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To take full advantage of the power of functional genomics technologies and in particular those for metabolomics, both the
analytical approach and the strategy chosen for data analysis need to be as unbiased and comprehensive as possible. Existing
approaches to analyze metabolomic data still do not allow a fast and unbiased comparative analysis of the metabolic
composition of the hundreds of genotypes that are often the target of modern investigations. We have now developed a novel
strategy to analyze such metabolomic data. This approach consists of (1) full mass spectral alignment of gas chromatography
(GC)-mass spectrometry (MS) metabolic profiles using the MetAlign software package, (2) followed by multivariate
comparative analysis of metabolic phenotypes at the level of individual molecular fragments, and (3) multivariate mass
spectral reconstruction, a method allowing metabolite discrimination, recognition, and identification. This approach has
allowed a fast and unbiased comparative multivariate analysis of the volatile metabolite composition of ripe fruits of 94 tomato
(Lycopersicon esculentum Mill.) genotypes, based on intensity patterns of .20,000 individual molecular fragments throughout
198 GC-MS datasets. Variation in metabolite composition, both between- and within-fruit types, was found and the
discriminative metabolites were revealed. In the entire genotype set, a total of 322 different compounds could be distinguished
using multivariate mass spectral reconstruction. A hierarchical cluster analysis of these metabolites resulted in clustering of
structurally related metabolites derived from the same biochemical precursors. The approach chosen will further enhance the
comprehensiveness of GC-MS-based metabolomics approaches and will therefore prove a useful addition to nontargeted
functional genomics research.

Functional genomics technologies designed to assess
gene activity (transcriptomics) and protein accumulation
(proteomics) are nowwell established in the quest to link
gene to function (Holtorf et al., 2002). Subsequently,
metabolomics approaches have been forwarded as
a means to link the functional biochemical phenotype
to other functional genomics data (Weckwerth and
Fiehn, 2002; Sumner et al., 2003; Bino et al., 2004; Hall
et al., 2005). Like transcriptomics and proteomics, me-
tabolomics involves twomain components: instrumental
analysis (analytical) and data analysis (bioinformatics).
Both topics need to be as comprehensive as possible for
true, broad, metabolic profiling and comparative analy-
sis of the biochemical status of living organisms. Several
analytical methods for metabolomics have already been

reported using model plants in genomic studies (Fiehn
et al., 2000a, 2000b; Roessner et al., 2000, 2001; Huhman
and Sumner, 2002; Tolstikov and Fiehn, 2002; Roessner-
Tunali et al., 2003; Kopka et al., 2004; Desbrosses et al.,
2005). A significant number of these studies have,
however, been dedicated to metabolic profiling specifi-
cally of the nonvolatile compounds involved in primary
plant metabolism using gas chromatography (GC) cou-
pled tomass spectrometry (MS).Another significant part
of the plant metabolome, comprising the volatile metab-
olites, is of a particular interest, since they play an
important role in fundamental processes such as signal-
ingmechanismsand interorganisminteractions (Shulaev
et al., 1997; Seskar et al., 1998;Ozawaet al., 2000;Arimura
et al., 2002; Liechti and Farmer, 2002; Dicke et al., 2003;
Dudareva et al., 2004; Engelberth et al., 2004; Ryu et al.,
2004). In addition, these components are also of great
agronomic importance as volatile metabolites are major
determinants of food and flower quality in terms of
flavor and fragrance (Buttery and Ling, 1993; Baldwin
et al., 2000, 2004; Yilmaz et al., 2001; Tandon et al., 2003;
Krumbein et al., 2004; Simkin et al., 2004; Ruiz et al.,
2005).

Solid phase microextraction (SPME-GC-MS) is an
analytical approach that is suitable for metabolomics
studies of volatiles since it is renowned for its high
sensitivity, reproducibility, and robustness (Yang and
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Peppard, 1994;Matich et al., 1996; Verhoeven et al., 1997;
Song et al., 1997, 1998; Augusto et al., 2000; Verdonk
et al., 2003). GC-MS-based approaches utilize gas chro-
matographic separation of metabolites extracted from
plant material and, in the case of SPME, the volatiles are
first extracted from the headspace above the plant
material using a specially designed adsorbant fiber
(Fig. 1A). Subsequently, separated metabolites are frag-
mented to charged molecular fragments—ions—that
are then detected in the mass spectrometer. Each
metabolite produces a unique spectrum of molecular
fragments with specific masses and a fixed relative
abundance. This unique fingerprint can therefore be
used for metabolite recognition and identification.

Hundreds of different metabolites can be detected in
crude plant extracts using GC-MS. This is, however,
just a small fraction of the more than 10,000 metabo-
lites that have been described in plants (Fiehn et al.,
2000b). However, even this limited amount of bio-
chemical information cannot be fully subjected to
a comparative metabolomic analysis when conven-
tional strategies are used. Such strategies, in general,
consist of three consecutive steps (Fig. 1B). First,
metabolites must be recognized and (or) identified
from the tens of thousands of molecular fragments that
constitute a typical GC-MS profile (Fig. 1B-a). Second,
quantitative values (often relative) of the identified
metabolites are aligned throughout all the metabolic
profiles of the genotypes (Fig. 1B-b) in order to
perform the third step, comparative analyses of their
metabolic phenotypes using multivariate exploratory

techniques dedicated for metabolomics (e.g. hierarchical
cluster analysis [HCAi], principal component analysis
[PCA], self-organizing maps, etc.; Fig. 1B-c). The meta-
bolic data can then also be linked to other data derived
using other functional genomics technologies. The com-
prehensiveness of this strategy therefore depends on the
number of metabolites that can be identified in the
samples to be compared. However, the extreme com-
plexity of the plant metabolome already generates
a bottleneck at the first step in this algorithm: Despite
using chromatographic separation, metabolites still coe-
lute prior to being subjected to MS. Consequently, this
coelution results in overlapping of the unique fragmen-
tation patterns. In addition to the problem of coelution,
a high variability in metabolite quantity within large
numbers of biological samples further complicates me-
tabolite identification and thus limits the entire analysis
to a metabolite subset that includes only those com-
pounds that can be reliably identified throughout all
genotypes. Many other possible metabolic differences
may then be overlooked. To overcome these limitations
and make the metabolomic data analysis truly compre-
hensive and unbiased, we offer a novel strategy for data
analysis (Fig. 1C). This strategy is based on a fully
automated alignment of metabolic profiles at the level of
individual molecular fragments without prior assign-
ment to the chemical structures of the metabolites they
represent. Subsequently, a multivariate comparative
analysis of individual metabolic profiles is performed,
which is based on all chemical information derived by an
analytical approach. Although this strategy initially
removes the need for prior metabolite identification,
this is eventually still required in order to put a biological
meaning to the differences found. To relate the thou-
sands of molecular fragments normally constituting
a chromatogram to their parental metabolites, a novel
approach, multivariate mass spectra reconstruction
(MMSR), has been developed. Using MMSR, clusters
of related metabolite fragments can be recognized and
the corresponding metabolites subsequently identified.

The entire strategy of data analysis is universal for
many kinds of mass spectral data and exceeds ap-
proaches of unbiased metabolomic data analysis in
terms of resolution and comprehensiveness (Nielsen
et al., 1998; Fraga et al., 2001; Johnson et al., 2003;
Jonsson et al., 2004; Wiener et al., 2004; Willse et al.,
2005). Also, it uses widely available software tools
and simple basic statistical procedures, both of which
make it useful for a wide range of studies in the fields
of biochemistry, physiology, functional genomics, and
systems biology.

The strategy was used for a comparative multivar-
iate analysis of a set of 94 contrasting tomato (Lyco-
persicon esculentum Mill.) genotypes covering the
variation in the germplasm of commercial tomato
varieties. The analysis was based on the profiles of
all volatiles that could be detected by the analytical
method used (SPME-GC-MS) and revealed a total of
322 different compounds in the entire genotype set.
This covers approximately 80% of the more than 400

Figure 1. GC-MS-based metabolomics. A, Analytical approach used.
B, Conventional approach. C, Alternative, unbiased approach to GC-
MS data analysis.
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tomato volatile compounds, which have been detected
in tomato fruit using different analytical methods (for
review, see Petro-Turza, 1987).

RESULTS

Automated Sequential Headspace SPME-GC-MS:
Method Development

In order to produce and release volatiles, tomato
material (e.g. juice or pulp) is usually incubated for
a fixed period, during which essential enzymes such
as lipoxygenase and hydroperoxide lyases are allowed
to remain active. This is followed by the addition of
concentrated CaCl2 to stop enzyme activity and to
drive the volatiles into the headspace (Bezman et al.,
2003; Verdonk et al., 2003). To test this method for its
suitability for effective, prolonged, sequential auto-
mated analysis of tomato samples, the SDs of the 15
major tomato volatiles (Baldwin et al., 2000), measured
sequentially in four sample replications, each after 3-h
intervals, were calculated (Table I). The addition of
CaCl2 alone resulted in large variations in metabolite
abundance between replicate analyses (average% SD5
41%; Table I). However, a marked improvement in
reproducibility (average % SD 5 9%) was achieved by
the addition of NaOH/EDTA solution, which was
chosen for its effectiveness compared to a number of

alternative buffers tested (data not shown). In combi-
nation with subsequent CaCl2-induced enzyme inac-
tivation, this procedure resulted in sufficient stability
and reproducibility over a 12-h period. On average,
the biological variation between the genotypes was
then approximately 10 times the analytical variation.
To estimate the metabolic variation that can be ob-
served within a genotype, samples of five individual
fruits of the same genotype were analyzed. The fruit-
to-fruit variation, which, in fact, included the analyt-
ical variation, observed for the 15 volatiles ranged
from 8% to 35% SD. For all metabolites, the fruit-to-fruit
variation was significantly less than the biological
variation between genotypes, according to % SD and
range between lowest and highest value (Table I).

In total, 94 tomato fruit samples, in duplicate, were
profiled for volatile metabolites. Consequently, includ-
ing the daily external reference samples, 198 GC-MS
datasets were obtained in this tomato volatile study.

A Stepwise Approach for Nontargeted Data Analysis

Step 1 (Fig. 1C-a) is as follows. The entire 198-
sample GC-MS dataset was analyzed using the dedi-
cated MetAlign software package. After automated
baseline correction, intensities of approximately 20,000
molecular fragments with corresponding retention
times were aligned throughout 198 GC-MS profiles
by MetAlign.

Table I. Biological and analytical variation of the tomato volatile metabolites

For the analysis, a mix of tomato samples was made and separate aliquots were measured after 0, 4, 8,
and 12 h. Using these four measurements, % SD (presented as the % of total value) was calculated for the
sole use of CaCl2 (second column) and for the combination NaOH/EDTA 1 CaCl2 (third column). For the
analysis of biological variation within genotype (fourth column), five individual fruits of the same genotype
were profiled for volatiles, and % SD for these five replicates was calculated. Biological variation between
genotypes (fifth column) was calculated as % SD of means of all 94 tomato samples when NaOH/EDTA 1

CaCl2 procedure was used. The maximal relative fruit-to-fruit variation as well as the maximal variation
between all 94 genotypes was calculated as the ratio of maximal and minimal relative values of the 15
volatiles across the five fruits and the 94 genotype samples, respectively. It is given in parenthesis as fold
difference (fourth and fifth columns).

Metabolites

Analytical Variation, % SD Biological Variation

within Genotype

n55, % SD

Biological Variation

between Genotypes

n594, % SDCaCl2 NaOH/EDTA 1 CaCl2

1-Penten-3-one 19 7 15 (1.4) 45 (6)
2-Isobutylthiazole 39 4 13 (1.4) 64 (47)
2-Methylbutanal 88 11 34 (2.7) 60 (16)
2-Methylbutanol 38 8 35 (2.5) 76 (39)
3-Methylbutanol 37 7 28 (2.2) 74 (29)
6-Methyl-5-hepten-2-one 33 4 17 (1.5) 37 (7)
b-Ionone 51 17 10 (1.3) 62 (14)
E-2-Heptenel 38 8 8 (1.2) 39 (10)
E-2-Hexenal 34 5 25 (1.8) 37 (6)
Hexanal 17 3 10 (1.3) 29 (8)
Methyl salicylate 49 9 21 (1.6) 173 (656)
Phenylacetaldehyde 42 6 23 (1.8) 162 (401)
Phenylethanol 48 4 19 (1.5) 198 (686)
Z-3-Hexenal 40 23 23 (1.7) 28 (7)
Z-3-Hexenol 39 13 17 (1.5) 103 (28)
Average 41 9 18 79

Nontargeted Metabolomics
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Step 2 (Fig. 1C-b) is as follows. A common problem in
SPME-GC-MS analyses is the production of molecular
fragments originating from contaminants coming from
the SPMEfibermaterial. Thesemolecular fragments had
a typical pattern of occurrence throughout the samples,
which was very different from the plant-derived mo-
lecular fragments. These could therefore be efficiently
recognized by means of, for example, HCA (Fig. 2). The
cluster of molecular fragments, which was clearly
separate from the other clusters (Fig. 2), had mass and
retention time characteristics that were identical to those
of nonplant compounds identified in blank injections.
Therefore, this entire group of nonplant molecular frag-
ments,whichwerehighly correlated to the contaminant-
specific fragments (such asm/z 207, 267, 355, etc.) related
to a number of polysiloxanes, could readily be excluded
from the dataset before further analysis. This is an es-
sential prerequisite before effective comparison of the
plant-specific data can be made.

Step 3 (Fig. 1C-c) is as follows. The data matrix
cleaned of the fiber contaminants was subjected to
a multivariate comparative analysis. First, HCA of the
94 tomato genotypes was performed using the Pearson
correlation between means of genotype analytical rep-
licates. The HCA revealed a high correlation between
the reference samples, which were analyzed daily
during the entire experiment in order to monitor the
stability of the analytical system (Fig. 3A). The cherry
genotypes formed a distinct cluster, clearly separated
from the round and beef varieties. The latter two tomato
types could not be separated into distinct groups. One
cherry genotype could be regarded as intermediate by
its volatile composition, due to its location at the very
edge of the round-beef cluster.

PCA revealed two major types of metabolic differ-
ences within the 94 tomato genotypes (Fig. 3B). First, in
accordance with HCA, PCA showed a clear between-
fruit-type variation, separating the cherry tomatoes,
on the one hand, from the round and beef tomatoes, on
the other hand (vector 1). In addition, PCA revealed
a clear within-type variation in metabolite content,
separating the 94 tomato cultivars into two groups
independent of fruit type (vector 2). The daily repli-
cated reference samples are located in the middle of
both vectors of genotype differentiation. This is logi-
cal, since the reference sample was created by pool-
ing of fruit material of several genotypes of each fruit
type. The molecular fragments determining both the
between- and within-type variations could be found
by projection of the genotype differentiation vectors
onto the PCA plot showing the distribution of the
molecular fragments (Fig. 3C).

Step 4 (Fig. 1C-d) is as follows. A novel MMSR
strategy was developed to reconstruct chemical struc-
tures of metabolites from the molecular fragment
information of GC-MS profiles and subsequently to
discover a biochemical meaning of the metabolic dif-
ferences found.

The approach is based on two points. First, since
fragmentation of a metabolite by the mass spectrom-

eter occurs after chromatographic separation, molec-
ular fragments derived from the same metabolite
will appear within a peak of a certain width at a certain
retention time in a chromatogram. Second, the relative
ratio between intensities of molecular fragments de-
rived from the same metabolite is constant. Therefore,
the expression patterns of these molecular fragments
must be identical throughout a set of variable meta-
bolic profiles and hence must be highly correlated to
each other. Based on these points, a metabolite may be
defined as a group of highly correlated molecular
fragments situated within a certain retention time
window. Proceeding from this definition, all of the
20,000 molecular fragments were subjected to HCA by
calculating the Pearson correlation between their in-
tensity patterns throughout the GC-MS profiles of all
the tomato genotypes analyzed. HCA resulted in
clustering of molecular fragments showing identical
or highly similar patterns of intensities throughout all
GC-MS datasets (Fig. 4A). Those molecular fragments,
which clustered together with a Pearson correlation
coefficient equal to or higher than 0.8 and were

Figure 2. HCA of .20,000 molecular fragments based on their
expression patterns throughout 198 GC-MS profiles. To simplify the
view, only the highest branches of the dendrogram are displayed,
showing the main groups of compounds as triangles. This procedure
produced a dendrogram revealing a distinct cluster of nonplant
components, comprising molecular fragments derived from constitu-
ents of the SPME fiber material that could then be readily removed from
the dataset prior to further analysis.

Tikunov et al.
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situated within a maximal deviation in retention time
of #6 s (corresponding to an average peak width at
one-half height in the chromatograms we obtained),
were considered to belong to the mass spectrum of one
and the same metabolite. In total, 322 molecular
fragment clusters were obtained. The mass spectra of
the 15 key flavor-related tomato volatiles (Baldwin
et al., 2000) were in agreement with the mass spectra
reconstructed from the molecular fragment clusters at
their corresponding retention times, as shown by the
example of 2-isobutylthiazole in Figure 4C. This sug-
gests that the 322 molecular fragment clusters each
represent the mass spectrum of an individual volatile
compound. Overlapping mass spectra of coeluting

compounds could also be successfully discriminated
from each other using MMSR. Molecular fragments of
coeluting compounds were clustered based on the simi-
larity of their patterns throughout the samples and the
number of clusters indicated the number of overlap-
ping chemical compounds at a certain retention time
(Fig. 4, A and B). In many cases, MMSR allowed extrac-
tion of all major fragments of a mass spectrum of a
particular coeluting compound (Fig. 4C; Supplemental
Data II). In others, it revealed a few compound unique
fragments (data not shown). For compound identifi-
cation, the AMDIS software package, dedicated to
chromatogram deconvolution, was used as a bridge to
match the compound spectral information derived by

Figure 3. Multivariate analyses of 94 tomato genotypes. A, Hierarchical tree of the 94 tomato genotypes based on intensity
patterns of .20,000 individual molecular fragments. B, PCA plot showing two major types of differences between the tomato
genotypes: between-type variation, discriminating the cherry tomatoes from round and beef tomatoes along vector 1, andwithin-
type variation, independent of fruit type, along vector 2. C, PCA plot showing the distribution of.20,000 molecular fragments:
Those molecular fragments (a) distributed along vector 1 determine the between-type variation, and molecular fragments (b)
distributed along vector 2 determine the within-type variation. D, PCA plot showing the distribution of the identified volatile
metabolites determining the main differences between the tomato genotypes. E and F, Two enlarged parts of the PCA plot shown
in D: Compounds are shown as colored shapes and the numbers refer to the compounds presented in Table II. The smaller black
dots represent unknown compounds.

Nontargeted Metabolomics
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MMSR to entries of the National Institute of Standards
and Technology (NIST) library of chemical compound
mass spectra (as described in ‘‘Materials andMethods’’).

Phe-Derived Volatiles Mostly Explain the

Difference in the Composition of the
Tomato Fruit Volatile Metabolome

The MMSR and NIST library matching results
revealed that the molecular fragments (Fig. 3C), which
were most discriminative between the tomato geno-
types (Fig. 3B), belonged to two groups of volatile
metabolites, derived from the phenolic (depicted in
pink) and phenylpropanoid (depicted in blue) path-
ways (Fig. 3D). Interestingly, both groups originate
from the amino acid Phe. Cherry tomatoes could be
distinguished from round and beef by a relatively high
accumulation of phenolic-derived volatiles (Fig. 3, D
and F, vector 1). Two phenolic alcohols, phenylethanol
and benzyl alcohol, showed the highest contribution
to the cherry versus round/beef contrast. Volatiles
derived from the phenylpropanoid pathway, includ-
ing methyl and ethyl salicylate, guaiacol, eugenol, and
salicylaldehyde, were responsible for the division of
the genotypes into two groups independent of the
tomato fruit type (Fig. 3D, vector 2). Both types of Phe-
derived volatiles revealed the largest relative variation
across the 94 genotypes (Table I).

Besides phenolic volatiles, cherry tomatoes also con-
tained relatively high levels of lipid derivatives (Fig. 3F)
and low levels of terpenoids, open-chain carotenoid
derivatives, and Leu/Ile-derived products (Fig. 3E).

Patterns of the 322 Volatiles Are Correlated According
to Their Precursor or Metabolic Pathway

The 322 compounds were subjected to HCA using
the Pearson correlation coefficient. This revealed the
presence of a few major compound clusters, as shown
in a correlation matrix (Fig. 5). Compounds situated in
the clusters were subjected to a putative identification
by matching their mass spectra to the NIST library.
Reliable matching results were obtained for 100 of
them, of which 70 metabolites had previously been
described as tomato fruit volatiles (Petro-Turza, 1987;
Table II). The reliability of the identity prediction was
assessed through comparison with 46 authentic chem-
ical standards. Each of those standards represented
a first hit from theNIST library search (see Supplemen-
tal Data I) and together covered a fewmembers of each
compound cluster. Of those 46 standards, 43 confirmed
the identity of the predicted compound, indicating that
the prediction of compound identity was very reliable.

The identification results revealed that each of the
compound clusters contained compounds that have a
common biochemical precursor or belong to the same

Figure 4. MMSR-driven discrimination of mass spec-
tra. A, Dendrogram showing a clustering of intensity
patterns of ions situated in the retention time window
20.8 to 21.07 min into several molecular fragment
clusters. B, MMSR indicated the presence of five
individual compounds within a visually single total
ion count (TIC) peak within the chosen time window.
C-1, An experimental mass spectrum, obtained by
plotting of the original intensities of the molecular
fragments of compound b could be matched to the
mass spectrum of the chemical standard analog of
2-isobutylthiazole (C-2), which also has a retention
time falling within the chosen window.

Tikunov et al.
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Figure 5. Metabolite-metabolite correlation matrix of the 322 plant-derived compounds. A, The main compound clusters are
situated along the diagonal line (groups a–g). Correlations betweenmetabolites are shown in grayscale: the darker the color gray,
the higher the percentage of similarity between metabolite expression patterns. B, Detailed dendrogram of each compound
cluster with putative compound identity as described in Table II. Compound cluster: a, phenylpropanoid volatiles; b, other
phenolic volatiles; c, Leu and Ile derivatives (c1 and c2, respectively); d, lipid derivatives. Isoprenoids: e, terpenoids; f, open-
chain carotenoid derivatives; g, cyclic carotenoid derivatives.

Plant Physiol. Vol. 139, 2005 1131



Table II. Putative identity of volatile metabolites present within the clusters obtained using HCA (Fig. 5)

Metabolites were identified by matching their mass spectra to the NIST library. RT, Retention time; specific ion (m/z), mass (m/z value) of
a compound-specific molecular fragment; identity, putative identity, according to the highest NIST library match; NIST match, matching score (1,0005

100% identical to the NIST library entry), (1) or (2) after the NIST match value (the NIST match was confirmed [1] or was not confirmed [2] by an
authentic chemical standard injection); biochemical group, corresponding cluster in Figure 5.

Comp. No. Retention Time, min Specific Ion, m/z Identity NIST Match Biochemical Group

1 21.55 122 Salicylaldehyde 838 (1) a (corresponding to the
clusters of Fig. 5)

2 23.06 81 Guaiacol 924 (1) a
3 26.89 120 Methyl salicylate 960 (1) a
4 29.32 120 Ethyl salicylate 951 a
5 31.90 164 Eugenol 920 (1) a
6 10.79 91 Toluene 953 b
7 14.45 91 Ethylbenzene 946 (1) b
8 15.61 104 Styrene 964 (1) b
9 18.05 91 1-Phenylpropane 934 b

10 18.34 106 Benzaldehyde 944 (1) b
11 18.55 94 Phenol 931 (1) b
12 19.11 118 p-Methylstyrene 705 b
13 19.24 103 Benzonitrile 841 (1) b
14 20.80 117 2-Phenyl-3-buten-ol 782 b
15 20.94 108 Benzyl alcohol 942 (1) b
16 21.43 120 Phenylacetaldehyde 950 (1) b
17 22.09 107 p-Cresol 951 (1) b
18 23.63 105 a-Phenylpropionaldehyde 862 b
19 23.95 91 Phenylethanol 944 (1) b
20 24.82 117 Phenylacetonitrile 856 (1) b
21 25.66 92 b-Phenylpropionaldehyde 876 (2) b
22 6.96 44 3-Methylbutanal 837 (1) c
23 7.21 57 2-Methylbutanal 887 (1) c
24 9.32 43 3-Methylbutanol 894 (1) c
25 9.50 57 2-Methylbutanol 922 (1) c
26 9.77 42 E-2-Methyl-2-butenal 922 c
27 12.77 60 3-Methylbutanoic acid 922 (1) c
28 15.85 41 3-Methylbutanol nitrite 835 (2) c
29 16.39 41 Unknown, C5H9NO2-like c
30 16.42 46 Unknown, C5H11NO2-like c
31 21.04 99 2-Izobutylthiazole 902 (1) c
32 7.67 57 1-Penten-3-ol 903 d
33 7.83 55 1-Penten-3-one 882 (1) d
34 8.18 44 n-Pentanal 883 (1) d
35 8.37 81 2-Ethylfuran 934 (1) d
36 10.20 55 E-2-Pentenal 926 d
37 10.51 42 1-Pentanol 895 (1) d
38 10.65 57 Z-2-Penten-1-ol 891 d
39 11.76 80 Z-3-Hexenal 847 (1) d
40 11.83 72 Hexanal 856 (1) d
41 13.60 41 2-Hexenal 904 d
42 13.90 98 E-2-Hexenal 944 (1) d
43 13.95 67 Z-3-Hexenol 899 (1) d
44 14.36 56 1-Hexenol 932 (1) d
45 15.75 70 Heptanal 898 (1) d
46 16.13 81 E,E-2,4-Hexadienal 938 (1) d
47 17.91 41 E-2-Heptenal 895 (1) d
48 19.26 81 2-n-Pentylfuran 925 d
49 19.44 81 E,E-2,4-Heptadienal 721 d
50 18.99 43 6-Methyl-5-hepten-2-one 919 (1) f
51 19.17 95 6-Methyl-5-hepten-2-ol 810 f
52 20.07 43 5-Hexen-2-one, 5-methyl-3-methylene 757 f
54 23.41 109 6-Methyl-3,5-heptadien-2-one 916 f
56 28.10 69 b-Citral 906 (1) f
57 28.98 41 a-Citral 941 (1) f
58 34.36 43 Geranyl acetone 904 (1) f

(Table continues on following page.)

1132 Plant Physiol. Vol. 139, 2005

Tikunov et al.



metabolic pathway (Fig. 5): Phe derivatives (phenolic
and phenylpropanoid volatiles), Leu and Ile deriva-
tives, lipid derivatives, and isoprenoid derivatives,
consisting of open-chain and cyclic carotenoid break-
down products and terpenes (Buttery and Ling, 1993;
Baldwin et al., 2000).

DISCUSSION

High-Throughput Screening of Volatiles

Volatile tomato fruit metabolites have been profiled
using headspace SPME-GC-MS, which is a procedure
that has been used in the past for many plant matrices
including tomato fruits (Song et al., 1998; Deng et al.,
2004). SPME is superior to other sampling methods in
both speed and robustness (Yang and Peppard, 1994).
Only direct thermal desorption exceeds SPME in terms
of sensitivity (Pfannkoch and Whitecavage, 2000). In
fact, SPME-based methods, as well as other methods
based on headspace extraction, are so-called semiquan-
titative due to the presence of a matrix effect and
relatively short linearity of the dynamic range—the
drawbacks, which in many cases do not allow an ab-
solute quantification. However, metabolomics, as well
as other profiling techniques such as microarray anal-
yses, mostly operate with intensity patterns formed by
relative responses, which allow searching for potential
differences and performing multivariate comparative
analyses. Absolute quantification of the levels of these
volatiles will be performed using more sophisticated
methods in our future experiments.
For a high-throughput analysis of a large number of

biological samples, an automated sequential manipu-
lation of the samples is required. To obtain reliable
data in this way, the metabolic composition has to be
stable during the entire period of experimentation.
This is especially important when analyzing complex
native plant materials such as fruit tissue. To develop
an automated high-throughput SPME-GC-MS method
to screen and profile fruit volatiles of 94 tomato cul-
tivars, the initial focus was placed on 15 volatile

metabolites that are of particular importance in de-
termining tomato fruit flavor (Buttery and Ling, 1993;
Baldwin et al., 2000). First, we optimized the stability
of the metabolites by adding NaOH/EDTA/CaCl2 at
the end of the sample preparation procedure. This
procedure stabilizes the fruit matrix for at least 12 h,
presumably by increasing the pH and exploiting the
chelating effect of EDTA to prevent compound oxida-
tion. The method was found to be suitable, reliable,
and accurate and enabled the automated measure-
ment of the large numbers of fruit samples required
for this investigation.

Full Spectral Alignment Enables Unbiased
Comparative Metabolomics

Metabolomics aims to generate a comprehensive
overview of the identity and quantity of metabolites in
biological materials. The general principle currently
used is that all compounds are identified prior to their,
often relative, quantification and subsequent compar-
ison throughout the biological samples. When using
GC-MS, each chemical compound is classified both
on its relative retention time and its mass spectrum.
This mass spectrum gives a unique fingerprint of the
chemical resulting from its fragmentation on entering
the mass spectrometer. However, when using complex
plant extracts, despite effective prior chromatographic
separation, mass spectra of many compounds inevita-
bly often coelute, thus complicating their discrimina-
tion. Consequently, the compound discrimination step
(not always unbiased) limits the comprehensiveness of
the metabolomic analyses. As an alternative strategy
for comparativemetabolomic analysis, we propose here
a protocol that is based upon an unbiased empirical
quantification and search for metabolic differences at
the level of molecular fragments (ions) prior to com-
pound identification. This approach avoids the time-
consuming need for any prior assignment of chemical
information to the molecular structure for hundreds of
datasets and thusmakes it possible to gain a faster, more
unbiased and nontargeted metabolomic overview.

Table II. (Continued from previous page.)

Comp. No. Retention Time, min Specific Ion, m/z Identity NIST Match Biochemical Group

59 38.06 69 Pseudoionone 711 f
60 20.90 68 Limonene 621 (1) e
61 22.44 59 Linalool oxide, Z- 876 (1) e
62 22.99 59 Linalool oxide, E- 799 (1) e
63 24.91 93 Ocimenol 821 e
64 26.39 43 p-Cymen-8-ol 863 e
55 26.51 119 Acetophenone, 4-methyl 913 (1) e
65 26.69 59 a-Terpineol 889 (1) e
66 29.92 79 2-Caren-10-al 718 e
67 22.06 82 a-Isophorone 801 (2) g
53 22.32 105 Acetophenone 928 (1) g
68 27.80 152 b-Cyclocitral 878 (1) g
69 32.82 121 b-Damascenone 910 g
70 35.74 177 b-Ionone 851 (1) g
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Furthermore, this approach facilitates our desire to
home in specifically on those mass peaks that are
discriminatory between samples. This approach, how-
ever, depends on the initial ability to align the spectral
patterns of the tens of thousands of molecular frag-
ments present throughout all the GC-MS datasets to be
compared. For this, we used the MetAlign software
package to eliminate noise, compensate retention time
shifts, and align the mass spectral information. This
resulted in a data matrix of about 4,000,000 data points
(198 datasets3 20,000 mass peaks detected). Each row
of this data matrix displays the intensities of a unique
molecular fragment throughout the 198 GC-MS data-
sets. However, a number of contaminants resulting
from the fiber material can usually be found when
using SPME. A multivariate analysis (HCA) of the
molecular fragment patterns throughout the GC-MS
profiles obtained allowed us to extract the fragments
related to the fiber and to remove them from the dataset
automatically. The complete mass spectral alignment of
metabolic profiles has thus allowed us to perform
a reliable, multivariate comparative analysis of the 94
genotypes studied. This analysis revealed both between-
fruit-type metabolic differences, discriminating cherry
tomatoes from round and beef, as well as within-
fruit-type metabolic differences, which were indepen-
dent of fruit type, and allowed the discrimination of the
molecular fragments determining the variation between
genotypes. However, to get subsequently biologically
relevant information, we have to be able to relate these
discriminative molecular fragments to their parent com-
pounds in order to perform a putative identification. To
overcome the limitations of metabolite recognition and
identification that are due to high metabolome complex-
ity and variability, we developed an approach that
allows an automated reconstruction of the mass spectra
of individual compounds (MMSR). This approach is
based on the fixed ratio ofmolecular fragment intensities
resulting from the fragmentation of a particular mole-
cule. Logically, even if the abundance of a compound
varies between samples, the ratios of its molecular
fragment intensities derived from the parent molecule
should remain the same throughout all the samples.
Consequently, when molecular fragments cluster to-
gether after being subjected to a multivariate analysis
such as HCA and their relative retention time does not
exceed a predefined window, it can be concluded that
they relate to the same chemical compound.

Using MMSR, we were able to discriminate the full
array of chemical compounds present in all datasets
using one automated procedure, even in cases of
complex overlapping mass spectra (Fig. 4). In com-
parison, when using AMDIS alone—a software pack-
age dedicated to resolve compound overlap cases by
means of automated mass spectra deconvolution—for
chemical compound discrimination, we were unable
to get an equally reliable prediction of the number and
chemical identity of overlapping compounds. This is
due to their variable mass intensities in the wide range
of the different samples (data not shown).

Deconvolution procedures are generally reliable
and frequently used to handle individual GC-MS
datasets. However, when analyzing hundreds of sam-
ples, a limited number of datasets that are assumed to
fully represent the compound diversity of the entire
sample set analyzed have to be selected for deconvo-
lution visually. The compounds that can be discrimi-
nated in these representative datasets are subsequently
used for a comparative analysis of the entire sample
set. Such procedures, based on a prior mass spectral
deconvolution of GC-MS profiles, have been used
successfully, and this has allowed the discrimination
and identification of many compounds in plant ex-
tracts (Taylor et al., 2002). However, in contrast to this
conventional procedure, MMSR is not limited and
uses all available spectral information, thus allowing
discrimination and recognition of all individual com-
pounds based on their variability patterns. This sig-
nificantly improves comprehensiveness, since even
when a particular compound is only abundant in
one of the 94 samples it will still be included in the
analysis.

In our tomato study, a total of 322 tomato volatile
compounds could be discriminated in 198 datasets.
This is approximately 80% of all the volatile metabo-
lites (.400 different volatiles) that have so far been
reported in tomato fruit (Petro-Turza, 1987). The
multivariate analyses (HCA, PCA) revealed that
most of the compounds, which could be identified,
clustered on the basis of their biochemical nature (Fig.
5) and the entire metabolic organization could be
characterized by the existence of a few large com-
pound groups, which unite (e.g. lipid derivatives,
phenolic and phenylpropanoid volatiles, isoprenoids,
etc.). The main metabolite clusters could subsequently
be divided into smaller subclusters. For example, the
compounds of cluster c (Fig. 5B) could be clearly
divided into two distinct subclusters based on
their biochemical precursors, Leu and Ile. Interestingly,
volatiles derived from Leu include, besides alcohols
(e.g. 3-methylbutanol) and aldehydes (e.g. 3-methyl-
butanal), a number of nitrogen-containing compounds
(yet to be identified) and even a sulfur-containing
heterocyclic compound, 2-isobutylthiazole, which are
all known to be Leu derived (Buttery and Ling, 1993).

All isoprenoid volatiles can be roughly separated
into three subclusters representing terpenoids, open-
chain, and cyclic carotenoid derivatives (Fig. 5B, groups
e, f, and g, respectively). Interestingly, the terpenoids
a- and b-citral appeared in the group of open-chain
carotenoid derivatives. This is in line with previous
observations that the citral isomers may be derived as
a degradation product of lycopene (Cole and Kapur,
1957; Schreier et al., 1977). For several other compounds,
such as acetophenone and 4-methylacetophenone, the
biosynthetic pathway is still unclear and their clustering
with terpenoids and cyclic carotenoid volatiles, respec-
tively, may shed new light on their biochemical origin.

Mathematical analyses of metabolic pathway data-
bases of many organisms have led to the concept of
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hierarchical modularity in the organization of meta-
bolic networks. This concept implies that cellular
functionality is organized in a set of functional mod-
ules, which consequently are organized in a few large
modules, which in turn can be grouped into even
larger modules (Jeong et al., 2000; Ravasz et al., 2002;
Ihmels et al., 2004). The hierarchical modularity of
metabolic network organization would allow robust,
error-tolerant, and energetically efficient functioning
of biological systems. Our experimental results based
on an analysis of metabolic expression patterns clearly
reflect the features of this concept: structurally related
metabolites resulting from different enzymatic or non-
enzymatic reactions, but originating from a common
metabolic precursor, were clustered into groups and
subgroups representing distinct metabolic pathways.
This modularity may be due to the existence of a co-
ordinate regulation of these metabolic pathways, e.g.
by specific transcription factors activating the expres-
sion of the structural genes in a pathway. It may also
reflect regulation by the activity of key enzymes,
which determines the flux through the downstream
pathway or the availability of metabolite precursors at
the beginning of a metabolic pathway. Although func-
tional implications of this modular clustering still
remain to be elucidated, an existence of such func-
tional modularity can be assumed for the group of
phenylpropanoid metabolites and their derivatives, as
seen here for tomato, since phenylpropanoid metabo-
lism is known to contribute to plant stress responses
(Dixon and Paiva, 1995) andmethyl salicylate has been
shown as an airborne signaling agent in plant patho-
gen resistance (Shulaev et al., 1997; Seskar et al., 1998).
In this light, it is possible that genotypes with in-
creased levels of these compounds may have been
selected through the years for their increased capabil-
ity to respond to biotic or abiotic stress.

CONCLUSION

The high-resolution, comprehensive, and unbiased
strategy for metabolomic data analysis presented here
is novel and opens new directions of discovery in the
field of metabolomics. Full mass spectral alignment
of GC-MS metabolic profiles followed by a universal
strategy for chemical compound discrimination has
allowed us to perform a high-resolution, unbiased, and
fast multivariate comparative analysis of volatile bio-
chemical composition of 94 tomato genotypes (198
complex plant extracts) based on metabolic informa-
tion derived by the analytical method. The large-scale
picture of the volatile part of the tomato fruit metab-
olome reflects the hierarchical modularity of metabo-
lism organization that is assumed to be common for
different levels of a biological system. Further projec-
ting the data into data from other ‘‘omics’’ technolo-
gies will pave the way for a true systems biology
approach to investigating cell networks and more di-
rected gene discovery.

The main goal of this study was to describe this
novel efficient approach for unbiased analysis of com-
plex biochemical datasets. A detailed biological inter-
pretation of the data obtained is beyond the scope of
this article, but it is anticipated that this will provide
much new information on the heterogeneity in bio-
chemical composition within tomato varieties, and this
will be the subject of our future investigations.

MATERIALS AND METHODS

Plant Material

Ninety-four tomato (Lycopersicon esculentum Mill.) genotypes were ob-

tained from six different tomato seed companies, each with its own breeding

program. As such, the cultivars should represent a considerable collection of

genetic and therefore phenotypic variation, not just between tomato types

(cherry, round, and beef), but also within the individuals of each type. This

study was deliberately performed blind. We only received information from

the tomato breeders of the companies supplying the material concerning the

tomato fruit types and not their genetic background. For classification,

breeders generally use a combination of (1) fruit diameter and (2) number

of locules in the fruit (fl). For the latter, the criteria were as follows: cherry-type

fl5 2; round fl5 3; beef fl5 4 ormore. All cultivars were grown in the summer

of 2003 under greenhouse conditions at a single location in Wageningen, The

Netherlands. Nine plants, randomly distributed over three adjacent green-

house compartments, were grown for each cultivar. Pink-staged tomato fruits

of all plants were picked on two consecutive days. To mimic the conditions

from the farm to the fork, fruits were stored for 1 week at 15�C and turned to

20�C at 24 h prior to freezing. During this period, the fruits continued to ripen

slowly and, at the moment of sampling, the fruits were fully red ripe,

resembling the conditions at the time of consumption. For each cultivar,

a selection of red ripe fruits (12 for round and beef tomatoes and 18 for cherry

tomatoes) was pooled to make a representative fruit sample. The fruit material

was immediately frozen in liquid nitrogen, ground in an analytical electric

mill, and stored at 280�C before analyses.

Standard Chemicals

Fifteen analytical grade chemicals (all obtained from Sigma) were used as

authentic standards to optimize the SPME-GC-MS method for automated

sequential analysis of hundreds of samples. These were cis-3-hexenal,

b-ionone, hexanal, 1-penten-3-one, 2-methylbutanal, 3-methylbutanal, trans-2-

hexenal, 2-izobutylthiazole, trans-2-heptenal, phenylacetaldehyde, 6-methyl-

5-hepten-2-one, cis-3-hexenol, 2-phenylethanol, 3-methylbutanol, and methyl

salicylate. Formetabolite identification, an additional set of standardswas used.

These include 2-methylbutanol, 3-methylbutanoic acid, 3-methylbutanol nitrite,

1-hexanol, pentanal, 2-ethylfuran, 1-pentanol, heptanal, E,E-2,4-hexadienal, sali-

cylaldehyde, eugenol, guaiacol, ethylbenzene, styrene, benzaldehyde, benzoni-

trile, benzyl alcohol, phenylacetonitrile, b-phenylpropionaldehyde, phenol,

p-cresol, acetophenone, 4-methylactophenone, geranylacetone, a-isophorone,

b-cyclocitral, a-citral, b-citral, limonene, cis- and trans-linalool oxide, and

a-terpineol.

Sample Preparation Procedure and Headspace
SPME-GC-MS Analysis

Frozen fruit powder (1 g fresh weight) was weighed in a 5-mL screw-cap

vial, closed, and incubated at 30�C for 10 min. An EDTA-NaOHwater solution

was prepared by adjusting of 100 mM EDTA to a pH of 7.5 with NaOH. Then,

1 mL of the EDTA-NaOH solution was added to the sample to a final EDTA

concentration of 50 mM. Solid CaCl2 was then immediately added to give

a final concentration of 5 M. The closed vials were then sonicated for 5 min. A

1-mL aliquot of the pulp was transferred into a 10-mL crimp cap vial (Waters),

capped, and used for SPME-GC-MS analysis.

Each of the 94 tomato fruit samples was analyzed using two replicated

aliquots. In total, 22 freshly prepared samples were measured per day (two

series of 11 samples). In addition, reference tomato samples were made by

mixing fruit powders from several genotypes of the round, beef, and cherry
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fruit phenotypes. This mixture was routinely analyzed every day of experi-

mentation as an external control in order to monitor the stability of the

analytical system. The samples were automatically extracted and injected into

the GC-MS via a Combi PAL autosampler (CTC Analytics AG). Headspace

volatiles were extracted by exposing a 65-mm polydimethylsiloxane-divinyl-

benzene SPME fiber (Supelco) to the vial headspace for 20 min under

continuous agitation and heating at 50�C. The fiber was inserted into a GC

8000 (Fisons Instruments) injection port and volatiles were desorbed for 1 min

at 250�C. Chromatography was performed on an HP-5 (50 m3 0.32 mm3

1.05 mm) column with helium as carrier gas (37 kPa). The GC interface andMS

source temperatures were 260�C and 250�C, respectively. The GC temperature

program began at 45�C (2 min), was then raised to 250�C at a rate of 5�C/min,

and finally held at 250�C for 5 min. The total run time, including oven cooling,

was 60 min. Mass spectra in the 35 to 400 m/z range were recorded by an

MD800 electron impact MS (Fisons Instruments) at a scanning speed of 2.8

scans/s and an ionization energy of 70 eV. The chromatography and spectral

data were evaluated using Xcalibur software (http://www.thermo.com).

Data Analyses: Multivariate Comparative Analysis
and MMSR

1. For automated baseline correction, mass spectra extraction, and sub-

sequent spectral data alignment, in total 198 GC-MS datasets were processed

simultaneously using the dedicated MetAlign metabolomics software pack-

age (http://www.metalign.nl; Fig. 2A).

2. The metabolic profiles aligned were subjected to multivariate analyses:

HCA (Pearson correlation coefficient was used) and PCA to search for

metabolic differences between the tomato genotypes at the level of molecular

fragments (Fig. 2, A–C). The multivariate analyses were performed using the

GeneMaths software package (http://www.applied-maths.com). A log2

transformation was applied to the data prior to the multivariate analyses.

3. MMSR was used to assign the molecular fragments to compounds. For

this, the patterns of all molecular fragments were subjected to HCA. Those

molecular fragments that revealed a Pearson correlation equal to or more then

0.8 and were situated within a 6-s retention time window (which corresponds

to an average peak width at one-half height in the chromatograms we

obtained) were considered as belonging to the spectrum of one compound.

4. For compound identification, the following steps were used: (1) for each

compound selected for putative identification, themost optimal chromatogram

is selected with respect to relative abundance and overlap with other com-

pounds at the specific position; (2) for each selected compound, specific

molecular fragments (ions, m/z) were selected from the corresponding frag-

ment cluster derived byMMSR; (3) the selected fragments were used as a basis

for deconvolution of the chromatographic peak at the corresponding retention

time usingAMDIS (Stein, 1999).Mass spectralmodels derived in thiswaywere

matched to the NIST mass spectral library (http://www.nist.gov).

ACKNOWLEDGMENTS

The authors are grateful to Syngenta Seeds, Seminis, Enza Zaden, Rijk

Zwaan, Nickerson-Zwaan, and De Ruiter Seeds for providing seeds of the 94

tomato cultivars. We would like to thank Mrs. Fien Meijer-Dekens, Mrs. Petra

van den Berg, Dr. A.W. van Heusden, and Dr. Pim Lindhout for excellent

greenhouse management and plant cultivation, and Dr. Harro Bouwmeester

and Mr. Francel Verstappen for helpful discussions and technical support.

Received July 6, 2005; revised September 13, 2005; accepted September 13,

2005; published November 11, 2005.

LITERATURE CITED

Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kuhnemann F,

Takabayashi J (2002) Herbivore-induced volatiles induce the emission

of ethylene in neighboring lima bean plants. Plant J 29: 87–98

Augusto F, Valente ALP, dos Santos Tada E, Rivellino SR (2000) Screen-

ing of Brazilian fruit aromas using solid-phase microextraction-gas

chromatography-mass spectrometry. J Chromatogr A 873: 117–127

Baldwin EA, Goodner K, Plotto A, Protchett K, Einstein M (2004) Effect of

volatiles and their concentration on perception of tomato descriptors.

J Food Sci 69: 310–318

Baldwin EA, Scott WJ, Shewmaker CK, Schuch W (2000) Flavor trivia and

tomato aroma: biochemistry and possible mechanisms for control of

important aroma components. HortScience 35: 1013–1022

Bezman Y, Mayer F, Takeoka GR, Buttery RG, Ben-Oliel G, Rabinowitch

HD, Naim M (2003) Differential effects of tomato (Lycopersicon esculen-

tum Mill) matrix on the volatility of important aroma compounds.

J Agric Food Chem 51: 722–726

Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau

BJ, Mendes P, Roessner-Tunali U, Beale MH, et al (2004) Potential

of metabolomics as a functional genomics tool. Trends Plant Sci 9:

418–425

Buttery RG, Ling LC (1993) Volatiles of tomato fruits and plant parts:

relationship and biogenesis. In R Teranishi, R Buttery, H Sugisawa, eds,

Bioactive Volatile Compounds from Plants. ACS Books, Washington,

DC, pp 23–24

Cole ER, Kapur NS (1957) The stability of lycopene. I. Degradation of

oxygen. II. Oxidation during heating of tomato pulps. J Sci Food Agric 8:

360–368

Deng C, Zhang X, Zhu W, Qian J (2004) Investigation of tomato plant

defense response to tobacco mosaic virus by determination of methyl

salicylate with SPME-capillary GC-MS. Chromatographia 59: 263–268

Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic

profiling. Development of gas chromatography-mass spectrometry

resources for the study of plant-microbe interactions. Plant Physiol

137: 1302–1318

Dicke M, Agrawal AA, Bruin J (2003) Plants talk, but are they deaf? Trends

Plant Sci 8: 403–405

Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism.

Plant Cell 7: 1085–1097

Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant

volatiles. Plant Physiol 135: 1893–1902

Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne

signals prime plants against insect herbivore attack. Proc Natl Acad Sci

USA 101: 1781–1785

Fiehn O, Kopka J, Dofmann P, Altmann T, Trethewey RN, Willmitzer L

(2000a) Metabolite profiling for plant functional genomics. Nat Bio-

technol 18: 1157–1161

Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000b) Identification of

uncommon plant metabolites based on calculation of elemental compo-

sitions using gas chromatography and quadrupole mass spectrometry.

Anal Chem 72: 3573–3580

Fraga CG, Prazen BJ, Synovec RE (2001) Objective data alignment

and chemometric analysis of comprehensive two-dimensional separa-

tions with run-to-run peak shifting on both dimensions. Anal Chem 73:

5833–5840

Hall RD, de Vos CHR, Verhoeven HA, Bino RJ (2005) Metabolomics for the

assessment of functional diversity and quality traits in plants. In G

Harrigan, S Vaidyanathan, R Goodacre, eds, Metabolic Profiling. Kluwer

Academic Publishers, Dordrecht, The Netherlands (in press)

Holtorf H, Guitton M-C, Reski R (2002) Plant functional genomics.

Naturwissenschaften 89: 235–249

Huhman DV, Sumner LW (2002) Metabolic profiling of saponins in

Medicago sativa and Medicago truncatula using HPLC coupled to an

electrospray ion-trap mass spectrometer. Phytochemistry 59: 347–360

Ihmels J, Levy R, Barkai N (2004) Principals of transcriptional control in

the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22:

86–92

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi A-L (2000) The large-

scale organization of metabolic networks. Nature 407: 651–654

Johnson KJ, Wright BW, Jarman KH, Synovec RE (2003) High-speed peak

matching algorithm for retention time alignment of gas chromato-

graphic data for chemometric analysis. J Chromatogr A 994: 141–155

Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström
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