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Recent optical trap experiments have applied resisting, assisting,
and sideways loads to conventional kinesin moving on microtu-
bules at fixed [ATP]. To gain insight into intermediate motions
when the motor protein takes its 8.2-nm steps, the velocity and
randomness data have been analyzed by using discrete-state
stochastic models with a three-dimensional ‘‘energy landscape.’’
The bead size and tether angle play a crucial role. The analysis
implies that on binding ATP the motor ‘‘crouches,’’ the point of
attachment of the tether at the necklinker junction moving down-
ward toward the microtubule by 0.5–0.7 nm, while inching for-
ward by only 0.1–0.2 nm, before completing the step from a
transition state by a unitary ‘‘sprint’’ of �7.8 nm. These inferences
accord with high-resolution observations that exclude a previously
predicted substep of 1.8–2.1 nm. Assisting and leftward loads are
opposed in that the perpendicular component of the tension in the
tether is enhanced by �2 pN, which reduces the velocity, but
sideways lurching is not supported.

motor protein � three-dimensional landscape � vectorial loading

Conventional kinesin is a processive motor protein that walks
along a microtubule (MT) toward the plus end, taking

hundreds of d � 8.2-nm steps while hydrolyzing one molecule of
ATP per step (at least under loads not too high) before finally
dissociating from the MT (1). In vivo kinesin plays an important
role by transporting vesicles and organelles. In vitro it has been
studied with the aid of optical traps that exert a measured force
on a bead attached to the motor’s tether while it walks on an MT
fixed on a flat microscope stage (1–4) (see Fig. 1). Understand-
ing the mechanochemical processes and intermediate motions
that a motor undergoes in taking a single step has posed serious
challenges to experiment and theory. Observations of force-
velocity-[ATP] relations offer a potential route to gaining
insight.

The vectorial character of the load† F � (Fx, Fy, Fz) transmitted
by the tether to its point of attachment, P, on the body of the
motor, where the two necklinkers join, has been appreciated for
some time (refs. 1 and 5 and references therein). In the original
bead assays (1–4) only a resistive load component Fx � 0 was
accessible. Nevertheless, a decade ago Howard and coworkers
(6) implemented an ingenious MT buckling experiment designed
to measure, Fz, the ‘‘vertical’’ or perpendicular component of the
force vector F (but still with Fx � 0); this study will be revisited
(5) briefly below.

More recently, however, Lang et al. (7) developed a ‘‘two-
dimensional optical force clamp’’ that can exert controlled
assisting, i.e., Fx � 0, loads as well as resisting and sideways loads
(Fy � 0). Using this clamp, Block et al. (8) monitored the
position, x(t), of kinesin motors as a function of time t when they
moved along the MT, recording over a wide range of conditions
the mean velocity, V(F,[ATP]) � �x(t)��t, and the randomness,
r(F,[ATP]) � �[	x(t)]2��d�x(t)� � D�Vd, with D the positional
dispersion (see refs. 4 and 9–11).

A crucial observation, using 0.5-�m diameter beads, was
that V(Fx) at high [ATP] decreased under assisting loads! See
Fig. 2A that also shows that whereas V(Fx) increases with Fx
when [ATP] � 4.2 �M, it rises only to �1.3 V(0). These
findings contrast with the previous, rather noisy (and other-
wise intrinsically troubling) data of Coppin et al. (12) with

1-�m beads that indicated significant acceleration ratios, up to
V(Fx � 5 pN)�V(0) � 2.9 for [ATP] � 5 �M. At first sight,
these increases seemed to smoothly continue fits to resisting,
Fx � 0, data merely by switching the sign of Fx (11). Block et
al. (8), however, express serious concerns regarding these
experiments, noting a lack of force clamping and a lower
spatiotemporal resolution that may have failed to discount
forward-jumping detachment-reattachment events. Further-
more, subsequent observations by Carter and Cross (13) (using
0.50- and 0.56-�m beads) reach assisting loads of 15 pN at
[ATP] � 1 mM and 10 �M and, although somewhat disperse,
fully confirm the conclusions of Block and coworkers (8) for
Fx � 0. Accordingly, we believe the Block data (8) warrant
further analysis.

Under sideways loads, up to Fy � 
8 pN, the velocity of
kinesin was observed (8) to decrease asymmetrically by 15–30%
(see Figs. 8 and 9). In discussing their findings, Block et al. (8)
examined various four- and five-state kinetic models: however,
they invoked smooth rate dependence only on Fx and Fy and
neglected two or more reverse rates. From the fitted parameters
of an (N � 5)-state model judged acceptable they concluded that
the motor (better, say, the point of attachment at the necklinker
junction) swings systematically from side to side by �0.5 nm
while taking a step, perhaps a surprising inference. In addition,
a dominant transition state was located at d0

� � 2.7 nm along the
MT from the strongly bound state. The corresponding fits (8) to
velocity and randomness are the dotted curves in Fig. 2. Al-
though these fits are not unreasonable, they fail entirely to
capture the clear decrease of the velocity under assisting loads
at high ATP, appear to rise too rapidly under assisting loads at
low ATP, and miss the increase of the randomness above unity
at low ATP.

Our first aim here is to allow explicitly for the manifest
vectorial character of the load F, which, as evident from Fig.

Abbreviation: MT, microtubule.
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†We use right-handed coordinates with, as in Fig. 1, the x axis parallel to the MT and
directed toward the plus end, while the z axis is normal to the (x, y) plane on which the MT
is fastened (5).
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Fig. 1. Diagram of an MT-kinesin-bead complex in the (x, z) plane with a
bead of radius, R, a tether, of length l0 and inclination angle �, which transmits
the total vectorial load F � (Fx, Fy � 0, Fz) to the point of attachment, P, on the
motor, for a resisting load, Fx � 0, � � 0 (Left) and an assisting load, Fx � 0, � �
0 (Right). The offset 	z represents the rms perpendicular thermal fluctuation
of the bead as limited by collisions with the MT (2).
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1, cannot be adequately described when switching from a
resisting to an assisting configuration merely by changing the
sign of Fx. Thus, we go beyond previous simple, but initially
adequate, ‘‘one-dimensional’’ stochastic landscape models for
kinesin and myosin V (11, 14). Second, we hope to achieve a
qualitatively better description and hence draw more reliable
conclusions regarding intermediate motions and substeps.

To this end we have implemented a three-dimensional free-
energy landscape treatment (5) as illustrated in Fig. 3. This
approach recognizes that the tension in the bead-tether-kinesin-
body linkage acquires a perpendicular or vertical component, Fz,
determined by the tether angle �, when a longitudinal-cum-
transverse load, (Fx, Fy), is imposed by a trap (see Fig. 1). The
resulting fits, the solid curves in Fig. 2, show that a two-state
kinetic model [supplemented with mechanicity parameters (10,
11, 15)] is fully adequate.

Detailed implications are discussed below, but, significantly,
the analysis resolves a serious discrepancy between the original
prediction (11) of a �2-nm substep and high-resolution obser-
vations of single forward steps by Higuchi and coworkers (16)
that rule out this conclusion, as do measurements of both
forward and backward steps by Carter and Cross (13).‡ Further-
more, sideways motions are not implied although the motor
‘‘crouches’’ on binding ATP and specifically resists assisting and
leftward loads. It is predicted (see Fig. 6) that increasing the bead

size should markedly reduce the velocity under assisting loads
and vice versa.

Theoretical Approach
We suppose that a kinesin motor, when it takes a forward step
of length d � 8.2 nm from one MT binding site l to the next site
l � 1, undergoes N intermediate biochemical transitions from
state j � 0l to 1l to . . . to (N 
 1)l to Nl � 0l�1 (5, 10, 11, 14).
Kinetic rates uj and wj describe the transitions ( jl3 ( j � 1)l) and
( jl3 ( j 
 1)l), respectively. To implement an overall free-energy
landscape picture one then assumes that the underlying reaction
coordinate may be identified with the point of attachment of the
tether to the motor at r � (x, y, z), which is represented by P in
Fig. 1.

The corresponding free-energy potential, �(r), is periodic in
the absence of a load (F � 0) as illustrated for the simplest N �
2 case by the contour plots in Fig. 3. Minima in the potential
represent mechanochemical states, jl, with typical lifetimes of
milliseconds (or longer). More than one distinct biochemical
state may be associated with a given potential well simply
because the associated displacements in r are negligibly small.§
Transition states between two mechanochemical states jl and
jl�1 are realized as cols or saddle points in the free-energy
landscape. Also shown in Fig. 3 are dimensionless load distri-
bution factors � j

x�, � j
x
, � j

z�, and � j
z
, although in general one

needs three-component load distribution vectors, �j

 � (� j

x
,
� j

y
, � j
z
). These provide crucial fitting parameters in describ-

ing experimental data since they serve to specify substeps and
lateral and vertical displacements by dj � (� j

x� � � j�1
x
 )d, 	yj �

(� j
y� � � j�1

y
 )d, etc. (5).
Within the kinetic model explicit expression for the velocity and

the randomness are known for general N (10, 11) even when, to
allow for diffusive transitions or multiple biochemical states within
a single mechanochemical state j, one allows for waiting time
distributions, �j


(t), that may be parameterized effectively by
mechanicities Mj


 (15).‡In discussing backward steps under superstall loads, Carter and Cross (13) refer to ref. 11
and argue that back steps are unlikely to result in ATP synthesis. However, their assertions
rest on a misconception of the significance of dwell times before forward and backward
steps: unlike the relative frequencies of � and 
 steps, the mean dwell times will always
be equal and must rise (or fall) together with changes in [ATP], etc. (see ref. 17).

§Or, in principle, because the biochemical transitions in the ‘‘full chemical space’’ have
vanishing projection onto the subspace specified by r.

Fig. 2. The data of Block and coworkers (8), and their fits using an (N �
5)-state model, for the velocity (A) and randomness (B) of kinesin as functions
of Fx (with Fy � 0) at fixed [ATP]. The solid curves are the present N � 2 fits, and
the dashed plot in B illustrates the imposition of a previous mechanicity value
(11) (see text).

Fig. 3. Schematic contour map of an overall free energy landscape in the (x,
z) plane for an (N � 2)-state model of the motion of the point of attachment,
P � r � (x, y, z), of the tether to the motor body. Locally stable states
correspond to valleys or potential wells; cols, passes, or saddle points on paths
connecting adjacent wells describe transition states (5). Here, two successive
ATP-free states, labeled 0 and 2 � 0, are shown with a single (N 
 1 � 1)
intermediate mechanochemical state, 1, and the two corresponding (N � 2)
transition states (thick crosses). Substeps d0 and d1 are determined by the load
distribution factors �0

x�, �1
x
, . . .

16210 � www.pnas.org�cgi�doi�10.1073�pnas.0507802102 Fisher and Kim



To account for an external load, F � (Fx, Fy, Fz), the energy
landscape �(r) is tilted by the addition of a term 
F � r. Then,
by relating the transition rates to the free-energy barrier heights,
one finds that the forward and reverse rates under zero load, uj

0

and wj
0, become

uj�F� � uj
0exp����j

��Fd �
1
2

F��j
��F � · · ·��kBT� , [1]

wj�F� � wj
0exp�
��j


�Fd �
1
2

F��j

�F � · · ·��kBT� , [2]

where �j
� and �j


 are relative compliance matrices (1, 5).

Analysis of Longitudinal Force Data
To describe data taken under a longitudinal load Fx (with Fy �
0), it is necessary, before Eqs. 1 and 2 can be used, to know the
perpendicular component Fz. This must be a function of Fx, say
Fz � Fz(Fx). On considering the geometry of the bead-tether-
motor-track in Fig. 1, the simplest ansatz is

Model 0: Fz � 
Fxcot��Fx� � c ��Fx� . [3]

This expression merely asserts that the inclination angle �
remains constant under resisting loads but switches sign when
the load becomes assisting as embodied in Fig. 4. The constant
c� � �cot�� follows from the general relation

cot� � 

Fz

Fx
�

R � 	z
�� l0 � 	z��2R � l0 � 	z��1/2, [4]

which reflects the geometry of Fig. 1. For typical beads of diameter
2R � 0.50 �m one may accept a fluctuation 	z � 5 nm (2).
However, the tether length of kinesin is not well established.
Examination of photomicrographs [e.g., figure 12.3E of ref. 1]
suggests l0 � 58–60 nm. However, 70 nm seems possible and,
conversely, shorter lengths may arise experimentally if some section
of the tether adjacent to the tail adheres to the bead. Furthermore,
there are structural aspects of the coiled-coil, a bend and a kink, that
may play a role. Accordingly, it is reasonable to adopt l0 � 60 nm,
which leads to � � 35° and c� � 1.45; but values from 1.30 to 1.60
are not implausible.

As seen in Fig. 4, Model 0 implies an unrealistic discontinuity
in Fz(Fx) at zero load, which then leads to a cusp-like variation
of the velocity. In reality, however, thermal fluctuations domi-
nate at low loads and amplify measurement uncertainties. To
recognize this a more plausible ansatz is

Model I: Fz � Fz�Fx� � c ��Fx
2 � F0

2, [5]

in which F0 represents force fluctuations that typically have a
magnitude 0.3 pN (7, 8) (see dotted plot in Fig. 4).

Now both Models 0 and I imply a symmetric variation of
�(Fx) when Fx changes sign and likewise for Fz(Fx). However,
in view of MT polarity and the directionality of kinesin, it
should be no surprise that the data of Block et al. (8) reveal a
strong asymmetry in the underlying Fz(Fx) relation. One may
represent such an asymmetry in various ways: but (i) the
geometric limit Fz � c�Fx should still apply for large Fx (�0)
and (ii) a smooth variation with Fx is required physically.
Consequently, a simple approach is to add to cot� in Eq. 3 a
step function, say, 1

2
(1 � Fx��F x

2). After smoothing with the
thermal f luctuation F0

2, this yields

Model II: Fz � c �� �Fx
2 � F0

2 �
F1

2 � 1 �
Fx

�Fx
2 � F0

2� 	 . [6]

The amplitude F1 is a new parameter to be determined by fitting.
In fact, F1 � 2.0 pN works well. The implications of this model
are shown in Fig. 4.

At first sight the step function in Eq. 6 seems artificial; but, as
depicted schematically in Fig. 5, it has a simple mechanical
interpretation. When the load switches to assisting, strain in the
motor, or torque at the tether-necklinker junction, etc., comes
into play and the ‘‘spring’’ in Fig. 5 exerts an additional vertical
force that one might take as F1 � K1 �sin�� with K1 � 3.5 pN:
this force component, in turn, increases the tension F in the
tether. Note that the asymmetry recognized here has been seen
by Uemura and Ishiwata (18) in measurements of unbinding
force distributions for kinesin. Specifically, they observed that
the required external force became smaller when applied as an
assisting load.

Velocity-Force-[ATP] Data
Having established in Model II an adequate Fz(Fx) relation, we
may analyze the longitudinal force data of Block et al. (8) along
the lines (11) used for the previous resisting-load data (4, 19).
Thus for the initial rate u0, which represents ATP binding, we
take u0 � k0[ATP]; subsequent rates, uj and wj, for j � 0 must
be independent of [ATP]. The final reverse rate, w0, is of
significance only near stall, Fx � 
�FS�, which is not of primary
concern here. Accordingly, we follow ref. 11 and adopt the
phenomenogical relation w0

0 � k�0[ATP]�(1 � [ATP]�c0)1/2; the
square root, in which c0 describes the ATP regeneration process
(4, 19), plays only a small role.¶

On this basis an N � 2 model provides a good description of
the V(Fx, [ATP]) data (8) with the rates

¶Detachments of the motor from the MT could be included explicitly following refs. 11 and
15 but serve only to renormalize the fitted rates slightly (15).

Fig. 4. Plots of tan� vs. Fx for Models 0, I and II, where � is the inclination
angle of the bead-kinesin linkage; see text.

Fig. 5. A schematic mechanism representing Model II. The arrow F1 corre-
sponds to the second term in Eq. 6.
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k0
0 � 1.35 �M
1�s
1, w1

0 � 5.0 s
1, u1
0 � 100 s
1,

k�0 � 2.04 � 10
3 �M
1�s
1 , c0 � 20 �M,
[7]

while the load distribution vectors (with the factor c� � 1.45
incorporated in the z components) are

�0
�d � �0.98, 0, 
0.38� nm,

�1

d � �
0.83, 0, 
0.27� nm,

�1
�d � �0.26, 0, 
0.23� nm,

[8]

�0

d � �7.79, 0, 0.88� nm.

As in ref. 11, the (somewhat correlated) fitting uncertainties
amount to a few digits in the last place quoted.

Apart from the larger value of k�0, the parameters 7 are
comparable to those based on fits (11) to the data of Visccher
and colleagues (4, 19). Note also that only six independent load
distribution parameters enter the fitting, since, owing to peri-
odicity (5), �j�j


 � (1, 0, 0). The quality of the fits can be judged
from the solid curves in Fig. 2 A. Note how well the variation
under assisting loads is captured for low and high [ATP].

The load distribution vectors 8 imply a very small forward
substep on binding ATP of only d0 � 0.1–0.2 nm. This substep
differs markedly from the value d0 � 1.8–2.1 nm found previ-
ously (11) by using a one-dimensional landscape formulation and
data only for Fx � 0 (4, 19). That conclusion, when advanced, was
in accord with evidence regarding structural changes associated
with nucleotide binding. However, as mentioned, it cannot be
maintained in light of single-step measurements by Higuchi and
coworkers (16) and Carter and Cross (13) that exclude substeps
� 0.8 nm and associated states with lifetimes exceeding tens of
microseconds. The new, small value for d0 is fully in accord with
these studies.

Furthermore, the transition state after ATP binding (and
possibly further steps of hydrolysis and product release) is
located at d0 � d1

� � 0.4 nm. This finding implies a single, rapid
unitary movement of �7.8 nm to complete a full 8.2-nm step,
presumably while the rear kinesin head moves, hand over hand,
to become the new forward head (20), again in accord with the
high-resolution observations (13, 16).

On the other hand, the z-components in 8 indicate that on
binding ATP the point of attachment experiences a relatively
large downward movement, 	z0 � 
0.5–0.7 nm. In this sense the
kinesin motor appears to crouch before ‘‘sprinting.’’

This crouching move may well be related to the suggestion of
Rice et al. (21). In their model, the binding of ATP to the
attached head of kinesin is supposed to induce the random coil
of the necklinker to fold down onto the catalytic core of the
motor domain. That will bring the attachment point P downward,
closer toward the MT surface (and thereby facilitate binding of
the leading head).

To understand crouching intuitively and see why it follows
from the observed decrease of V(Fx) under assisting loads at high
[ATP], consider Model 0 (with N � 2). Then u1(Fx) dominates
the velocity and varies as

u1
0exp��Fx�1

x� � c ��Fx��1
z��d�kBT� . [9]

Thus V(Fx) falls toward stall under resisting loads, Fx � 
�Fx�,
provided � 1

x� � c�� 1
z�; but under assisting loads V(Fx) will rise

exponentially fast unless � 1
z� is more negative than 
� 1

x��c� (as
is verified by the fits 8). And, negative values of � j

z
 imply
crouching. Similar arguments apply at low [ATP].

Note, however, the dependence on c�, which, in turn, depends
on the geometry of the bead-tether-motor linkage and, hence, on
the diameter, 2R, of the beads used. In particular, bigger beads

lead, by Eq. 4, to larger values of c� and thence to more rapidly
falling velocities under assisting loads and vice versa for smaller
beads. As illustrated in Fig. 6, the effects, while small for resisting
loads, are quite dramatic for Fx � 0 and so provide a route for
testing the overall theory.

Clearly, changes in the tether length l0 also change � and c�.
Thus, by engineering a longer tether, c� is decreased so that at
fixed Fx (not too close to zero) the Fz component of the tether
tension is reduced and the velocity will generally rise.

The fits 7 and 8 provide a general expression for V(Fx, 0, Fz;
[ATP]), which, at fixed [ATP], is readily appreciated via contour
plots in the (Fx, Fz) plane. Such a plot is presented in figure 5 of
ref. 5. Increasing Fz at fixed Fx � 
4 pN decreases V contrary to
the MT-buckling experiments of Howard and coworkers (6).
Likewise, their observations of velocities significantly in excess of
zero-load values are not supported. Indeed, we find V(Fx, 0, Fz) �
V(F � 0) only for assisting loads with Fx � Fz. If the buckling
experiments are validated the velocity enhancement might be a
consequence of distortions in the curved MTs (5).

Randomness
Because the randomness at high [ATP] lies below r � 0.45 for Fx �

3.5 pN (see Fig. 2B), no purely kinetic two-state model can fit the
data (2, 11, 19, 22). Four transitions are expected biochemically: (0
3 1) ATP binding; (13 2) hydrolysis; (23 3) release of Pi or, from
the forward head (20, 23), ADP; (33 4 � 0) release of ADP, or
Pi from the original rear head. Indeed, we find good fits for V and
r by using four-state models (see Fig. 7).� Thus on imposing the same
small step d0 � 0.15 nm as from the N � 2 model together with �1

�

� �2

 � �3


 � 0; the solid line in Fig. 7 plots the result. The fit to
V is as good as for N � 2, whereas the fits for r at [ATP] � 1.6 mM
are rather better. The load distribution assignment implies that the
biochemical states 1, 2, and 3 are ‘‘colocalized,’’ i.e., mechanically
indistinguishable. Consequently, the dominant substep, d 
 d0 �
8.0 nm (or ‘‘power stroke’’), corresponds to second-product release
(33 4 � 0). The fitted values of �0

� and �1

 imply 	z0 � 
0.45 nm

so that the motor crouches; the final transition state is located at
d0 � d1

� � 0.6 nm.
Although we regard this four-state fit as close to optimal, the

data (8) cannot distinguish definitively among other alterna-
tives** provided one allows d0 to be as large as 0.6 nm (still

�The fitted parameters for the four-state models in Fig. 7 are presented in Supporting Text,
which is published as supporting information on the PNAS web site.

**An equivalent ambiguity emerged in ref. 11.

Fig. 6. Predictions for the velocity vs. Fx for bead diameters 2R � 100 nm-1.88
�m [following from 4 but neglecting changes in 	z (9)].
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consistent with refs. 13 and 16). Then one may suppose that the
main substep, now d1 � 7.6 nm, is switched to (2 3 3),
describing first-product release, or to (1 3 2), simple hydro-
lysis; in both cases the motor is predicted to crouch, by 0.81 and
0.90 nm, respectively. Evidently (see the dashed and dotted
plots in Fig. 7) the quality of these fits is distinctly lower
especially in the second case. Nevertheless, the data appear not
to exclude an identification of the power stroke with the first
step of product release (especially, if d0 is set as high as 0.8 nm).
Note this alternative implies that a motor will appear to have
completed its mechanical step while still needing some 3 ms to
complete full product release.

In the absence of further experimental evidence, we return to
the N � 2 model and, to fit the randomness, introduce mech-
anicities Mj


 � 0 (10, 11, 15).†† The previous kinesin data (4, 19)
for Fx 	 0 and [ATP] � 0.3 mM (11) were well fit with M1

� �
0.6; and that remains roughly true (see the dashed plot in Fig.
2B). Under assisting loads, however, the discrepancies grow
excessively. This defect can be repaired, nevertheless, by increas-
ing M1

� to 0.65 and setting M1

 � 0.9 
 0.1. Such a large value

indicates that the mechanochemical state j � 1 encompasses at
least two biochemical states, indicating, again, that hydrolysis
cannot reasonably be associated with the �8.0-nm substep.

Although this fit and the N � 4 fits are satisfactory for high
[ATP], the data at low [ATP] suggest an additional source of
randomness in the range 2 pN 	 Fx 	 
4 pN, which was also seen
previously (11).

Lateral Force-Velocity Data
Fig. 8 presents data (8) for velocity under sideways (Fx � 0)
loading: these data exhibit nonlinear and asymmetric behavior
that is rather poorly represented by the close-to-parabolic dotted
fit (8). As above, the first need is to relate Fz to Fy. The analog
of Model I is simply Fz � c��Fy

2 � F0
2, where, to estimate c�, one

should recall the tether geometry, as in Eq. 4, but allow for
collisions of the bead with the planar substrate and thus for the
25-nm diameter of the MT. The value c�

0 � 1.11 
 0.12 � 0.77
c� emerges. On average, however, a kinesin motor under a lateral
load will likely bind at some angle, say �, tilted away from the top
of the MT: this process leads to the modified value c� �
c�

0 �(cos� 
 c�
0 sin�).

A mean tilt angle � � 5° gives c� � 0.85 c� (and � � 37°). If
this value is used with the two-state parameters 7 and 8‡‡ the
dashed rounded wedge in Fig. 8 is obtained. The agreement for
�Fy� 	 2 pN is satisfying and one should note that, contrary to the
five-state model of ref. 8, no sideways motions of the motor are
implied. Rather, one may suppose that all relevant transition
states lie in the (x, z) or y � 0 plane.

For larger values of Fy we invoke, following Eq. 1, a quadratic
force dependence for u1(Fy) by introducing a factor exp(g1Fy

2�kBT).
Taking the compliance matrix element as g1 � 0.015 nm�pN
yields the dot-dashed plot in Fig. 8 (which coincides for Fy 	 0
with the solid curve). This fit provides a good representation of
the (fairly noisy) rightward (Fy � 0) data but fails for Fy � 2 pN.
However, the surprisingly strong asymmetry may be described,
adapting Model II, by

Fz � c���Fy
2 � F0

2 �
F1

�

2 
1 �
Fy � 	F

��Fy � 	F�2 � F0
2�	, [10]

in which an offset 	F � 2.2 pN is also required. The spring
mechanism in Fig. 4 then predicts F1

� � 2.1 pN, which, in fact,
works well! However, the 5% larger value F1

� � 2.2 pN yields a
slightly better overall fit (the solid line in Fig. 8). This fact

††The mechanicity, Mj

 � 1 
 �	t


2 ���t
�2, measures the rms widths 	t
 of the corresponding
waiting-time distributions, �j


(t), for departing from state j in the � or 
 sense. Note that
a convolution of 
 successive ordinary ‘‘chemical’’ or Poisson processes with equal rates
yields �j

�(t) � t

1exp(

t��j
�) and thence Mj

� � (
 
 1)�
; hence Mj
� � 1 describes a fully

mechanical or clockwork process with �j
� � �(t 
 �j

�).

‡‡Note that Eq. 8 implies that all of the transverse load distribution factors, � j
y
, vanish. The

fit of the dashed-line plot in Fig. 8 for �Fy� 	 2 pN confirms the adequacy of this conclusion
and the absence of sideways lurching under parallel (Fy � 0) loads.

Fig. 7. Velocity (A) and randomness (B) data (8) fitted� by (N � 4)-state
models with d0 � 0.15 imposed and biochemical states 1, 2 and 3 colocalized
(solid curves), and d0 � 0.6 nm with states 1 and 2 and, separately, 3 and 4
colocalized (dashed lines) and states 2, 3, and 4 colocalized (dotted lines); see
text.

Fig. 8. Lateral (Fx � 0) force-velocity data and fit (dotted line) from Block et
al. (8). The solid curve for the present N � 2 model represents Eq. 10. The
dashed and dot-dashed plots depict preliminary fits; see text.
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suggests, indeed, that the same molecular mechanism in kinesin
that opposes assisting loads, likewise acts under leftward loads
exceeding �2 pN. It could well be that the mechanism results
from the asymmetry in structure of the proximal coiled-coil
relative to the MT axis.

Finally, Fig. 9 presents velocity data vs. [ATP] under vanishing
and purely lateral loads. Our fits (Fig. 9, solid curves) are
excellent for Fy � 0 at high [ATP] but lie below the observations
for Fy � 
4.8 pN; in view of the noisy data seen in Fig. 8,
however, the discrepancy seems not significant. At low [ATP]
our fits are good for Fy � 0 and 
4.8 pN but are some 15–20%

low for [ATP] 	 50 �M when Fy � 0. This observation might
indicate a left-right asymmetry in the (0 3 1) transition state
since introducing an Fy

3 term for w1 improves the fit.

Summary
We have used an extended stochastic model embodying a
three-dimensional energy landscape to analyze the recent ex-
perimental data of Block and coworkers (8) for kinesin. Con-
sideration of the vertical load component, Fz, arising from the
geometry of the kinesin tether and bead yields successful fits to
the velocity and randomness data under resisting, assisting, and
sideways loads and suggests a molecular mechanism opposing
assisting and leftward forces. Although a simple two-state kinetic
model supplemented by mechanicities suffices, acceptable four-
state models associate either ADP or Pi release with the main
substep of 7–8 nm. The analysis implies, that on binding ATP,
the junction of the tether with the necklinkers moves forward by
only 0.1–0.2 nm (consistent with direct single-step observations)
while, at the same time, crouching down by 0.5–0.7 nm before
executing a rapid sprint to complete the 8.2-nm step. A readily
testable prediction is that assisting loads applied with smaller
(	400-nm diameter) beads will yield increasing velocities at high
[ATP]. The full vectorial load dependence of the velocity V(F;
[ATP]) does not confirm an early suggestion (6) of strongly
enhanced velocities induced by increasing Fz; but experiments to
probe this issue further would be valuable.

We are grateful to Steven Block for providing experimental data for
kinesin. Interactions with him, Jonathon Howard, Anatoly Kolomeisky,
and Matthew Lang and valuable comments on a draft by Edwin Taylor
and Sebastian Doniach have been much appreciated. This work was
supported by National Science Foundation Grant CHE 03-01101.
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Fig. 9. Velocity data and fits as a function of [ATP] (8) under fixed transverse
loads, Fy � 0, 
 4.8 pN. The solid plots are the present N � 2 fits; the dotted lines
are from ref. 8.
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