 pA and Km
= 6 ,uM. To assess the influence of the size of the stimulating electrode,
the comparison was repeated for a source electrode with ro = 20 Am (0)
for I = 9 pA and Km = 0.15 ,uM and I = 130 pA and Km = 6 ,uM. In all
cases, the analytical and numerical solutions were indistinguishable. Note
the range of the ordinate in the figure differs from that in Fig. 2. See legend
to Fig. 2 for standard parameters.

Because the point R = 0 is excluded from this problem,
a new variable P can be defined such that U = PR` (where
both U and P are functions of R and T), and then Eq. 13
becomes:

ap a2p
- WP.

aT aR2 (34)

whereas the boundary condition represented by Eq. 14 is
now:

( dR)a
(35)

Equation 34 can be solved by standard techniques using the
Laplace transform method. Define s as the transform of the
time variable T, and P* as the transform of P. Then, denoting
the Laplace transform by L, this can be expressed formally
as L{P(T)} = P*(s); L-l{P*(s)} = P(T).

Then, assuming that P(R, O+) = 0, Eq. 34 becomes:

d2P*
(s + W)P*. (36)

C0

0

0

L.

4a

I I~~~~~~~~~~~~~~~
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FIGURE 4 Approach to the steady-state concentration distribution. The
concentration versus distance profiles are shown at 0.5, 1, 2, 5, 10, 20, and
50 s (-) together with the steady-state distribution (. ). All curves
are calculated with the standard parameters given in Fig. 2 and the values
Vmm = 0.2 ,LM s-5, Km = 0.15 ,uM, I = 100 nA. Note that by 50 s the
distribution is close to the final steady state.

For the boundary condition at R = 1, the function H(T) can

be taken as a step function at T = 0 from zero to a value H.;
then Eq. 35 becomes:

(37)

H.H e-(R-1)VWerfc(G - Wi)
R L 2(l + VW)

e(R - 1)\Werfc(G + Wi)
± 2(1 - VW)

e(R - 1) + T(1 - W) erfc(G + \/Tl
(1-W) 1s

(40)

This solution can be generalized to a pulse of duration Tp by
linear superposition:

U = U(HO, R,T when Tc Tp; U = U(HO, R, 7) (41

-U(HO, R,T- Tp) when T>Tp.

where U(HO, R, T) is the function given by Eq. 40.
Apart from being useful in the context of this paper, the

solution given by Eqs. 40 and 41 can be applied to the analy-
sis of data from experiments using the TMA-method to de-
termine the diffusion characteristics of brain tissue (Nichol-
son and Phillips, 1981; Nicholson, 1992). Until now, that
method was based on solutions involving point sources; the
solution given here enables the effect of a finite source di-
ameter to be assessed.

Steady-state solution

In the limiting case as T -> oo, Eq. 40 has the form (which
can also be derived directly by solving the time-independent
version of Eq. 34):

lim U exp(-X/W(R 1)).
T--*o R(1 + /VW)

(42)

Equation 36 admits of an exponential solution, and it is as-

sumed that P* decays with distance. Incorporating the
boundary condition represented by Eq. 37, one obtains the
solution:

= (1+ 0i W± exp(-s+W(R-1)). (38)

Using the property that

L{exp(-aT)F(T)} = F*(s + a)

Define

K = aD*

max

(43)

Then

o=Jr2 1
aD *'r (1 + r0IK)e

(44)

As the spherical electrode tends to zero radius, one obtains
(recalling Eq. 17):

where a is any constant and F is a function with Laplace
transform F* (Carslaw and Jaeger, 1959); then

P H. exp(-WT) exp(-(R - 1) } (39)

R R ~~(S-W)(1+ S)
The inverse Laplace transform can be found immediately
from Transform 31, Appendix V of Carslaw and Jaeger
(1959) (subject to the conditiof that W 1) and defining
G = (R - 1)/2V\T, to yield:

Q C = Q e
lim(J.r.) =- anidC= exp(-r/K). (45)
r,--+O 47r ~ 4waD*r

This agrees with the expression derived by Nicholson and
Phillips (1981) when the k' of that paper is identified as

follows (see also Nicholson, 1992):

I (S)PE k Vmax D*

a a aKim K2
(46)

where (S) (cm-') is the volume average of the cell surface

*-------. Steady State

X\~~~~~~~~~~~~~~..\\X~~~~~~~~~~~~~~~~\\\S~~I
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contained in an averaging volume (also termed a represen-
tative elementary volume) and PE is the average permeability
of the membrane (cm s-1).

Equations 40, 41, 44, and 45 are only valid as solutions to
Eq. 10 so long as C << Km. (Note that these solutions are
entirely valid for all values of C when the uptake term in Eq.
10 is written as k'C, but this is not Michaelis-Menten ki-
netics.) One can estimate the maximum current, Imax, for
which this would be valid by noting that the maximum con-
centration occurs at the surface of the spherical electrode
(r = r.) and demanding that C(r.) s Km/1O. From Eqs. 17
and 44, this leads to an expression for Ima,:

imax =- aD*ro 1 +_ l. (47)

Using Eq. 47 with the two standard values of Vma. (0.2 and
0.8 ,uM s-') and a Km of 0.15 ,uM, one obtains 290 and 350
fA, respectively. Taking a Km of 6 ,uM, one obtains 9.3 and
9.7 pA, respectively. Of course, these values depend on the
current density at the surface of the spherical electrode, and
this must decrease with increasing radius. In the calculation
above, the standard value ro = 2 ,um was used. Using ro =
20 ,um, one obtains values of 8.8 and 15 pA for the two
standard values of Vmax (0.2 and 0.8 ,uM s-') and a Km of 0.15
,uM and 130 and 170 pA for a Km of 6 ,uM. It is evident that
(see Fig. 3), for the small concentrations generated by these
low currents, the analytical solution and numerical solution
are identical, as predicted above.

It is important to note that for Eq. 44 to be correct C <<
Km for all distances. In all problems for sufficiently large
distances, the condition is satisfied but, because of the non-
linearity of the diffusion equation with Michaelis-Menten
uptake, Eq. 44 does not predict the concentration correctly
if the concentration distribution has evolved through a phase,
in this case a sequence of locations, where the condition C
<< Km is violated. A corollary of this is that even if the
distribution can be fitted with Eq. 44 with a suitable K (or k
or k' which amount to the same thing), such a constant can
only be interpreted in terms of Vmax and Km if C << Km holds
throughout the concentration domain.

Time-dependent solution

In general, the study of the time-dependent solution requires
a full numerical calculation. The only exception is the so-
lution when C << Km for all times and distances. In this
situation, Eqs. 40 and 41 are valid. Practically, this involves
the constraints on the current discussed at the end of the last
section.

Approach to the steady-state solution

The first problem of interest is to ask how rapidly the steady-
state solution is achieved. Fig. 4 shows a succession of pro-
files for a sustained current of I = 100 nA at different times
ranging from 0.5 to 50 s. It is evident that by 50 s (of con-

state, i.e., that the diffusion process and the uptake process
are close to balance. In the concentration versus time curves
presented later, the iontophoresis only lasts for 10 s so that
a steady state is not attained. In fact, after the termination of
the iontophoretic current, the concentration profile will re-
treat back to the source; this behavior will be illustrated in
later three-dimensional graphs.

It is also seen in Fig. 4 that even after only half a second,
levels of DA potentially detectable by FCV could be meas-
ured 50 ,um from the source. In fact, for instantaneous release
of DA at the origin (i.e., a delta function), in the absence of
uptake under a pure diffusion regime, the peak of the DA
distribution as a function of time can be calculated from the
well known expression: rma. = (6D*t)l/2 (Berg, 1993) which,
with the parameters used here, yields rmax = 30 jam, so that
the distribution shown in Fig. 4 at 0.5 s is reasonable.

Full time-dependent solution

In preliminary experiments (M. E. Rice and C. Nicholson,
unpublished data), the typical iontophoretic duration was 10
s; thus, the distribution of DA does not reach a steady state
within the vast bulk of the tissue invaded by the DA, and a
full numerical solution is required. The reason for choosing
this iontophoresis duration was that in actual experiments it
was important to limit the exposure of the tissue to DA so
as to maintain the conditions under which the equations are
valid (i.e., a unidirectional reaction).
The numerical results are first displayed in Fig. 5 as a

sequence of concentration versus time profiles such as would
be recorded in an experiment using FCV. In this figure, ex-
cept for the cases where Vm. = 0, i.e., "no uptake," the panels
in the left-hand column (a-c) depict results with Vmax = 0.2
,uM s-1, whereas those in the right-hand column (d-f) depict
results for Vm. = 0.8 ,uM s-1. In each panel, three results are
shown: for Michaelis-Menten uptake (Km = 0.15 ,uM), up-
take suppressed with nomifensine (Km - 6 ,uM), and the
hypothetical case of zero uptake (Vmax = 0). Results are
shown at distances of 50, 100, and 200 ,um from the source
electrode, which has the usual radius of 2 jim.
At 50 ,um from the source electrode, the three curves are

fairly similar; in particular, the initial rising phase is iden-
tical, but the peak amplitudes are reduced moderately by the
uptake. Nomifensine has little effect because Km is not play-
ing much of a role. It can be said that the behavior of DA is
still dominated by the proximity to the source electrode for
these combinations of parameters, and the high local con-
centration of DA ensures that the uptake process is rapidly
overwhelmed.
At 100 ,um from the source, clear-cut differences in the

DA profiles are apparent. The Michaelis-Menten curve is
quite triangular with the rising phase being faster than the
falling for Vmax = 0.2 ,uM s-1 (b), with the converse being
true for Vma. = 0.8 ,uM s-1 (e). There is now a clear dis-
tinction between the Michaelis-Menten curve and the curve
derived under the action of nomifensine. Furthermore, both
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FIGURE 5 Concentration versus time curves for different distances and
uptake conditions. An iontophoresis current, I = 100 nA, was applied for
a duration of 10 s. Each panel depicts three curves. The ones labeled "m-m"
were calculated with normal Michaelis-Menten parameters Km = 0.15 ,uM
and either Vm., = 0.2 ,M s-' (Panels a, b, c) or Vm, = 0.8 ,uM s-' (Panels
d, e,f). The ones labeled "nomifensine" were calculated with Km = 6.0 ,uM
and either Vm. = 0.2 ,l.M s-' (Panels a, b, c) or Vm. = 0.8 AM s-' (Panels
d, e,f). The ones labeled "no-uptake" were calculated with Vm. = 0 (so Km
is irrelevant). Each pair of calculations were made at three different dis-
tances from the source electrode: 50 ,um (panels a, d), 100 Jim (panels b,
e) and 200 Am (panels c, f). All calculations are based on a numerical
solution of Eq. 23 as described in the text. Both ordinate and abscissa are
scaled linearly. See legend to Fig. 2 for standard parameters.

curves with nonlinear uptake are well differentiated from the
curve without uptake.

Finally, when the distance is 200 gm from the source, the
distinctions between the curves are so overwhelming that the
Michaelis-Menten curves cannot even be displayed on the
same scale as the curve for diffusion without uptake.

Effect of current on concentration distribution

To explore further the consequences of nonlinear behavior of
DA, it is convenient to adopt a different representation, in the
form of a three-dimensional graph. Fig. 6 shows examples for
iontophoresis currents of I = 100, 10, and 1 nA. The upper
graph shows data already depicted in Fig. 5 for Vmax = 0.2
JiM s-.
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FIGURE 6 Three-dimensional plots of concentration as function of dis-
tance and time for three different iontophoresis source-current strengths
applied for 10 s. These graphs illustrate the nonlinear behavior of diffusion
coupled to uptake where the concentration distribution does not scale with
magnitude of the source. All calculations are based on a numerical solution
of Eq. 23 and use Vm. = 0.2 AM s-1, Km = 0.15 AM. The upper graph was
computed with I = 100 nA, the middle graph with I = 10 nA, and the bottom
graph with I = 1 nA. The graphs were computed as a set of concentration
versus distance curves (240 points) at selected times (15-30 instances) and
the surface-mesh points selected and interpolated using the graphing pro-
gram SigmaPlot 5.0, (Jandel Scientific). See legend to Fig. 2 for standard
parameters.
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What.Fig. 6 shows is that the spatio-temporal distribution
of DA changes its shape as the current diminishes, in par-
ticular, how the DA surface shrinks ever closer to the source
electrode as the current diminishes and the 1 nM contour,
which represents the intersection of this concentration with
the time-distance plane, changes from a roughly circular con-
tour at 100 nA current to a rectangular one at 1 nA, extending
to about 100 gm during the current but vanishing almost
immediately when the current ceases. The general trend is for
a wave of DA to spread out to certain distance, reaching its
maximum extent sometime after the time the current is
switched off, because of the delay produced by the diffusion
component of the process, and then recede back to the elec-
trode and vanish as the uptake process removes all of the
released material from the extracellular compartment.

Comparison of the different uptake paradigms

The three-dimensional representation is used in Fig. 7 to
dramatically show the differences between Michaelis-
Menten uptake alone (top), in the presence of nomifensine
(middle), and the total absence of uptake (lower). Note that
the upper panel corresponds to the upper panel of Fig. 6, but
the time and space coordinates differ. The logarithmic or-
dinate accentuates the shape differences and clearly dem-
onstrates that nonlinear uptake acts to confine DA in both
space and time, whereas pure diffusion allows particles to
invade the entire spatio-temporal domain.

Implications for the analysis of data

A major goal of this paper is to provide a strategy for ex-
tracting kinetic information from an experimental paradigm
using iontophoresis and FCV. In such experiments, DA will
be detected at a carbon fiber microelectrode about 100 ,um
distant from the source of current strength I = 100 nA. Some
typical records are simulated in Fig. 8 using Vm. = 0.2 and
0.8 ,uM s-1. In Fig. 8 A, the current is 100 nA using the two
values of Vm., whereas Fig. 8 B shows the influence of nomi-
fensine. The major effect of the uptake inhibitor at this dis-
tance is to enhance somewhat the amplitude and to slow the
falling phase, particularly as it approaches the baseline.
An interesting contrast with the above data is provided by

reducing the iontophoresis current of the source electrode by
a factor of five, to I = 20 nA (Fig. 8 C). At the same distance,
the DA signal is now greatly reduced (compared with panel
A) for Vm. = 0.2 AM s-1 and the signal for Vm. = 0.8 ,uM
s-1 is effectively zero (although as the inset shows, it does
reach a level of a few nM). This is accompanied by a sig-
nificant sharpening of the waveform, most evident in the
falling phase. For this lower current, the effect of nomi-
fensine is dramatic both in its increase in the size of the
waveform and its effect on the shape, particularly for the
higher value of Vm. (Fig. 8 D).
The implications of these data are that very subtle shape

changes are involved in distinguishing the different cases.
Practically, the goal is to determine Vm. in the normal brain,
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FIGURE 7 Three-dimensional plots of concentration as function of dis-
tance and time for three different uptake conditions. All calculations were
based on a numerical solution of Eq. 23 and I = 100 nA and was applied
for 10 s. The upper graph was computed with V. = 0.2 ,uM s-, Km = 0.15
,uM, i.e., standard Michaelis-Menten parameters, and corresponds to the
upper graph of Fig. 7, but with different time and distance scales. The middle
graph was computed with V. = 0.2 ,uM s-', Km = 6.0 LM, i.e., standard
nomifensine parameters. The bottom graph was computed with Vm,. = 0,
i.e., with no uptake. See legend to Fig. 2 for standard parameters.

because measurement levels will always be significantly
greater than Km unless an uptake blocker is used. Because of
this, fourfold differences in Km have almost no impact when
concentrations are in the tens of ,uM, as is the case for I =
100 nA (Fig. 9 A). When concentrations are of the order of
a ,M (I = 20 nA), fourfold differences in Km might be
detected under ideal conditions (Fig. 9 B). When an uptake
blocker is applied and Km increases to a value of several ,uM,
then it should be possible to determine both Vm. and Km.
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FIGURE 8 Effect of source current on concentration versus time curves

for different uptake kinetics. These figures show the nonlinear scaling of
curves with source current. All calculations are based on a numerical so-

lution of Eq. 23 with r = 100 ,um and an iontophoresis duration of 10 s.

For each graph two curves are depicted: curve a used Vm,. = 0.2 JIM s-
curve b used Vmin = 0.8 ,uM s-'. Graph A was computed with I = 100 nA,
Km = 0.15 ,uM. Graph B was computed with I = 100 nA, Km = 6.0 ,LM,
i.e., standard nomifensine parameters. Graph C repeats graph A but with
one-fifth the source current, i.e., I = 20 nA. The curve with Vm. = 0.8 ,uM
s-' is now so small that it cannot be seen above the baseline on the con-

centration scale used, but can be seen on the inset, which uses an expanded
scale. Note the change in shape, as well as amplitudes, of the curves here
compared with graph A. Graph D repeats graph B but with one-fifth the
source current, i.e., I = 20 nA. Again note the change in shape, as well as

amplitudes, of the curves here compared with graph B. See legend to Fig.
2 for standard parameters.

An experimental strategy suggested by these data is to vary
the source strength over a 2- to 10-fold range and attempt to
fit the family of curves with a single parameter set. Fig. 10
shows how the amplitude will vary as the current is stepped
from 20 to 100 nA and the measurements made 100 ,um from
the source. The three graphs show the shapes of the curves

for three values of Vm. (0.8, 0.5, and 0.2 ,uM s-1). These plots
demonstrate that the amplitudes of the curves are very sen-

sitive to Vm. (note the different concentration scales), but the
shape of the rising edge and time-to-peak of the concentra-
tion curves are virtually unaffected by the current incre-
ments. The falling phase is sensitive to current, however, and,
together with amplitude, this parameter would be useful in
determining the curve-fit parameters for the family.

DISCUSSION

This paper has given a detailed theoretical analysis to show
that a method that couples controlled micro-iontophoresis

0 20 40

time (s)

FIGURE 9 Relation between source current, Km. and concentration ver-

sus time curves. As source current changes at a given distance, the sensitivity
of the concentration to Km values changes. All calculations are based on a

numerical solution of Eq. 23 with r = 100 ,um, V. = 0.2 ,uM s-', and an

iontophoresis duration of 10 s. Graph A shows curves for a source current
I = 100 nA and Km values of 0.15 ,uM (normal value, center curve, not
labeled), 0.6 ,uM (4X normal) and 0.0375 ,lM (0.25X normal). At these
concentration levels, the curves are insensitive to Km. Graph B shows curves

for a source current I = 20 nA and the same three Km values used in Graph
A. At these concentration levels, the curves demonstrate significant sensi-
tivity to Km. See legend to Fig. 2 for standard parameters.

with FCV is able potentially to analyze Michaelis-Menten
kinetics in living, intact, brain tissue.

Classical analysis of Michaelis-Menten kinetics

Many early studies of DA uptake in brain tissue relied on

tissue homogenates and fractionation combined with radio-
labeled DA, and such methods subsequently have been used
extensively to study both kinetics and transport inhibition.
For example, Snyder and Coyle (1969) used homogenates,
and Holz and Coyle (1974) fractionated the homogenate to
obtain synaptosomes. The advantage of these procedures was
that the final preparations allowed rapid access of the ra-

diolabeled DA to a suspension of cellular elements, so that
the bathing concentration could be defined accurately for the
determination of Km, whereas Vm could be measured suf-
ficiently rapidly so that the assumption of unidirectional
transport was valid. A disadvantage of the homogenate meth-
ods was the obliteration of the neuronal circuitry and the
microenvironment.
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FIGURE 10 Relation between source current and concentration versus

time curves for three values of Vm.. As source current changes, the con-

centration changes at a given distance in a nonlinear manner. All calcula-
tions are based on a numerical solution of Eq. 23 and used r = 100 ,um, Km
= 0.15 ,uM, and an iontophoresis duration of 10 s. In each graph, five source
currents were used: I = 100, 80, 60, 40, and 20 nA. In the upper graph, Vmin
= 0.8 ,uM s-1; in the center graph, Vmin = 0.5 AM s-'; and in the lower graph,
Vm, = 0.2 AM s-'. Note the differences in concentration scales for the three
graphs and the differences in shape of the falling surfaces of the graphs. See
legend to Fig. 2 for standard parameters.

The use of brain slices exposed to radiolabeled DA over-
came the problem of tissue disruption but prevented precise
knowledge of extracellular concentrations of substrate
throughout the tissue and also severely compromised the
ability to deliver substrate quickly to the surface of cellular
elements in much of the preparation. The reasons for these
uncertainties are obvious from the analysis of this paper; the
combination of diffusion and uptake retards the penetration
of labeled DA into the slice in a complex, concentration-
dependent, manner. Near et al. (1988) have shown that fail-
ure to appreciate this issue can lead to the apparent discovery
of low affinity (high Km) uptake systems when slices are
used, which are not seen in the homogenized preparations.
Such low affinity uptake systems were reported by Shaskan
and Snyder (1970) and Mireylees et al. (1986) using slices,
and the problems of analyzing Michaelis-Menten kinetics in
the presence of diffusion were discussed in a theoretical pa-
per by Green (1976).
The use ofFCV in intact tissue has the potential to remove

the limitations imposed by the traditional methods. Early
studies (Stamford et al., 1984, 1986) with FCV actually were
interpreted as indicating the presence ofboth a low and a high
affinity uptake systems in the striatum, but this was not found
in later and more precise work (see Wightman and Zim-
merman (1990) for review). Two limitations of the FCV
studies have been difficulty in defining the geometry of the
source and lack of sensitivity to physiological DA concen-
trations. The source of DA has been a population of elec-
trically stimulated fibers (usually the median forebrain
bundle) that released DA from their terminals. This has the
merit of providing a reasonably physiological source of DA,
but the disadvantage that the spatial distribution and behavior
of the population of stimulated endings cannot be defined
precisely. The lack of sensitivity of FCV arises because the
method sacrifices sensitivity for speed so that, even with
various recent improvements (Rice and Nicholson, 1989;
Wiedemann et al., 1991), it is not possible to detect con-
centrations of DA in the brain below about 100 nM; in prac-
tice, most FCV studies have been carried out with DA con-
centrations around 1 jM. This makes it difficult to accurately
determine K., which typically has a value of about 150 nM.
In the presence of an uptake blocker, such as nomifensine,
Km increases sufficiently to be measured with FCV.
The method described here overcomes problems with the

definition of the source, but the issue of sensitivity remains.
Thus, presently the combination of iontophoresis and FCV
is best suited to the measurement of Vm,,:. Interestingly,
where Vm. has been estimated by FCV in the anesthetized
whole animal preparation (Wightman and Zimmerman,
1990), the parameter often has been found larger than in
homogenates.

Diffusion and Michaelis-Menten kinetics

For an iontophoresis paradigm, this paper has shown how
diffusion in a complex medium, characterized by a volume
fraction and tortuosity, can be coupled to a Michaelis-
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Menten uptake process. This is probably the simplest and
most widely accepted nonlinear description of uptake kinet-
ics and has the merit that it only requires two parameters, Vmax
and Km, but it may be an oversimplification. More elaborate
models have attempted to take account of the accumulation
ofDA inside cells and consequent outward transport (Chris-
tensen, 1975), but such models are not commonly used be-
cause of the additional parameters required. In fact, once a
numerical approach is adopted, it is relatively easy to in-
corporate more complex kinetics, if experimental data justify
their use.
The algorithm derived for the solution of the nonlinear

partial differential equation is based on the work of Tosaka
and Miyake (1982) in the context of oxygen transport in
tissue. As noted above, some earlier numerical solutions to
the oxygen problem were in error. For this reason, an effort
has been made in this paper to compare numerical results
with limiting analytical solutions. These solutions also pro-
vided insight into the nature of the problem. For example, the
case of C >> Km (U >> K) leads to a so-called free boundary
problem in the steady-state, which has been the subject of
extensive analysis in other contexts (Crank, 1984).
The integral-equation approach to the numerical algorithm

has the merit of providing a basis for further analytical in-
sights into the mechanics of the problem but at the cost of
requiring some analytical derivation for each case. For ex-
ample, to extend the analysis to a pressure-ejection source
instead of an iontophoretic source, it would be necessary to
deal with the singularity at the origin. An alternative method
of solving this type of problem is the collocation method
(Eilbeck, 1983; Lin, 1979; Schultz and King, 1987), which
offers a more mechanical approach but less illumination of
the solution process and at some risk of generating nonphysi-
ological results.

Relations between steady-state solutions and
time-dependent case

It is instructive to compare some of the simplest solutions that
arise from the problem studied here. For a pure diffusion
problem with a point source of strength Q, the steady-state
solution is (e.g., limit of Eq. 45 as K -- oo):

QC = 4a *r (48)

If linear concentration-dependent uptake, defined by k', is
present, this solution is modified to be (Eq. 45):

4%*erxp(-r D). (49)

In both cases, the steady-state distribution extends to infinity,
although obviously in practice boundaries and the detection
limits of instruments or receptor sites impose finite limits.
For the nonlinear uptake considered here, as Km -° 0 the
situation is different: beyond a certain distance, no diffusing
molecules are encountered. One might say that the often-
used phrase "diffusion distance" only has meaning in the

presence of nonlinear uptake. This is exemplified by the case
of the free-boundary solution (Km = 0), where the concen-
tration is zero (Eq. 29, neglecting r3) for all r satisfying

r [4 ] (50)
When Km > 0, however, diffusing particles extend beyond
this boundary, although for practical purposes of detection,
the concentration may be essentially zero.
As shown in Fig. 4, this situation is reached quite rapidly

for DA, with the parameters used here, within a minute or so
of the source becoming active. Of course, in the more re-
alistic example shown in Fig. 4, the boundary extends beyond
the limit given by Eq. 50 because Kin> 0. When the full
time-dependent case is considered, DA moves out to a space-
time locus where it can no longer be detected and then re-
cedes, much like a tide running up an inclined beach. This
is most obvious in Figs. 6 and 7.

Analysis of data using iontophoresis and FCV

The results depicted in Figs. 8-10 represent data that might
be gathered in a typical experiment. The major point made
by these simulations is that analysis of nonlinear diffusion-
uptake processes is best done using a family of curves. An
iontophoretic source is able to generate such a family by
varying the current strength, and this gives it advantages over
other methods where the source is less easily controlled. As
Fig. 10 demonstrates, the issue then becomes one of gen-
erating a series of concentration surfaces as functions of time
and current, and determining which value of Vm,, generates
the surface that fits most closely the experimental data. When
measuring techniques of sufficient sensitivity become avail-
able, this method could also be applied to determine Km.

Finally, it evident that, so long as appropriate sensors
could be found, the approach described here could be applied
to many other neuroactive substances to quantify their be-
havior in situ and in localized regions.
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