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Analysis of Equatorial X-Ray Diffraction Patterns from Muscle Fibers:
Factors that Affect the Intensities

S. Malinchik and L. C. Yu
Laboratory of Physical Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda,
Maryland 20892

ABSTRACT Previously we have shown that cross-bridge attachment to actin and the radial position of the myosin heads
surrounding the thick filament backbone affect the equatorial x-ray diffraction intensities in different ways (Yu, 1989). In the
present study, other factors frequently encountered experimentally are analyzed by a simple model of the filament lattice. It is
shown that the ordering/disordering of filaments, lattice spacing changes, the azimuthal redistributions of cross-bridges, and
variations in the ordered/disordered population of cross-bridges surrounding the thick filaments can distinctly affect the equatorial
intensities. Consideration of Fourier transforms of individual components of the unit cell can provide qualitative explanations
for the equatorial intensity changes. Criteria are suggested that can be used to distinguish the influence of some factors from
others.

INTRODUCTION

Equatorial x-ray diffraction patterns of skeletal muscle have
been widely used to study mass distributions in muscle cells
for several decades. It has been established that the equatorial
diffraction patterns originate from the hexagonal arrays of
the interdigitating thick and thin filaments. The reflection
intensities provide information about the density profiles of
the filaments (projected onto a plane perpendicular to the
fiber axis). This is equivalent to studying the integrated den-
sities in a thick cross section of the sarcomeres.
The strongest reflections of the diffraction pattern from

skeletal muscle are found along the equator, particularly the
[1,0] and [1,1] reflections. With advances in detection tech-
nology (e.g., position-sensitive proportional counters and
imaging plates) and the availability of synchrotron radiation,
the time resolution for recording equatorial x-ray diffraction
patterns has reached the sub-millisecond range even for
single muscle fibers (diameter -80 ,um). Thus, during bio-
chemical and mechanical interventions, e.g., isotonic short-
ening (Podolsky et al., 1976; Huxley, 1978; Yagi et al.,
1993), force redevelopment (Huxley et al., 1983; 1988; Irv-
ing et al., 1992), tetanus rise (Cecchi et al., 1991), and the
release ofcaged compounds (Poole et al., 1988), cross-bridge
behavior may be followed with millisecond or sub-
millisecond time resolution.

Changes in the intensities of the [1,0] and [1,1] reflections
(Ilo and Ill) have been correlated with changes in the fraction
of cross-bridges attached to actin in specific physiological
states (Huxley, 1968; Yu et al., 1979; Brenner et al., 1984;
Brenner and Yu, 1985). In previous analyses, (Lymn and
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Cohen, 1975; Haselgrove et al., 1976; Lymn, 1978; Yu,
1989, Irving and Millman, 1989) model calculations showed
that there are other factors which could affect the equatorial
diffraction, e.g., the angle of cross-bridge attachment to actin
and the radial position of the myosin heads surrounding the
thick filament backbone. However, the interpretation of
equatorial reflections is not straightforward. Additional fac-
tors such as ordering/disordering of filaments, lattice spacing
changes, azimuthal redistributions of cross-bridges and
variations of the ordered/disordered population of cross-
bridges surrounding the thick filaments are frequently en-
countered in experiments. The effects of these factors are
illustrated here and suggestions are made for a few criteria
that can distinguish one factor from another. Preliminary re-
sults have been reported previously (Malinchik and Yu,
1993).

MATERIALS AND METHODS
According to diffraction theory, the scattering intensity in the equatorial
direction depends only on the projections of filaments onto the equatorial
plane. In modeling of low-angle diffraction patterns (limited by reciprocal
radius <1/100 A, the spacing of the (3,0] equatorial reflection), we assume
that projections of both myosin and actin filaments are cylindrically sym-
metrical. This assumption neglects the fine structures of the filaments, the
three-stranded nature of the thick filament backbone and ninefold symmetry
of the myosin head helix in axial projection. However, at resolution <100
A, the fine structures of actin and myosin filaments as well as the individual
myosin heads are invisible. Our simplifications are therefore reasonable.

In a muscle cell, the filaments form a hexagonal array with the thick
filaments at the lattice points and the thin filaments at the trigonal points
(Squire, 1981). The unit cell consists of one thick and two thin filaments.

For each equatorial reflection with the index [h,k], the Fourier transform
of the unit cell is

Fhk = Fhck + 2F1 2cos[r (h + k)]

The corresponding intensity is

Phk = IFh 2

where F nick and F hhin are cylindrically symmetrical Fourier transforms of
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TABLE 1 Fourier transforms associated with reflection [h,k]
originated from thick and thin filaments

Reciprocal Number of
Reflection radius equatorial
index [h,k] (R) Fhk reflections

1,0 a* FThick- FT 6
1,1 3a* FThck+ 2Fnin 6
2,0 2a* FThck- FThin 6
2,1 +/7a* FThCk-FFThin 12
3,0 3a* FThick+ 2FThin 6
2,2 \/3a* FThiCk+ 2FThin 6
3,1 +\/13a* FThick- FThi. 12

a* = 2/(\/3a) is the size of the reciprocal lattice; a is the size of the unit
cell and also the distance between nearest thick filaments.

the projections of thick and thin filaments, respectively, at the [h,k] spacings.
The cosine term accounts for symmetrical displacements of two thin fila-
ments in the unit cell with the thick filament at the origin. Table 1 shows
the combinations of F hick and F hk., and corresponding reciprocal radii (R)
for the first seven equatorial reflections.

The thick filament structure is assumed to consist of a backbone de-
scribed by a homogeneous cylinder with a radius equal to 90 A, and with
cross-bridges surrounding the backbone. Each cross-bridge is modeled by
a single cylinder consisting of seven overlapping spheres in a straight line
with 20 A between the centers and a radius of 20 A for each sphere (Miller
and Treager, 1972). The spatial configuration of cross-bridges surrounding
the thick filament is described in terms of the distance between the center
of the cross-bridge and the center of the thick filament, rr; and two angles,
the axial angle a, and the azimuthal angle (3, as shown in Fig. 1 a. The density
distribution of the cross-bridge halo is obtained as a result of azimuthal
averaging of a single cross-bridge projection. (The S2 connection between
myosin Si and the filament is flexible and of low mass. Thus the diffraction
from this structure will be minimal and is treated here as a gap between SI
and the filament backbone.)

The thin filament structure is represented by a homogeneous cylinder
with a radius of 55 A. Attachment of the cross-bridges, which are centered
around the thin filament, is also described in terms of two spatial angles 4an
and t'at (see Fig. 1 b).

The Fourier transform of the myosin filament projection, FThCk(R), is the
sum of the transforms of the filament backbone, FB(R), and the cross-bridge
halo, FH(R):

FTwCk(R) = FB(R) + FH(R)
where R is the reciprocal radius. For the backbone represented by a cylinder
of radius rB with a molecular weight of WB (Vainstein, 1966):

FB(R) = WB J(2RrB)

FIGURE 1 The models of thick and thin filaments
used for Fourier transform calculations. The thick fila-
ment backbone is represented by a uniform cylinder 180
A in diameter. Myosin cross-bridges are represented as

cylindrical rods 160 A in length. They are described in
terms of seven overlapped spheres with a radius of 20 A.

The configuration of each cross-bridge is described by
the distance of center of mass from the filament center
r,, and two spherical angles a and ,B (a). The actin fila-
ment is represented by a uniform cylinder of 110 A in
diameter. The configuration of cross-bridges attached to
actin is described by two spherical angles 4n and 4aif- (b)
14~a is the angle of attachment. Axial projections of thick
and thin filaments, which were used to calculate equa-

torial diffraction patterns, are shown. In (a) cross-bridges
are thick filament-centered; in (b) they are attached to
and centered around the thin filament.

where the transform of the cylinder is divided by the term irrB2 to normalize
the mass of the cylinder to the unit. The cylindrically symmetrical transform
of the cross-bridge projection (the cross-bridge is represented by seven
spheres of radius ro) is

17 J0(2uRr)
FH(R) = WH * FORM(U) * 7

where

3(sinU - cosU)
FORM(U)-= U ; U= 2rRr0

is the structural factor of the projection of a single sphere of radius rO WH
is the molecular weight of the whole cross-bridge halo. Transform of the
cross-bridge projection is also normalized to the unit mass by dividing by
7. ri is the distance from the origin of the unit cell (i.e., the center of the thick
filament backbone) to the center of the projection of each sphere in the
cross-bridge:

ri = V/r2 + (Ijcosa)2 + 2 rclj * cosa * cosf3

1, is the distance along the cross-bridge axis of the jr" sphere from the center
of the cross-bridge (= distance between spheres x the number of the sphere
from the center).

The Fourier transform of the thin filament projection, Fni.(R), is the sum
of the transforms of the thin filament itself, FA(R), and the attached cross-
bridges, Faa(R):

FThin(R) = FA(R) + Fant(R)
FA(R) and F,,(R) are calculated in the same manner as shown above for the
thick filament.

The molecular weights WB, WH, and WA per half sarcomere at full
overlap are proportional to the molecular weights of the thick filament
backbone, the cross-bridges surrounding the backbone, and the over-
lapping part of the thin filament including regulatory proteins. Based
on the available data (Squire, 1981) we assume that without any attached
cross-bridges present, WB- 36 X 103 kDa (150 myosin molecules X
240 kDa, weight of the rod part of the molecule); WH 40 x 103 kDa
(150 myosin molecules X (2 x 130 kDa) - weight of two S1); WA
16 X 103 kDa (weight of overlapping part of the thin filament -6700
A long). Watt is defined as the mass of the attached cross-bridges that
surround the thin filament. Whenever Waif is >0, it is subtracted from
WH. However, due to the stoichiometry of the unit cell, the gain in Watt
is equal to one-half of the loss in WH (On average, mass of cross-bridges
from one thick filament is redistributed between two thin filaments in
the unit cell).

Taking into account disordering effects (random isotropic displace-
ments), the structure factor of the corresponding disordered component of
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Factors Affecting Diffraction Patterns from Muscle

the unit cell is multiplied by a "temperature" factor (Vainstein, 1966):

D = exp( - 2'r2A2R2)

where A is the root mean square (rms) isotropic displacement of the cor-
responding component, and R is the distance from the origin in reciprocal
space.

The Fourier transforms and the intensities of the first seven reflections
were calculated for each set ofparameters. To compare the calculated results
with the experimental data, a Lorentzian factor was included (dividing the
calculated intensities by the radius in reciprocal space; Sherwood, 1976). In
addition, the calculated intensities of [2,1] and [3,1] reflections were mul-
tiplied by a factor of 2, because there are twice as many reflection planes
with these two indices as the others listed in Table 1. The calculations and
graphics were performed on a personal computer using MLAB software for
scientific modeling (Civilized Software, Inc., Bethesda, MD).

RESULTS

The influence of different parameters on the equatorial dif-
fraction pattern was studied. In most cases we started with
a "basic" model that gives a diffraction pattern with '1o -I,.
It has the following parameters: the cylindrical backbone of
the thick filament is 180A in diameter and has a total relative
weight of WB = 36, cross-bridge halo surrounding backbone
has a total relative weight of WH = 33, and a radial density
distribution calculated from a single cross-bridge with the
following values: rC = 135 A, a =0°, and 3 = 70°. The thin
filament is represented by a cylinder of 110 A in diameter
with a relative weight of WA = 14. (The relative weights of
the cross-bridge halo and thin filament were reduced from
those calculated in Materials and Methods to make Ilo equal
to Il. This may reflect the fact that these components are

disordered in muscle and effectively have lower relative
weights.)

In the following results, emphasis is placed on changes in
the intensities Ilo and Ill.
The first two models, presented bellow, show that our

calculations are consistent with earlier results of Lymn
(1978) and Yu (1989), although absolute values differ be-
cause the models are slightly different.

Changing the fraction of attached cross-bridges

Cross-bridges are assumed to move from the thick filament
region, to surround the actin and become attached at angles
an= 450 and att = 600. The increase in the fraction of
cross-bridges bound to actin filament results in the well-
known reciprocal change in Ilo and Ill (Fig. 2 a) (Lymn,
1978; Yu, 1989). The axial attachment angle, Oat with con-

stant fraction of attachment (100% in our case), affects the
slopes of the curves in Fig. 2 b. Similar effects are seen by
changing the slew angle of attachment qa,

Radial movement of cross-bridge halo

The distance from the center of the thick filament to the
center of the radial distribution of cross-bridges, rc, is al-
lowed to vary over a 30-A range while the spatial configu-
ration of cross-bridges remains constant (Fig. 2 c). As found
previously (Yu, 1989), Ilo is far more sensitive than I,, to the
radial movement of the cross-bridge halo.
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FIGURE 2 (a) Variation of fraction of attached cross-bridges. The model
consists of two different populations of cross-bridges. One fraction of cross-
bridges surrounds the thick filaments (rc = 135 , a = 00, and A = 700).
The second fraction of cross-bridges is attached to and centered around the
thin filament. The change of Ilo and I,, intensities with changing number of
attached cross-bridges is showed. Inset: calculated 111I/10 ratio. (b) Different
angles of attachment. All cross-bridges are assumed to be attached to the
thin filaments. The axial attachment angle, 4, is changed in the range from
30° to 900 (if00 = 600, constant). (c) Radial movement of cross-bridge halo.
The cross-bridge center, rc, moves away from the thick filament center in
range from 120 to 150 . Configurations of individual cross-bridges is
constant. The characteristic feature of this model is the high sensitivity of
Ilo, while I,, does not change.

The following models deal with conditions not considered
previously.

Ordering-disordering effects

1) If the thick filaments as a whole including cross-bridges
are allowed to undergo isotropic random displacements from
their ideal lattice positions (disorder of the first type; Vain-
stein, 1966), the projected thick filament density becomes
smeared and the effective size of the filaments increases.
Both Ilo and I,, decrease with the increase of disordering of
thick filaments (rms isotropic displacement of filaments, A,
changes from 0 to 30 A). Ilo however, is much more sensitive,
and hence the I41/Iho ratio increases (Fig. 3 a).
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FIGURE 3 Ordering-disordering effects of filaments. (a) The thick fila-
ments with cross-bridges are assumed to be subjected to random isotropic
displacement from their lattice positions (disorder of the first type with
Gaussian distribution of thick filament centers). The configurations of in-
dividual filaments and cross-bridges are constant. Both Ilo and I,, decrease
with thick filaments disordering but Ilo is much more sensitive. (b) The thin
filaments are assumed to be subjected to random displacement from their
idealized positions in the lattice (disorder of the first type with Gaussian
distribution of thin filament centers). 1lo and I,, change in a reciprocal way
with increasing disorder. (c) Both thick and thin filaments are displaced
randomly (in the same way as in (a) and (b)) and in the process thin filaments
have rms displacement larger by a factor of 1.6 (AThin = 1.6ATwck).

2) Thin filament positions are allowed to fluctuate in the
same manner and in the same range (A changes from 0 to 30
A) as described above for the thick filaments. This changes
the situation considerably: 11o increases with disorder, while
I,, decreases (Fig. 3 b).

3) When both thick and thin filaments are allowed to un-

dergo a "temperature" disorder of the same magnitude, we
get a mixture of the two examples shown above. Since the
thin filaments are less massive than the thick filaments, it is
expected that the amplitudes ofrandom displacements for the
thin filaments will be larger than those for the thick filaments.
In Fig. 3 c the average displacements of thin fiaments are

larger by a factor of 1.6 than those for thick filaments. For
the [10] reflection the disordering effect of the thin filaments
is balanced out by that of the thick filaments and the intensity
of this reflection is hardly affected by isotropic disorder.
However, the intensity of the [11] reflection is considerably
reduced because the disordering effects in both filaments
accumulate.

Lattice effects

It has been observed that a wide range of conditions can cause
changes in the lattice spacing, particularly in the skinned
fibers. Frequently, changes in intensities accompany changes
in lattice spacings. If one assumes that as the lattice expands/
shrinks, the filaments and the surrounding halo of myosin
heads are unaffected (i.e., the changes in lattice spacing only
changes the separation between the filaments), substantial
changes in 11o and I,, could accompany the changes in lattice
spacing (Fig. 4). Both Ilo and I,, increase with the swelling
of the lattice, but because the increase in I1o is greater than
In, the I11/I10 ratio decreases.

Azimuthal uniformity

The azimuthal mass distributions of all of the models pre-

sented above is assumed to be uniform. Now we consider
effects of nonuniform azimuthal distributions. Two main
types of sixfold symmetry in the azimuthal distribution of
cross-bridges are studied.

1) cross-bridges are assumed to be concentrated along
lines joining myosin-actin centers, [1,1] lines. For simplicity,
to control the degree of nonuniformity in the cross-bridge
density distribution, the whole population of cross-bridges is
divided into two fractions: cross-bridges of the first fraction
are distributed homogeneously around the thick filament
backbone while the cross-bridges of the second fraction are

located along the [1,1] lines. The cross-bridges in both popu-
lations have the same orientations with respect to the thick
filament and are located at the same distance from the center
of thick filament. The ratio of cross-bridges in these two
fractions was varied but the sum of the mass of the two
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FIGURE 4 Lattice effects. Effect ofchanging lattice spacing is studied by
assuming that as the spacing changes, structures of myosin filaments in-
cluding cross-bridges and thin filaments remain unchanged. Both Ilo and I,,
increase with lattice size increase.
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Factors Affecting Diffraction Patterns from Muscle

fractions was kept constant and equal to the mass of the
whole cross-bridge population.

Fig. 5 a demonstrates the change of 'lo and I,, with an
increase in azimuthal nonuniformity of the cross-bridge halo.
As the number of cross-bridges located along [1,1] lines in-
creases, the I11IIo ratio increases due to the increase in I,,;
I1o changes very little. The increase in I,, depends signifi-
cantly on the angle ,B. As P approaches 90°, I,, becomes
progressively less sensitive to the azimuthal nonuniformity
of cross-bridge distribution.

2) Quite different behavior of equatorial reflections can be
seen if cross-bridges are more concentrated along myosin-
myosin [1,0] lines (see Fig. 5 b). I,, is still very sensitive to
the degree of azimuthal sixfold symmetry of cross-bridge
distribution, but in this case it decreases with increase in the
number of cross-bridges located along [1,0] lines, and Ilo
again remains relatively constant.
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FIGURE 6 Changing the mass of cross-bridge halo. Cross-bridges are
considered to consist of two populations, those surrounding thick filaments
(ordered fraction) and those distributed randomly in between actin-myosin
space (disordered fraction). The disordered fraction does not make any con-
tribution to Iio and ,1, intensities but increases the diffusion scattering and
reduces the protein-solution contrast of the cell. Iio and I,, are very sensitive
to the mass of ordered cross-bridge halo and change in a reciprocal way.

Varying the population of cross-bridges in the
halo surrounding the thick filament

There is evidence (see Lowy and Poulsen, 1987; Lowy et al.,
1991) that a fraction of cross-bridges is disordered and varies
with changing conditions of muscle.

In our model (Fig. 6) the cross-bridges are assumed to
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FIGURE 5 Azimuthal uniformity of cross-bridge halo. (a) Cross-bridges
surrounding thick filaments are assumed to consist of two populations, those
that are distributed uniformly around backbone and those located only along
actin-myosin lines [1,1]. Both fractions of cross-bridges are assumed to have
the same configurations: rc = 138 A, a = 55°, and f3 = 40°. lll increases
as cross-bridge density increases along actin-myosin lines, while Iko does not

change. (b) The model is similar to (a) except that the cross-bridges of the
second fraction located along myosin-myosin lines (1,0). Now II, decreases
as cross-bridges concentrate along myosin-myosin lines and Ilo is stable
again.

distribute among two populations of cross-bridges. The sum

of the masses of two fractions remains constant while the
proportion is allowed to vary. One population is the ordered
fraction, located around the thick filament backbone, which
forms a compact halo of uniform density; the other popu-
lation is the disordered fraction, consisting of the cross-

bridges distributed randomly in all available space between
filaments. The latter population does not produce any Bragg
reflections but increases the diffuse scattering.
The diffraction pattern is calculated from the ordered frac-

tion of cross-bridges with the correction that the disordered
part reduces protein-solution contrast. Fig. 6 demonstrates
that a decrease from 100 to 75% of mass in the ordered
fraction induces a change in 111/I10 ratio approximately by a

factor of 2. The absolute intensities Ilo and I,, change in a

reciprocal way.

DISCUSSION

Modeling studies of equatorial diffraction patterns provide
valuable insight into the observed changes in intensities.
Analysis of the behavior of intensities Ilo and I,, suggests
(and at the same time excludes) various interpretations, even

though the modeling does not provide unique solutions. In
addition, by modeling one could avoid the uncertainties in
choosing phases of reflections needed for Fourier synthesis
as well as cutoff effects due to the limited number of ob-
served reflections (Yu, 1989).
The models shown in the previous section illustrate a va-

riety of factors that may affect equatorial intensities. In many
cases changes in the intensity Ilo cannot be considered as a

direct indication ofmass changes around thick filaments, and
changes in I,, do not prove an inevitable mass redistribution
near the surface of thin filaments.

For the interpretation of diffraction patterns, it is helpful
in many cases to consider Fourier transforms of individual
components of muscle sarcomere.
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Fig.7 a shows the scattering amplitudes (Fourier trans-
forms) of the thick filament backbone, FB(R), and the cross-
bridge halo surrounding the backbone, FH(R), as a function
of the radius, R, in reciprocal space calculated for the basic
model (see equations in Materials and Methods). Fourier
transforms of the thin filament, FA(R), and the attached
cross-bridges, Fa0,(R), are shown in Fig. 7 b. Due to the basic
properties of Bessel functions, the transform curves are sign-
alternating functions in reciprocal space. At the origin, each
transform is equal to the relative weights of the correspond-
ing components: WB, WH, WA, Watt. The transform amplitudes
reach zero at distances inversely dependent on the size of the
structures: the greater the real size of the component, the
shorter the reciprocal radius R at which the amplitude reaches
the first zero.
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To see how the observed intensities of the equatorial reflec-
tions are determined by the components of the unit cell, it is
convenient to draw pairs of curves: FB(R) + FH(R) = FaTmck(R)
with -[FA(R) + FAt(R)] = -Fm(R) (Fig.7 c) and also FB(R)
+ FH(R) with 2[FA(R) + FAt(R)] = 2FT(R) (Fig. 7 d). Ac-
cording to Table 1, the sum FThCk(R) - Fn(R) gives the struc-
tural amplitudes of [1,0], [2,0], [2,1], and [3,1] reflections at
corresponding distances ofR (Fig. 7 c) and the sum F,.,(R) +
2FT(R) gives the amplitudes of [1,1], [3,0], and [2,2] reflec-
tions (Fig. 7 d). The observed intensities Ihk (Fig. 7 e) are equal
to the squares of the resulting amplitudes with Lorenz correction
(see Materials and Methods).

Consider a few examples of using Fourier transforms:
1) Attachment of cross-bridges. When all cross-bridges

leave the thick filament region and attach to the thin fila-
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ments, they become centered around actin filaments (as in the
rigor state). The scattering amplitude FThick(R) (= FB(R) +
FH(R)) now consists only of the transform of the backbone,
FB(R). Simultaneously, the FAO,(R) component ofFmin(R) (=
FA(R) + FAII(R)) increases in magnitude. At [1,0] spacing,
FTh,Ck(R) changes little, because the magnitude of the trans-
form of the cross-bridge halo FH(R) was originally very
small (see Fig. 7 a). Meanwhile, the absolute value of the
scattering amplitude Flhin(R) increases considerably at [1,0]
spacing. Hence, the Ilo decreases. At [1,1] spacing FThiCk(R)
increases considerably because FH(R) becomes zero, while
2FTh(R) decreases slightly, and as a result I,, increases (see
Fig. 2 a). It is interesting to note that the well-known effect
of reciprocal changes in Ilo and I,, when cross-bridges attach
to and surround actin is mainly caused by an increase of
magnitude in Fhin(R) at [1,0] and an increase in FTh1ck(R) at
[1,1].

2) Radial movement of cross-bridge halo. When cross-
bridges move from the surface of the thick filament backbone
toward the thin filament, the Fourier transform of the cross-
bridge, FH(R) (Fig. 7 a), shifts toward the origin in the re-
ciprocal space without changing amplitude. Normally, the
radial movement of cross-bridges within a muscle is re-
stricted to the area between thick and thin filaments. Such
limited movements cause more significant alteration of the
transform at [1,0] than that at [1,1], since FH(R) has a steep
slope at [1,0] but a plateau at [1,1] (see also Fig. 2 c).

3) Random isotropic displacement of filaments. If the
thick filaments are displaced randomly from their lattice
points in a cross section, their projected densities might ap-
pear as if the thick filaments are "smeared" to a larger di-
ameter. This will cause a shift of FThiCk(R) leftward in the
reciprocal space, and the values of FThCk(R) will decrease at
spacings of [1,0] and [1,1]. Hence, both Ilo and I,, will de-
crease.

If the thin filaments become disordered, a similar shift will
occur to FThin(R) and the magnitude will decrease at [1,0] and
[1,1] spacings. As a result Ilo will increase and I,, will de-
crease. Therefore, disorder in the thin filament distribution
will make the diffraction pattern appear more like that of
relaxed muscle.

4) Changes in attachment mode. If the angle of cross-
bridge attachment increases, the apparent outer diameter of
the projection of the cross-bridges increases. FAU(R) will
shift leftward, and accordingly the absolute value of FAt,(R)
at [1,0] decreases, while the absolute value of FAII(R) at [1,1]
increases (Fig. 7 b). These changes result in increasing Ilo and
decreasing I,, (see also Fig. 2 b).

Sensitivity of parameters on Fourier transforms
One question concerning the models is how much of their
behavior depends on their specific features, e.g., sizes and
shapes. The behavior of the models will be qualitatively the
same if the transforms of their individual structures (i.e.,
backbone, cross-bridges; see Fig. 7) conserve the same char-
acteristic features (phases and amplitudes in the particular

areas) regardless of variations in size and shape. Consider
one example. To describe the density of the cross-bridge halo
we used the axial projection of individual cross-bridge rep-
resented by a set of equal overlapping spheres in a straight
line. Recent studies (Rayment et al., 1993) showed that the
shape of myosin head (S-1) looks more like a flexed pear. To
study the influence of the shape of S-1 on the transform we
simulated Rayment's (Rayment et al., 1993) S-1 structure by
spheres of different radii as shown on Fig. 8. In this case,
Fourier transforms calculated for cross-bridge halos with two
different shapes of S-1 show no significant distinctions in the
reciprocal area up to 0.01 Ai.

In general, at low diffraction angles the transforms of thick
and thin filaments do not depend on fine features of original
structures. We can expect that the behavior of more struc-
turally detailed models will be qualitatively the same as de-
scribed in the present study.

A strategy in interpretating the changes observed
in equatorial diffraction pattern
Individual intensities

Model studies demonstrate that the ratio I111/1o changes not
only when cross-bridges attach to thin filaments (as often
believed); rather, there are other factors that also can induce
changes of the same magnitude. To distinguish various
causes, the first measure is to follow the individual inten-
sities, particularly Ilo and I,, rather than the ratio I11/11o. For
example, one can distinguish the radial movement of cross-
bridge halo from other possibilities by observing the char-
acteristic increase/decrease of 11o, as compared with I,
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FIGURE 8 Fourier transforms calculated for cross-bridge halos with dif-
ferent shapes of S-1. (-) Transform for S-1 represented by seven over-
lapping spheres in a straight line. (------ ) Transform for S-1 simulating
at low resolution the structure found by Rayment et al. (1993). At low angles
of diffraction (up to 0.01 A-') two transforms differ only slightly.
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which changes very little (Fig. 2 c). If only the thick filaments
are disordered while the thin filaments remain in ideal lattice
positions, the effect on the diffraction pattern (Fig. 3 a) is
similar to radial movement of cross-bridges. It should be
pointed out, however, that if there is considerable disordering
in the sarcomere, the thin filaments would be disordered at
least as much as the thick filaments (or more) because the thin
filaments are thinner and more flexible than the thick fila-
ments. With disordering of both types of filaments at the
same time, I,, will decrease even more than Ilo (see Fig. 3
c). Thus, the insensitivity of I,, appears to be characteristic
of the radial movement of cross-bridge mass from the back-
bone.
The models of azimuthal redistribution of cross-bridge

density also demonstrate a characteristic behavior of the dif-
fraction patterns: Ilo is rather insensitive while I,, increases
as cross-bridges concentrate along myosin-actin lines (Fig.
5 a), or decreases when cross-bridges concentrate along
myosin-myosin lines (Fig. 5 b). The latter is similar to the
case where both types of filaments undergo a disordering
effect when the thin filaments are more disordered (see Fig.
3 c).

Comparing individual intensities requires careful normal-
ization procedures, because they are directly affected by
camera conditions, absorption by the bathing media, and the
size of the specimen. Procedures using a single reflection
(e.g., I1o) obtained under one condition as the normalization
factor have been shown to be effective (Yu and Brenner,
1989).
Models showing the reciprocal change of Ilo and I,, (e.g.,

changing the fraction of ordered cross-bridges (Fig. 6), vary-

ing the number of attached cross-bridges (Fig. 2 a) or the
disordering of actin filaments (Fig. 3 b) are difficult to dis-
tinguish. One possible means of further analysis is to com-
pare higher orders of the equatorial patterns.

Higher orders of equatorial reflections

Higher orders of the equatorial reflections can supply infor-
mation that can help to exclude, or at least provide additional
evidence in favor of, some particular models. For example,
analysis of higher orders can reveal azimuthal redistributions
of cross-bridge density resulting in appearance of 6-fold cy-
lindrical symmetry in the halo. As a rule, the azimuthal non-
uniformity of the density of the cross-bridge halo causes one,
or more, higher-order reflections to increase considerably in
intensity depending on the azimuthal orientation of density
maxima and radial width (Fig. 9 a). In the case where the
filament lattice becomes disordered, all higher orders of
equatorial reflections decrease in intensity significantly (Fig.
9 b).

Other measures to aid interpretation

In many cases even analysis of higher orders cannot distin-
guish different parameter changes. For example, when a frac-
tion of the cross-bridges leaves the vicinity of thick filaments
and becomes a part of disordered population within the lat-
tice, or when a fraction of cross-bridges attaches to thin fila-
ments, there are similar changes in the intensities of higher
orders. However, an increase in the disordered fraction of
cross-bridges results in an increase of incoherent scattering

(a)

FIGURE 9 Calculated intensities of higher order equa-
torial reflections. (a) Density of cross-bridge halo in-
creases along myosin-myosin lines (corresponds to the
model in Fig. 5 b). (b) Thick and thin filaments are as-
sumed to be subject to random displacement from their
idealized positions in the lattice (corresponds to the
model in Fig. 3 c, /hi = 1.6ATwk). In both models Ilo
and I,, change in the same way but higher orders are
different.
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and the diffuse background increases (Lowy and Poulsen,
1990; Lowy et al., 1991).

Effects of filament disordering are generally accompanied
by width changes of equatorial reflection peaks (Yu et al.,
1985).
Changes in filament lattice spacing can induce significant

changes in equatorial intensities without any mass redistri-
bution inside the sarcomere. To minimize such complica-
tions, one could apply, e.g., osmotic pressure to keep the
filament lattice spacing constant (Brenner and Yu, 1993).

CONCLUSION

Using a simplified model of the filament lattice, we have
demonstrated that various factors, in addition to cross-bridge
attachment to actin, can affect the equatorial intensities, par-
ticularly Ilo and I,,. A great deal of information could be lost
if only the intensity ratio were studied as an indication of
cross-bridge attachment.

Several general features of our findings can be summa-
rized as follows:

1) If Ilo changes while I,, is relatively stable, it is very
likely that there is radial movement of the cross-bridge halo
surrounding the thick filaments (Fig. 2 c).

2) If I,, changes while Io is relatively stable, there is prob-
ably azimuthal nonuniform redistribution of cross-bridge
density (Fig. 5, a and b), provided that there is a significant
increase in the intensities of some high order reflections.
Alternatively, disordering of filament lattice (Fig. 3 c) is
indicated if all higher orders of equatorial reflections de-
crease in intensity and (possibly) increase in the widths of
reflections.

3) If Ilo and I,, change in a reciprocal way, it could be an
indication of attachment of cross-bridges to actin as in the
rigor case (Fig. 2 a), changing of the axial attachment angles
of cross-bridges already bound to actin (Fig. 2b), or disor-
dering of cross-bridges located in the halo surrounding the
thick filaments (Fig. 6).

4) If Ilo and I,, change significantly in the same direction,
it could be an indication of the change in the filament lattice
spacing (Fig. 4) or if all the reflections including the higher
orders change in widths it is an indication of considerable
ordering/disordering of the filament lattice.
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