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SUMMARY

1. Second-order frequency responses were obtained from cat retinal ganglion cells
of the Y type. The cells were stimulated by a spatial sine grating whose contrast was
modulated in time by a sum of eight sinusoids.

2. Second-order frequency responses obtained at higher contrasts have a peak
amplitude at higher input temporal frequency, and phase shifts, compared to their
low-contrast counterparts.

3. This change in shape of the second-order frequency response is a departure
from the prediction of the linear/static non-linear/linear sandwich model of the
non-linear pathway in the cat retina. The departure is analysed by means of the
hypothesis that the two filters of the sandwich model are parametric in contrast.

4. Most of the change in shape of the second-order frequency response with con-
trast is accounted for in terms of the sandwich model by changes in the transfer
characteristics of the filter preceding the static non-linearity.

5. The effect of contrast on the second-order responses of Y cells is qualitatively
similar in several ways to the effect of contrast on first-order responses. This suggests
that the contrast gain control mechanism acts early in the retina, before linear and
non-linear pathways have diverged.

INTRODUCTION

The Y cells of the cat retina may be distinguished physiologically by the presence
of a non-linear excitatory mechanism in their receptive fields (Enroth-Cugell &
Robson, 1966). Later investigations have suggested that the non-linear response of a
Y cell is generated by an array of subunits scattered through the cell's receptive
field (Hochstein & Shapley, 1976a, b). To a first approximation, the dynamics of this
non-linear pathway are described by a model consisting of a linear filter representing
the pooling of light by each subunit, followed by a static non-linearity similar to a
rectifier, followed by a second linear filter representing the pooling of the subunit
responses (Victor, Shapley & Knight, 1977; Victor & Shapley, 1979b).
However, a Y cell's non-linear responses, as reflected by its second-order frequency

responses (or kernels), depart somewhat from the simple linear/static non-linear/linear
'sandwich' model, especially in the dependence on contrast. In this report, the
sandwich model is elaborated to account for the second-order contrast effect by
allowing the two 'linear' filters of the sandwich model to have transfer properties
parametric in contrast.
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The frequency-response method we have used has the advantage that the second-

order frequency responses of some model systems have simple algebraic forms.
Using this analytical tool, we have been able to dissect the effect of contrast on the
second-order frequency response into its separate effects on the first and second
linear filters of the sandwich model. The analysis suggests that contrast-dependent
changes in the first linear filter are primarily responsible for the departure from the
simple sandwich model.
The effect of contrast on the second-order response of Y cells is qualitatively

similar in many ways to its effect on the first-order responses of both X and Y cells
(Shapley & Victor, 1978). This similarity, and the fact that we can infer that the
major effect of contrast is on the pre-filter in the sandwich model, suggest that the
contrast gain control acts before the linear and non-linear pathways diverge in the
retina.

METHODS

Our methods of visual stimulation, recording, and data analysis have been described in detail
previously (Hochstein & Shapley, 1976a); we outline them briefly here.

Physiological recording. Recordings were made from optic tract fibres of adult cats anaesthe-
tized with urethane. The cat's e.k.g., e.e.g., blood pressure, core temperature, end-expiratory
CO2, and optics were monitored and maintained in the physiological range. The cats were fitted
with a + 2D contact lens which had a 3 mm artificial pupil. Action potentials, recorded extra-
cellularly with tungsten-in-glass micro-electrodes (Levick, 1972), triggered a discriminator
circuit which sent shaped pulses to a PDP 11/20 computer, which recorded their arrival time to
within 0-1 msec.

Visual stimuli. Visual stimulation was accomplished with a cathode ray tube at a distance of
57 cm. The area of display was 20 cm x 20 cm which spanned a visual angle of 20° x 20°. The
mean luminance of the cathode ray tube was 10-20 cd/Mi2. Spatial patterns were produced on it
with a specialized set of circuits (Shapley & Rossetto, 1976) to control the X, Y, and Z inputs.
The spatial patterns used in these experiments were standing sine gratings (oriented vertically)
of arbitrary spatial phase and spatial frequency. The contrast of the pattern was modulated in
time by a control signal from the 11/20 computer. A control voltage of zero produced a uniform
display at the mean luminance; when the control voltage passed through zero the contrast
reversed.

Second-order frequency responses. The temporal modulation signal was a sum of eight nearly
incommensurate sinusoids. The frequencies of the sinusoidal components were typically:
0-214 Hz, 0-458 Hz, 0-946 Hz, 1-923 Hz, 3-876 Hz, 7-782 Hz, 15-594 Hz and 31-219 Hz. These
frequencies are related as harmonics of a common fundamental frequency; the jth frequency is
the 2i+2_1 harmonic of the base frequency 0-0305 Hz. The reason for the choice of this set of
input frequencies is that first-order and second-order combination frequencies of this set are all
distinct output frequencies. The neural responses were Fourier-analysed at each of the input
frequencies, as well as each of the second-order frequencies (sums and differences of the input
frequencies). This report is concerned only with second-order components of the responses of
the Y cell. The Fourier component at the sum of two input frequencies f, +fj yielded an experi-
mental estimate of the second order frequency response K2(f{,f3). The Fourier component at the
difference of two input frequencies fi -fj yielded an experimental estimate of K2(fi, -ft). The
second-order frequency response K2(F1, F2) is thought of as a continuous function of two fre-
quencies; an interpolation procedure was used to estimate the values of the second-order
responses at points not on the lattice of input frequency pairs. The resulting function of two
variables was plotted as a surface (e.g. Fig. 2 below) whose height at any point (F1, F2) represents
the amplitude of K2(F1, F2). For further discussion, see Victor & Knight (1979) and Victor &
Shapley (1979a, b).
Experimental protocol. After isolation of a single optic tract fibre, the receptive field was

mapped on a tangent screen. The receptive field centre was positioned in the centre of the
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CONTRAST EFFECTS IN Y CELLS
cathode ray tube display with a mirror, and the unit was classified as X or Y by a modified null
test (Hochstein & Shapley, 1976a). Only Y cells were used in this study and off-centre cells were
used only if their maintained discharge was substantial. The temporal modulation signal was
placed under computer control to study dynamics of the response to as many spatial frequencies,
spatial phases, and contrasts as time permitted. For each spatial pattern, several contrast levels
were presented in interleaved runs. The peak contrast produced by each sinusoidal component
was typically 0-0125, 0*025, 0-05 and 0-10 in successive runs (Contrast = (ImaS-IJ/
('mx+I)). All frequency responses (kernels) were calculated from an average over different
relative phases of the input sinusoids, to remove fourth and sixth order components (Victor &
Knight, 1979). The phase averaging also reduced the noise in the measurements: the typical
standard error was 1-2 impulses/sec.
The cell population in this study consisted of ninety-three Y cells (sixty-seven on-centre,

twenty-six off-centre).

- _ NLL2

Fig. 1. This is a diagram of the linear/non-linear/linear sandwich model which can be
used to understand the major qualitative features of second-order frequency responses.
The transducerN is hypothesized to be the only non-linear stage in the retinal pathway
leading to the Y cell. L1 is the spatio-temporal filter (characteristic of each subunit)
which precedes the non-linearity N. L2 is the filter which represents the process of
summing the subunit outputs after the non-linearity.

RESULTS

Secmnd-order frequency responses and the sandwich model
A simple dynamical model, consisting of a linear filter, L1, followed by a static

non-linearity, N, followed by a second linear filter, L2 has been advanced as a good
description of the non-linear pathway of the Y cell (Victor & Shapley, 1979b).
A block diagram of such a model is shown in Fig. 1. The second-order frequency
response of such a network has the functional form

K2(f1,f2) = b(N; C)Li(f1)L1(f2)L2(f1+f2) (1)

where ]l and L2 are the transfer functions of L1 and L2. The constant b(N, C) is real;
it depends on the input contrast C, the filter L, and the shape of the static non-
linearity N (Spekreijse, Estevez & Reits, 1977; Victor & Knight, 1979).
The major qualitative features of the second-order frequency responses of a Y cell

shown in Fig. 2 can be understood in terms of the linear/non-linear/linear sandwich
model (Fig. 1 and eqn. (1)). For instance, there is always one major peak of the
amplitude surface in the sum quadrant (F1 and F2 both positive) and another peak at
about the same input frequency in the difference frequency quadrant (F2 positive, F1
negative). These peaks mainly reflect the characteristics of the bandpass filter before
the non-linearity, L1. If there were no post-filter L2, then for a given pair of input
frequencies the sandwich model would produce identical amplitudes of the sum and
difference frequency components. Whatever asymmetry there is between sum and
difference frequency quadrants is due to the post-filter L2. In fact, one can see from
the form of eqn. (1) that L1 acts on the inputfrequencies while L2 acts on the harmonic

537



R. M. SHAPLEY AND J. D. VICTOR
0-025 contrast

A

0-05 contrast

B

] 12

6

0
- a,, IA? I II ._sL-fAy ~.- J

X o R
-0 q

F7(Hz)

._-I
SCL

I

i

ALI L_- 0-025
II j1 1 1

-X - m 0 0e'm1 _ ms
0

F(Hz) DC

Fig. 2. Amplitudes of the second-order frequency kernel as a function of contrast in an
on-centre Y cell. Second-order kernels were obtained at three contrast levels:
0-025/sinusoid (A), 0-05/sinusoid (B), and 0-1/sinusoid (C). The spatial pattern was a
0-6 c/deg grating, which produced no first-order responses in any spatial phase. The
response shifts to higher temporal frequencies with increased contrast. In this and all
other data presented here, luminance was 20 cd/M2. D shows the amplitudes of the
pure second-harmonic components K2(fifi). Unit 13/10.

and intermodulation frequencies. Thus, characteristics of the second-order frequency
responses which are tied to the input frequencies reflect L1 and characteristics which
depend on output frequency reflect L2.
The simple sandwich model predicts that the second-order frequency responses

should grow with contrast but should neither change shape nor undergo any phase
shifts. This follows from eqn. (1) where the only dependence on contrast is contained
in the real valued scale factor b(N; C). The static non-linearity may cause b(N; C) to
be a non-linear function of contrast but that will not affect either the relative
amplitudes of K2(F1, F2) or the phases of the second-order responses.
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CONTRAST EFFECTS IN Y CELLS

We found that the second-order frequency responses of Y cells showed an un-
equivocal dependence on contrast in contradiction to the simple sandwich model.
This was true for spatial gratings of all spatial frequencies. An example of the con-

trast dependence of the second-order frequency response in a typical Y cell is shown
in Fig. 2.
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Fig. 3. Behaviour of selected amplitude and phase values of the second-order frequency
kernel as a function of contrast, measured in the experiment of Fig. 2. The three levels
of contrast are indicated by the symbols: 0, 08025/sinusoid; [. 0-05/sinusoid and
A, 0.1/sinusoid. In A, amplitudes and phases of K2(fifi) are plotted as a function of
the output frequency 2f. In B, amplitude and phases of K2(fi+1, -fi) are plotted as a

function of the output frequency, fi+I -fi. Phases are indicated only for data points at
which the amplitude was significantly different from zero. The substantial phase
shift for the sum frequencies (A), contrasted with the negligible phase shift for the
difference frequencies (B), indicates that the phase shift is the result of a process before
the generation of the sum and difference frequencies. Unit 13/10.

The positions of the peak responses shifted to higher temporal frequencies as input
contrast increased, as one can see by comparing Fig. 2A with 2B and C. At a con-

trast of 0-025 per sinusoid (Fig. 2A), the second-order frequency response had a peak
amplitude of approximately 4 impulses/sec at an input frequency of 3 Hz, along the
line of pure second harmonics (where F1 = F2). In the difference region (K2( -F1, F2)),
there was a peak amplitude of a similar height at an input frequency of about
5 Hz. When the input contrast was doubled to a level of 0.05 per sinusoid (Fig. 2B),
the peak amplitude, which had a value of 8 impulses/sec, occurred at a higher input
frequency: 6 Hz along the line of pure second harmonics. The peak in the difference
region also shifted up to an input frequency of approximately 7 Hz. At the still

I I I I I I I I I I I I
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higher input contrast level of 0 10 per sinusoid, the second-order frequency response
showed further changes in the same direction (Fig. 2C). Despite peak amplitudes of
over 12 impulses/sec, there was almost no second-order response when either one of
the two input frequencies was less than 2 Hz. The input temporal frequencies which
produced the greatest second-order responses were even higher than before. The
greatest amplitude measured in the sum region was at an input frequency of 8 Hz;
in the difference region, there was a broad plateau extending to approximately 12 Hz.
These data are typical for the entire population of Y cells we studied.

Fig. 2D shows a subset of the second-order frequency response, the second har-
monic frequency response K2(F1, F1). The second harmonics lie on the diagonal line
of unit slope (F1 = F2) which passes through the origin in the sum quadrants of
Figs. 2A-C. The amplitudes of the second harmonics show the same qualitative
dependence on contrast as does the entire second-order frequency response: a shift of
the peak amplitude to higher temporal frequency at higher contrast.
The contrast dependence of the second-order responses of Fig. 2 were examined in

another way in Fig. 3, in order to ascertain the dependence of the phase of the
responses on contrast. Here we have plotted amplitudes and phases of the com-
ponents of the second-order frequency responses that lie either on the pure second
harmonic diagonal in the sum frequency quadrant (Fig. 3A) or just off the line of
zero output frequency in the difference frequency quadrant (Fig. 3B). In each case,
the abscissa is the output frequency of the measured second-order response. (Note that
in Fig. 2 the co-ordinates F1 and F2 refer to the input frequencies.) In Fig. 3A we
have plotted the amplitudes and phases of the second harmonic components; these
are the values of the second-order frequency response for which the two input
frequencies which are added to produce the second-order combination frequency are
identical. Thus, the second harmonics are a subset of the second-order frequency
responses and are denoted K2(fi,fj). These values are derived from the Fourier
component of the response at the pure second harmonic 2f1 of the ith input
frequency, fi. In Fig. 3B, we have plotted the amplitudes and phases of K2(fi, -fi1).
The amplitude curves shown in Fig. 3 are diagonal slices through the surface of the
second-order frequency kernel as shown graphically in Fig. 2; the corresponding
phase curves yield additional information absent from the amplitude plots.
The dependence of amplitude on contrast is the same for the two sets of curves,

but the phase dependence is qualitatively different. Both sets of amplitude curves
show a shift of the peak response to higher temporal frequencies as input contrast
increases, as mentioned above. It is also clear that the responses to high temporal
frequencies increase more rapidly with contrast than do the responses to lower
temporal frequencies. However, the dependence of phase on input contrast is not the
same for sum frequencies and difference frequencies. The phases of the responses to
sum frequencies advance rapidly with contrast, as can be seen in the lower half of
Fig. 3A. As may be seen from Fig. 3B, the phases of the responses of difference
frequencies do not vary appreciably with contrast. That is, the contrast dependence
of the phase of a second-order response is a function not merely of its output fre-
quency, but also whether this particular second-order combination frequency is a
sum frequency or a difference frequency. The magnitude of the phase shifts in this
unit were typical for our population of cells. The phase of K2(8, 8) usually advanced
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CONTRAST EFFECTS IN Y CELLS 541

by 0-4-0-67 radians (72-108') as contrast varied from 080125/sinusoid to 0.10/sinu-
soid. This is about twice the size of the phase shift with contrast we have reported
for the first-order response near 8 Hz (Shapley & Victor, 1978).

Increasing the contrast produced shifts of the peak second-order amplitude to
higher temporal frequency and also phase advances. These results were reminiscent
of our earlier observations on the effect of contrast on first-order responses of X and
Y cells. Our main aim was to produce a successor to the simple sandwich model which
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Fig. 4. Behaviour of selected amplitude and phase values of the second-order frequency
kernel as a function of contrast for a low spatial frequency grating in the 'peak'
position. Data are displayed as in Fig. 3. The unit was the on-centie Y cell of Fig. 2,
and the spatial pattern was a 0-1 c/d grating, positioned i of a period away from the
'null' position so that maximal first-order responses were obtained. Peak first-order
responses were: 24, 40, and 42 impulses/sec at contrasts of 0-025, 0-05 and 0-1/sinusoid
respectively. Despite the presence of a large linear response, the data are virtually
identical to those of Fig. 5. Unit 13/14.

could account for these second-order contrast effects. Before we could do this we had
to determine whether the second-order contrast effect shared one other important
property with the first-order contrast effect, namely invariance with spatial phase of
the grating stimulus.

Parametric dependence on contrast: independence of spatial phase. In the data
presented so far, we have not attempted to distinguish between the retinal contrast
and the size of the ganglion cell's response as factors that alter the transfer properties
in ganglion cells. However, retinal contrast and the size of a ganglion cell's linear
response may be varied independently by varying the spatial phase of a sinusoidal
grating. We have found that the second-order frequency response of Y cells is
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independent of spatial phase, even when the spatial frequency of the stimulus is low
enough to produce a large linear response (Victor & Shapley, 1979b). Thus one would
certainly expect that the change in shape of the second-order kernel due to contrast
should also be independent of spatial phase. That this is true is shown by the data of
Figs. 4 and 5. Here, amplitudes and phases of the second-order frequency response
obtained from an on-centre Y cell are plotted as a function of output temporal
frequency. Measurements were made at three input contrasts: 0-25, 0 05, 0410 per
sinusoid. The stimulus was a 041 c/deg grating.
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Fig. 5. Behaviour of selected amplitudes and phase values of the second-order frequency
kernel as a function of contrast for a low spatial frequency grating in the 'null' position.
Data are displayed as in Fig. 3. The unit was an on-centre Y cell, and the spatial
pattern was a 0 1 c/d grating positioned so that the greatest first-order response at the
highest contrast was 2 impulses/sec. Unit 13/14.

Two spatial phases were used. One (Fig. 4) was the spatial phase for the maximal
first-order response ('the peak'). The other (Fig. 5) was the position at which the
first-order responses were close to zero (the null position for the first-order responses,
here abbreviated as 'the null position'). These spatial phases were separated by 900
as they always are in X and Y cells (Hochstein & Shapley, 1976a; Victor & Shapley,
1979a, b).
Although the first-order response amplitudes varied from a maximum of

42 impulses/sec at the 'peak' position (Fig. 4) to 2 impulses/sec or less at the 'null'
position (Fig. 5), the amplitudes and phases of the second-order responses show
virtually identical contrast dependence at the two spatial phases. It is also clear that
the behaviour of the second harmonic phase shifts differ strikingly from the behaviour
of the difference-frequency phase shifts and this behaviour is independent of spatial

542



CONTRAST EFFECTS IN Y CELLS

phase. Thus, the effect of contrast on the second-order responses is independent
of the spatial phase of the grating stimulus.

The elaborated sandwich model. There are many ways of elaborating the linear/non-
linear/linear sandwich model to account for the effects of contrast. The generalization
that we choose to pursue here is a logical extension of the model introduced to
explain the variation of the first-order responses of X and Y cells with contrast
(Shapley & Victor, 1978). The block diagram of the elaborated sandwich model is

/ND
Fig. 6. A model for the effect of contrast on the non-linear pathway of the Y cell. The
direct input to the non-linear pathway, IND, is transformed in succession by the
filter L1, the static non-linearity N, and the second filter, L2. A signal IC indicating
total contrast over the nearby regions of retina is generated by the network C, and
forms a second input to L1 and L2. For constant values of IC, L1 and L2 are assumed
to be linear, and the response to 'ND is that of a simple linear/static non-linear/linear
model. The action of IC on L1 and L2 must be complex, and includes a phase advance
at high temporal frequencies and a relative suppression of low temporal frequencies.

shown in Fig. 6. We postulate a neural signal IC representing the average amount of
contrast over a fairly wide region of retina. We call the direct input to the non-linear
network of the Y cell 'ND. The contrast signal IC modulates the transfer properties
of L1 and L2 (Fig. 6). For constant values of Ic, both L1 and L2 are linear, and the
response of the Y cell non-linear pathway to IND has the form of eqn. (1). That is,

K2(f1,f2; C) = b(N; C)Li(f1; Ic) i (f2; 1c)42(fl+f2; IC), (2)
where K2(f1, f2; C) is the second-order frequency response obtained at the contrast
level C, and Ll(fl; C) and L2(f2; C) are the transfer functions of L1 and L2 when the
contrast signal I. has a level C.

Rigorously, this formulation assumes that the signal Ic is a constant in time, which implies
that the network C which measures Ic has an integrator with an indefinitely long time constant
as its final stage. If the signal Ic is not steady, it is necessary to specify the mode of interaction
between IC and the filters L1 and L2. Clearly, if the variations of Ic with time are small and slow
in comparison to the time constants of LI and L2, eqn. (2) remains valid with interpretation of
L1(f; IC) and L2(f; Ic) as the transfer functions of the filters L1 and L2 if IC were constant at its
average value. Furthermore, numerical simulations show that the functional form (2) remains a
good approximation, even when the time course of fluctuations of IC are comparable to the time
constants of the filters L1 and L2 (Victor, 1979).

The model described by eqn. (2) has many more free parameters than its simple
sandwich counterpart: the functional forms of L1 and L2, as well as their dependence
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on IC are unspecified. Thus, it is difficult to obtain a criterion of the 'goodness of fit'
of eqn. (2) to the data.

Nevertheless, the contrast-dependent sandwich model is useful because it allows
one to separate the effect of contrast on the filter preceding the non-linearity from its
effect on the filter following the non-linearity. For this purpose, it suffices to consider
only the phase difference, AqS(f1, f2), between the second-order frequency responses
measured at two contrasts C and C':

AOb(f1 f2) = A01(fh) + A01(f2) + ANA2(f +f2) (3)
A01(f) and A02(f) denote the phase changes in L1 and L2 as the contrast is changed
from C to C'. The term b(N; C) in eqn. (2) is real-valued, and thus does not affect the
phase of the response.
Suppose that the linear filter L1 preceding N is insensitive to contrast. Then,

AO, = 0, and eqn. (3) would predict that

AS(f1,f2) = ANS2(f1+f2),
which states that the phase shift with contrast of a component in the second-order
response depends only on its output frequency. This prediction stands in contradiction
to what we have observed. In Figs. 3-5, the phase advances of second-order com-
ponents K2(f1, f,) are substantial (up to 0 57T radians), while the phase advances of the
second-order components K2(fj+2, -fj1+) are typically less than O 1r radians at all
these high frequencies. However, the output frequencies of these two second-order
components, 2f1 and fj+2 -fj+l, are nearly identical (they differ by approximately
0-03 Hz).
Thus, we are led to the conclusion that at least some of the effect of contrast is

exerted in L1, before generation of the non-linear response. Now let us suppose that
all of the parametric dependence on contrast is accounted for by L1. Then A02 = 0,
and eqn. (3) predicts that

AqS(f1f2) = AO1f1)+AT1(f2) (4)
AO(fisf) = 2Aq01(f1). (4a)

Since L,(f) is the Fourier transform of a real function, AO,1( -f) = -A1(ff). Therefore,
we can use eqns. (4) and (4a) to derive

Aq(A, ±f2) = (Aq(hff1A) ± AS(f2,f2)) (5)
This equation predicts the phase shift of each component of the second-order
frequency response from the phase shifts of the pure second harmonic responses
alone. In particular, it predicts that the phase shift at a difference frequency fi-f2
should be zero if, and only if, the phase shifts at the corresponding pure second
harmonic frequencies, 2f1 and 2f2, are identical. This is well supported by the data in
Figs. 4 and 5. But in Fig. 3 the phase shift AOq(f, f) is a steadily decreasing function of
output frequency. In this instance, eqn. (5) predicts that Aq(fj+,, -fj) should be
negative. The fact that Ab(fj+,, -fj) is approximately zero therefore suggests the
presence in this case of a slight phase advance contributed by L2.

In summary, this analysis of the effect of contrast on the second-order frequency
response shows that most of the effect occurs only before the static non-linearity of
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the sandwich model, but in some units an additional effect on the second filter L2
can be demonstrated.
We have also performed a more complete analysis which involved fitting the log-

amplitudes and phases of the second order frequency responses with polynomials and
determining the effects of contrast. This more complete analysis supports the main
conclusion above; contrast mainly affects the pre-filter Li.

DISCUSSION

In searching for a suitable model that is complex enough to explain the contrast
effect, yet simple enough to analyse, we have been guided by the same considerations
that we used in constructing the two-input model for the first-order frequency
response (Shapley & Victor, 1978). Because eqn. (1) provides a good fit to the second-
order frequency response at a single contrast level (Victor et al. 1977), we would like
to elaborate on the sandwich model, rather than abandon it entirely. One possible
such extension is a model consisting of two parallel sandwich subsystems. However,
without an a priori idea of what the two parallel paths represent it is very difficult
to make any non-trivial statements based on the experimental data about the nature
of the linear and non-linear components. Another possible extension is the 'club
sandwich' model, in which L2 is followed by a second static non-linearity N' which in
turn is followed by a third linear filter L3. However, the 'club sandwich' model is
difficult to analyse in the large-signal regime. The model we have chosen, the sand-
wich model parametric in contrast (Fig. 6), has the distinct advantage that it is
susceptible to analysis. Also, this model allows direct comparison with the effect of
contrast on the first-order response.

Comparison with the effect on the first-order frequency responses
There are many similarities between the effect of contrast on the second-order

responses of Y cells and its effect on the first-order responses of both X and Y cells
(Shapley & Victor, 1978). In both cases, the shapes of the amplitude functions are
independent of spatial phase and hence independent of the size of the linear response.
In both cases, the effects of contrast are substantial over a broad range of spatial
frequencies. The effects of contrast on the first-order response (a phase advance at
high temporal frequencies, and a relative suppression of low temporal frequency
responses) are similar to the amplitude changes and phase changes observed in the
second-order frequency response as contrast is varied. Furthermore, the idea that
most of the shape change in the second-order frequency response occurs before the
static non-linearity suggests that the amplitude changes and phase shifts of the pure
second harmonics should be about twice that of the corresponding first-order response
changes. This prediction is supported by our data. Therefore we think that the same
underlying mechanism is involved in these effects. This hypothesis has significant
implications for modelling the functional organization of the retina.

Consequences for retinal organization
We have previously proposed that L1 in the simple sandwich model might be the

bipolar cell (Victor et al. 1977). The identification of L1 with the bipolar cell layer was
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advanced on the basis of evidence in other vertebrate retinae that the bipolar
responses were approximately linear (Marmarelis & Naka, 1972) and that strong
non-linearities first appeared in the amacrine cells (Werblin & Dowling, 1969;
Naka, Marmarelis & Chan, 1975). That the effect of contrast on L1 strongly resembles
its effect on the first-order responses of X and Y cells strengthens this identification,
for it suggests that the contrast gain control operates before the 'linear' and 'non-
linear' pathways diverge.

Previously we have proposed that the network C which generates the contrast
signal Ic is the pooled response of the Y cell subunits, since (1) IC is even order in
light intensity, (2) IC is summed over a wide region, as demonstrated by spatial
summation experiments and (3) the spatial and temporal properties of C resemble
those of the non-linear subunits (Shapley & Victor, 1979). We are therefore led to the
conclusion that this signal, generated by the subunits, is fed back to modulate the
behaviour of the front end of the subunits. This feed-back has a natural correlation
with the anatomy of the inner plexiform layer in the cat, which possesses numerous
amacrine-to-bipolar and amacrine-to-amacrine synapses (Levick, 1975; Kolb,
Famiglietti & Nelson, 1976). It is also possible that the interplexiform cells (Boycott
et al. 1975) may play a role in the contrast gain control, because these cells have con-
siderable lateral spread, and are in a position to relay signals generated by the
amacrine cells back to the bipolar cells (Kolb & West, 1977).
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