Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1995 May;68(5):1856–1863. doi: 10.1016/S0006-3495(95)80362-0

Phase diagram of soybean phosphatidylcholine-diacylglycerol-water studied by x-ray diffraction and 31P- and pulsed field gradient 1H-NMR: evidence for reversed micelles in the cubic phase.

G Orädd 1, G Lindblom 1, K Fontell 1, H Ljusberg-Wahren 1
PMCID: PMC1282088  PMID: 7612827

Abstract

The phase equilibria of the system soybean phosphatidylcholine, diacylglycerol, and water has been determined using a combination of classical methods together with x-ray diffraction and NMR techniques. In particular, the extent of the phase regions of the lamellar, the reversed hexagonal, and the cubic phases have been determined. By pulsed field gradient 1H-NMR, the diffusion coefficients of all three components in a cubic phase composed of soybean phosphatidylcholine, diacylglycerol, and heavy water have been determined at 25 and 59 degrees C and also for the corresponding cubic phase composed of the chemically more well defined synthetic components 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoylglycerol (DOG), and heavy water. The extension of the phase region of the cubic phase did not seem to change appreciably for the two ternary systems studied. The translational diffusion coefficient of DOPC in this cubic phase is more than an order of magnitude smaller (3 x 10(-13) m2 s-1, 59 degrees C) than the lateral diffusion coefficient of DOPC in an oriented lipid bilayer (5 x 10(-12) m2 s-1, 35 degrees C), whereas the diffusion coefficients of water and DOG were found to be about two orders of magnitude larger than DOPC at 59 degrees C. It is concluded that the cubic phase is built built up of closed reversed micelles in accordance with the suggestion from previous x-ray diffraction studies.

Full text

PDF
1856

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  2. Das S., Rand R. P. Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem Biophys Res Commun. 1984 Oct 30;124(2):491–496. doi: 10.1016/0006-291x(84)91580-8. [DOI] [PubMed] [Google Scholar]
  3. Das S., Rand R. P. Modification by diacylglycerol of the structure and interaction of various phospholipid bilayer membranes. Biochemistry. 1986 May 20;25(10):2882–2889. doi: 10.1021/bi00358a022. [DOI] [PubMed] [Google Scholar]
  4. Dawson R. M., Irvine R. F., Bray J., Quinn P. J. Long-chain unsaturated diacylglycerols cause a perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipase attack. Biochem Biophys Res Commun. 1984 Dec 14;125(2):836–842. doi: 10.1016/0006-291x(84)90615-6. [DOI] [PubMed] [Google Scholar]
  5. De Boeck H., Zidovetzki R. Effects of diacylglycerols on the structure of phosphatidylcholine bilayers: a 2H and 31P NMR study. Biochemistry. 1989 Sep 5;28(18):7439–7446. doi: 10.1021/bi00444a043. [DOI] [PubMed] [Google Scholar]
  6. Epand R. M. Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Biochemistry. 1985 Dec 3;24(25):7092–7095. doi: 10.1021/bi00346a011. [DOI] [PubMed] [Google Scholar]
  7. Goldberg E. M., Lester D. S., Borchardt D. B., Zidovetzki R. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers. Biophys J. 1994 Feb;66(2 Pt 1):382–393. doi: 10.1016/s0006-3495(94)80788-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lindblom G., Johansson L. B., Arvidson G. Effect of cholesterol in membranes. Pulsed nuclear magnetic resonance measurements of lipid lateral diffusion. Biochemistry. 1981 Apr 14;20(8):2204–2207. doi: 10.1021/bi00511a020. [DOI] [PubMed] [Google Scholar]
  9. Lindblom G., Johansson L. B., Wikander G., Eriksson P. O., Arvidson G. Further evidence for closed, nonspherical aggregates in the cubic I(1) phase of lysolecithin and water. Biophys J. 1992 Sep;63(3):723–729. doi: 10.1016/s0006-3495(92)81642-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lindblom G., Wennerström H. Amphiphile diffusion in model membrane systems studied by pulsed NMR. Biophys Chem. 1977 Jan;6(2):167–171. doi: 10.1016/0301-4622(77)87006-3. [DOI] [PubMed] [Google Scholar]
  11. Luzzati V., Vargas R., Gulik A., Mariani P., Seddon J. M., Rivas E. Lipid polymorphism: a correction. The structure of the cubic phase of extinction symbol Fd-- consists of two types of disjointed reverse micelles embedded in a three-dimensional hydrocarbon matrix. Biochemistry. 1992 Jan 14;31(1):279–285. doi: 10.1021/bi00116a038. [DOI] [PubMed] [Google Scholar]
  12. Mariani P., Luzzati V., Delacroix H. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol. 1988 Nov 5;204(1):165–189. doi: 10.1016/0022-2836(88)90607-9. [DOI] [PubMed] [Google Scholar]
  13. Newton A. C. Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annu Rev Biophys Biomol Struct. 1993;22:1–25. doi: 10.1146/annurev.bb.22.060193.000245. [DOI] [PubMed] [Google Scholar]
  14. Seddon J. M. An inverse face-centered cubic phase formed by diacylglycerol-phosphatidylcholine mixtures. Biochemistry. 1990 Aug 28;29(34):7997–8002. doi: 10.1021/bi00486a031. [DOI] [PubMed] [Google Scholar]
  15. Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990 Feb 28;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
  16. Siegel D. P., Banschbach J., Alford D., Ellens H., Lis L. J., Quinn P. J., Yeagle P. L., Bentz J. Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases. Biochemistry. 1989 May 2;28(9):3703–3709. doi: 10.1021/bi00435a012. [DOI] [PubMed] [Google Scholar]
  17. Ulmius J., Wennerström H., Lindblom G., Arvidson G. Deuteron nuclear magnetic resonance studies of phase equilibria in a lecithin-water system. Biochemistry. 1977 Dec 27;16(26):5742–5745. doi: 10.1021/bi00645a014. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES