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STIMULI, REINFORCERS, AND BEHAVIOR:
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We propose that a fundamental unit of behavior is the concurrent discriminated operant, and we
discuss in detail a quantitative model of the concurrent three-term contingency that is based on the
notion that an animal’s behavior is controlled to differing extents by both stimulus–behavior and
behavior–reinforcer relations. We show how this model can describe performance in a variety of
experimental procedures: conditional discrimination and matching to sample, both with and without
reinforcement for responses that are traditionally identified as errors; conditional discrimination
with more than two stimuli and choice alternatives; delayed matching to sample and delayed rein-
forcement in matching to sample; second-order and complex conditional discrimination; and mul-
tiple and concurrent schedules. Although the model is incomplete in its coverage, and may be
incorrect, we believe that this conceptual approach will bear fruit in the development of behavior
theory.
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An adequate formulation of the interaction
between an organism and its environment
must always specify three things: (1) the oc-
casion upon which a response occurs, (2) the
response itself, and (3) the reinforcing con-
sequences. The interrelations among them
are the contingencies of reinforcement. (Skin-
ner, 1969, p. 7)

With the specification of the three-term con-
tingency quoted above, Skinner defined the
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discriminated operant,1 which we take to be a
fundamental analytic unit for the science of
behavior. Some experimenters have concen-
trated on ‘‘the occasion upon which a re-
sponse occurs’’—the antecedent stimulus. In
general, they have arranged maximally differ-
ent consequences in the presence of two stim-
uli, such as reinforcement versus extinction,
and then varied some aspects of one or both
stimuli. Conversely, those experimenters who
have concentrated on ‘‘the reinforcing con-
sequences’’ have usually explored the effects
of various schedule contingencies within a
single undifferentiated session, with no ex-
plicit antecedent stimuli. When two or more
schedules have been studied within a single
session, they have generally been correlated
with highly distinctive stimuli. Although there
are many exceptions to these overly simple
generalizations, there have been few system-
atic efforts to study the joint effects of varia-
tions in reinforcing consequences and in ac-
companying stimuli. Neither is there much
systematic information on the effects of vari-
ations in ‘‘the response itself,’’ and how dif-
ferent response definitions may interact with
stimulus and reinforcer control. Here, we
show that variations in each of the three
terms of the discriminated operant may have
functionally similar effects, and we present a

1 The definition of this and other technical terms can
be found in Appendix A.
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Fig. 1. The contingencies of the concurrent discrim-
inated operant. Each of two different responses is rein-
forced in the presence of a different discriminative stim-
ulus.

simple algebraic model that provides an eco-
nomical summary of these effects in many
standard experimental situations.

The model has two major components.
The first component characterizes an organ-
ism’s history of reinforcement for different
responses in the presence of different stimuli
during prolonged exposure to an experimen-
tal condition. Two parameters are identified
with the confusability of the relations among
the stimuli, responses, and reinforcers defin-
ing two or more discriminated operants;
these parameters are used to derive an alge-
braic expression of the effective allocation of
reinforcers accruing to those operants. The
second component characterizes the way in
which the effective allocation of reinforcers
determines steady-state behavior.

The model will be developed initially for
experimental paradigms that explicitly define
two discriminated operants, where Response
1 is reinforced in the presence of, or follow-
ing, Stimulus 1, and Response 2 is reinforced
in the presence of, or following, Stimulus 2,
as shown in the matrix of Figure 1. The re-
sponses are available concurrently, and the
stimuli are presented successively. In some
standard paradigms, Response 2 may be un-
specified, as in single-response ‘‘go/no-go’’
successive discriminations. However, Herrn-
stein (1970) rightly pointed out that when an
experimenter arranges for a response (B1) to
be reinforced (R1), there exists by definition
a complementary (or extraneous) class of re-
sponses (not-B1, designated Be by Herrnstein)
that is reinforced by a complementary (or ex-
traneous) class of reinforcers (not-R1, desig-
nated Re). The term extraneous is to be under-
stood only in relation to the experimenter’s
arrangement of contingencies. Thus, all be-
havior occasioned by an antecedent stimulus
occurs in a context of concurrent alterna-
tives, whether measured or not. We therefore
suggest that the fundamental unit of behavior

is the concurrent discriminated operant and not
(as suggested by Skinner, 1969) the single dis-
criminated operant.

We begin by illustrating some qualitative
similarities in the effects of the three terms
defining concurrent discriminated operants
within some standard experimental para-
digms: (a) successive discriminations and
multiple schedules, which correspond to one
column of the matrix of Figure 1; (b) simul-
taneous discriminations and concurrent
schedules, which correspond to collapsing
the two rows of the matrix into a single row;
and (c) conditional discriminations, which
correspond to the full matrix.

The model that we develop here is based
on previous modeling efforts by ourselves
and our colleagues over a number of years,
which are reviewed briefly. We then present
the model for the basic conditional discrimi-
nation paradigm illustrated in Figure 1, and
develop it for progressively more complex
cases. The model’s predictions are compared
with conditional discrimination data from a
variety of paradigms, including signal recog-
nition and matching to sample with two or
more defined stimuli and responses. We also
treat the effects of reinforcing responses that
are conventionally construed as errors in
these paradigms. We then return to cases in
which extraneous responses and reinforcers
must be considered, and discuss ways to in-
corporate the effects of reinforcer magnitude
or quality in future models. Although all of
the data that we compare with model predic-
tions are from nonhuman subjects, primarily
pigeons, we conclude by considering the rel-
evance of our model to research and appli-
cation with humans.

SOME EQUIVALENCES
AMONG THE TERMS OF

THE DISCRIMINATED
OPERANT

A number of experiments have demon-
strated that varying one of the three terms of
the discriminated operant may be function-
ally equivalent to varying another term, thus
suggesting the possibility of a unified descrip-
tive account.
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Free-Operant Successive Discrimination and
Multiple Schedules

Perhaps the simplest arrangement for the
study of discriminated operants is the suc-
cessive go/no-go or SD/SD free-operant par-
adigm. For example, a pigeon is trained to
peck a key for food reinforcers arranged by
a variable-interval (VI) schedule of rein-
forcement in the presence of one stimulus
(designated S1, SD, or more generally S1),
where S1 alternates with a second stimulus
(designated S2, SD, or more generally S2) in
the presence of which responses never pro-
duce food. This procedure is known as a
multiple VI extinction schedule of reinforce-
ment, with its components defined by the
stimuli and the schedules they accompany.
As noted above, the procedure corresponds
to the left column of the matrix in Figure 1.
In effect, the procedure defines two succes-
sive discriminated operants: S1:(peck → VI
food) and S2:(peck → no food). Our nota-
tion is intended to signify that the stimuli set
the occasion for a specified outcome if a
specified response occurs. We will subse-
quently refer to these relations by saying that
a given stimulus signals a specified contin-
gency of reinforcement.

The usual result of this procedure is a high
rate of responding during S1 and a near-zero
rate during S2. However, the response rate
during S1 depends on the rate of reinforce-
ment arranged by the VI schedule: The high-
er the rate of reinforcement, the higher the
rate of responding. At the same time, the rate
of responding during S2 depends on the phys-
ical difference between S1 and S2: The smaller
the S1-S2 disparity, the higher the rate of S2

responding. In the limit, with zero S1-S2 dif-
ference, the response rates become identical,
at least if the occurrence of reinforcement or
the passage of time cannot serve as cues for
the component in effect. This would require
that the two components alternate irregular-
ly, that S1 components end after each rein-
forcer, and that S2 components end at ran-
dom times (Alsop & Davison, 1991).

Cumming (1955) systematically explored
both the rate of reinforcement during S1 and
the S1-S2 disparity with pigeons as subjects and
with S1 and S2 defined by two luminance lev-
els of a white keylight. He found that the ratio
of response rates during S1 versus S2 increased
with the S1-S2 disparity, and that for any given

S1-S2 disparity, both response rates varied di-
rectly with the rate of reinforcement during
S1 so that their ratio was approximately con-
stant. An alternative approach to the study of
discriminated operant performance in mul-
tiple schedules is to hold the stimuli constant
and vary the rates of reinforcement during
both S1 and S2. For example, Reynolds (1963)
trained pigeons to peck at red (S1) and green
(S2) keys, where S1 and S2 alternated every 3
min and independent VI schedules were ar-
ranged in their presence. Over successive
conditions, the VI schedules were varied sys-
tematically. In general, response rates were
positively related to the rate of reinforcement
arranged by the VI schedule in each compo-
nent, and the ratio of response rates was an
orderly increasing function of the ratio of re-
inforcer rates. From this line of research, it is
clear that response rates are equal under two
sorts of conditions: first, when the schedules
are different and the accompanying stimuli
are the same; and second, when the accom-
panying stimuli are different but the sched-
ules are the same. Colloquially, in the first of
these the subject ‘‘cannot’’ discriminate be-
cause the stimuli are indiscriminable, where-
as in the second the subject ‘‘will’’ not dis-
criminate in the sense that, if the
consequences are indiscriminable, equal re-
sponding is obligatory.

Clearly, there are two continua to be ex-
plored here: the difference between the stim-
uli, and the difference between the reinforce-
ment schedules. However, research on
multiple schedules exemplifies the point that
analyses of the effects of the stimuli and of
the reinforcement schedules have been large-
ly independent. One body of literature has
followed the tradition of Guttman and Kalish
(1956), using multiple VI extinction sched-
ules while varying one or more stimulus di-
mensions during a maintained generalization
test (for review, see Heinemann & Chase,
1975). A separate literature has followed the
early work of Reynolds (1961), exploring the
effects of various reinforcement schedules
and component durations with constant,
highly distinctive stimuli (for review, see Dav-
ison & McCarthy, 1988). Only a few studies
(e.g., White, Pipe, & McLean, 1984) have sys-
tematically examined the joint effects of both
determiners of discriminated operant perfor-
mance in multiple schedules.
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Choice: Simultaneous Discrimination and
Concurrent Schedules

Traditional studies of discrimination learn-
ing have often presented two stimuli simul-
taneously in discrete trials, with their spatial
locations (typically left-right) varied irregular-
ly, and with reinforcement available for a sin-
gle response directed toward one stimulus
(S1) but not to the other (S2). Performance
is usually measured as percentage choices of
S1, conventionally identified as ‘‘correct’’ re-
sponses. In most research, the stimuli differ
substantially, and interest typically centers on
the acquisition, transfer, or reversal of the dis-
crimination as affected by other variables
such as prior learning history or physiological
intervention.

Clearly, acquisition and maintained accu-
racy will depend on the difference between
the stimuli, and for this reason the simulta-
neous discrimination procedure has been
used for psychophysical assessment of sensory
sensitivity in well-trained animal subjects
(e.g., Mentzer, 1966). In the limit, when the
stimuli are identical, accuracy should fall to
chance levels. Performance on a difficult lu-
minance discrimination, under which accu-
racy was maintained at about 75% to 80%,
was studied by Nevin (1967). He arranged
discrete trials that ended after 2 s if no re-
sponse occurred and found that the proba-
bility or schedule of reinforcement for cor-
rect choices affected the overall probability of
response but not the ratio of S1 to S2 respons-
es (and thus the percentage of correct re-
sponses). This result parallels Cumming’s
(1955) findings with free-operant multiple
schedules described above. Although most si-
multaneous discrimination research has al-
lowed only one response per trial, as in Nev-
in’s (1967) study, free-operant simultaneous
discrimination procedures with extended
stimulus presentations, and with VI reinforce-
ment of responses on one alternative and ex-
tinction of responses on the other, have also
been studied (e.g., Honig, 1962).

Whether the procedure involves discrete
trials or extended stimulus presentations, it
may be construed as involving either two or
four operants. The two-operant interpreta-
tion neglects response locations and empha-
sizes the stimuli: Respond to S1 → food, and
respond to S2 → no food. In effect, this ap-

proach defines the responses by the stimuli
toward which they are directed (where ‘‘to’’
is intended as shorthand for ‘‘directed to-
ward’’). The paradigm corresponds to col-
lapsing the upper and lower rows of the ma-
trix in Figure 1 into a single row, in which the
contingencies are signaled by simultaneous
presentation of S1 and S2. The four-operant
interpretation refers to both stimulus and re-
sponse locations: S1 left:(respond left →
food); S1 left:(respond right → no food); S1

right:(respond right → food); and S1 right:
(respond left → no food), thereby corre-
sponding to the full matrix of Figure 1. There
has been considerable theoretical debate
over the correct interpretation (see Mackin-
tosh, 1974, for review), with no generally ac-
cepted conclusion. In view of our interest in
the response term, we opt for the four-oper-
ant approach.

A separate line of research has studied the
effects of simultaneously available reinforce-
ment schedules, known as concurrent sched-
ules, which may be continuously available for
free-operant responding or arranged in dis-
crete trials (e.g. Herrnstein, 1961; Nevin,
1969a; see Davison & McCarthy, 1988, and
Williams, 1988, for reviews). Because this
work informs much of our thinking, it will be
described in some detail.

In an early study of concurrent-schedule
performance, Herrnstein (1961) trained pi-
geons to peck at either of two simultaneously
available keys, with food reinforcers arranged
by independent VI schedules. In one condi-
tion, for example, the average interval be-
tween reinforcers was 2.25 min for pecks on
Key 1 and 4.5 min for pecks on Key 2. As a
result, the birds could obtain about 27 rein-
forcers per hour on Key 1 and about 13 per
hour on Key 2. In the course of a 60-rein-
forcer session, the birds made about 6,000
key pecks, with about 4,000 on Key 1 and
2,000 on Key 2. Thus, responding was distrib-
uted in about the same ratio as the obtained
reinforcer rates. This result held for several
other schedule combinations. The general re-
sult is expressed algebraically as

B R1 15 , (1)
B R2 2

where B1 and B2 are the numbers of respons-
es emitted on the two keys, and R1 and R2 are
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the numbers of reinforcers obtained by pecks
to those keys.

It is important to note that these response
ratios were not constrained by the procedure:
For example, all reinforcers could have been
obtained by simply alternating from one key
to the other, in which case B1/B2 would be
1.0 regardless of the two schedule values. To
reduce the likelihood of this pattern of re-
sponding, most conditions of the experiment
involved a penalty for changes from one key
to the other known as a changeover delay
(COD). Specifically, Herrnstein arranged
that pecks could not be reinforced until at
least 1.5 s had elapsed since a changeover
from one key to the other. This COD pre-
vented immediate reinforcement of simple al-
ternation, and may be interpreted as estab-
lishing the independence of the two
operants: Peck Key 1 → food, and peck Key
2 → food. Herrnstein found that switching
was much less frequent and response alloca-
tion more nearly approximated exact match-
ing when the COD was in effect, suggesting
that matching may be the normative result if
the two operants are indeed independent.

Another method for arranging concurrent
schedules had been described earlier by Fin-
dley (1958). His method involved correlat-
ing the two VI schedules with different stim-
uli on a main key, as in multiple schedules,
but allowing the subject to change over from
one to the other by pecking a second switch-
ing or changeover key. In this arrangement,
the concurrent operants are defined by the
explicit stimuli on the main key rather than
topographically by key location, as in Herrn-
stein’s (1961) study. Despite these differenc-
es, the results were similar to Herrnstein’s,
in that the ratio of responses, and of times
spent in the presence of each stimulus,
roughly equaled or matched the ratio of the
reinforcer rates. However, there were some
systematic deviations from matching (see
Nevin, 1984, for reanalysis of Findley’s data),
and Equation 1 must be modified to de-
scribe them. A simple modification that cap-
tures these and many other results very well
is the generalized matching law (Baum,
1974, 1979):

aB R1 15 c , (2)1 2B R2 2

where c represents a constant bias toward one
or the other operant, evident in unequal re-
sponding when the reinforcer rates are equal,
and a represents sensitivity to reinforcement.
When c is 1.0 and a is 1.0, Equation 2 reduces
to Equation 1 and describes strict matching,
as found by Herrnstein (1961). When a is 0,
response ratios are constant regardless of the
reinforcer ratios, a result that would arise if
the subject collected all reinforcers simply by
pecking the two keys (or stimuli) in strict al-
ternation, or in any other pattern that was
independent of the two schedule values.

This discussion suggests that concurrent
operants may be defined either by the re-
sponse (e.g., by key location) or by the stim-
ulus signaling the schedule in effect, with, as
far as we know, roughly equivalent results.
Moreover, some data suggest that sensitivity
to reinforcement depends on the extent to
which the two operants are differentiated
with respect to reinforcement by the COD
(see Davison & McCarthy, 1988, for a discus-
sion of these findings). Another method for
varying the difference between concurrent
operants was described by Miller, Saunders,
and Bourland (1980). They employed the
Findley switching-key procedure and varied
the relative rates of reinforcement. Also,
across groups of birds they varied the similar-
ity of the stimuli defining the two operants
(lines of various orientations projected on the
main key). For one group, the stimuli were
lines of the same orientation; for the second
group, the lines differed by 158; and for the
third group, the lines differed by 458. The val-
ues of a were about 0.17, 0.33, and 0.99 for
these three sets of stimulus disparities. (With
08 disparity, the value of a should have been
0; however, as Alsop & Davison, 1991, sug-
gested, the reinforcer rates may themselves
have provided cues to the different sched-
ules.) The general conclusion is that sensitiv-
ity to reinforcement depends on the extent
to which concurrent operants are differenti-
ated by the variables that define them.

Conditional Discriminations

Conditional discriminations combine the
successive stimulus presentations of multiple
schedules and the simultaneous availability of
two choices with their associated schedules, as
in concurrent schedules. As shown in the ma-
trix of Figure 1, reinforcement is conditional
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Table 1

Summary examples of the four discriminated operants in
various paradigms described in the text.

Stimulus Response
Conse-
quence

Signal Signal 1 noise ‘‘Yes’’ Payoff
detection Signal 1 noise ‘‘No’’ Penalty

Noise ‘‘Yes’’ Penalty
Noise ‘‘No’’ Payoff

Matching Red sample Peck red Food
to sample Red sample Peck green No food

Green sample Peck red No food
Green sample Peck green Food

Free operant Vertical line Peck Key 1 VI food
Vertical line Peck Key 2 No food
Horizontal line Peck Key 1 No food
Horizontal line Peck Key 2 VI food

upon the current or prior stimulus. The stan-
dard yes-no signal-detection experiment pro-
vides one example: If a signal is presented,
‘‘yes’’ is followed by a payoff and ‘‘no’’ is fol-
lowed by a penalty; if the signal is not pre-
sented, ‘‘no’’ is followed by a payoff and ‘‘yes’’
is followed by a penalty. The well-known
matching-to-sample procedure provides an-
other example: If the sample color on the cen-
ter key of a three-key chamber is lighted red,
and the side keys are then lighted with red
and green comparison colors, food is given for
pecks to red; but if the sample is green, food
is given for pecks to green. Although both of
these examples employ discrete-trial presen-
tations, conditional discriminations may also
be arranged for free-operant behavior during
extended stimulus presentations. For exam-
ple, White (1986) trained pigeons in a two-key
chamber with VI reinforcement of pecks on
Key 1 and extinction of pecks on Key 2 when
both keys had vertical lines projected on them.
Conversely, he arranged VI reinforcement for
pecks on Key 2 and extinction of pecks on Key
1 when both keys had horizontal lines pro-
jected on them. The four discriminated op-
erants in these examples are summarized in
Table 1. In each example, two discriminative
relations are successive, determined by the
stimulus presentation, as in multiple sched-
ules, and two are simultaneous, as in concur-
rent schedules. Thus, a full account of perfor-
mance in the conditional discrimination
paradigm should encompass multiple- and
concurrent-schedule performances as well.

The results of several studies suggest that

conditional discrimination performance de-
pends on stimulus, response, and reinforce-
ment terms in closely interrelated ways. The
accuracy of performance obviously depends
on the physical difference between the con-
ditional stimuli. For example, Swets (1959)
varied the signal-to-noise ratio in auditory sig-
nal detection with human subjects. With pi-
geons, McCarthy and Davison (1980a) varied
signal duration, and Wright (1972) varied
wavelength differences of lighted keys. All
found that accuracy (i.e., the degree to which
responses conformed to the experimenter’s
definition of reinforceable responses) in-
creased with stimulus disparity.

Not surprisingly, conditional discrimina-
tion performance also depends on the differ-
entiation between the responses. For exam-
ple, Eckerman (1970) trained pigeons to
peck different locations along a lighted 25-cm
strip in the presence of different wavelengths.
Three groups differed according to the re-
sponse definition on the strip key. For Group
1, both responses were defined near the cen-
ter of the strip; for Group 2, responses about
4 cm to the right of center were reinforced
on 506-nm trials, and responses 4 cm to the
left of center were reinforced on 583-nm tri-
als; and for Group 3, responses about 8 cm
to the right of center were reinforced on 506-
nm trials, and responses 8 cm to the left of
center were reinforced on 583-nm trials.
Group 1 made as many ‘‘errors’’ as correct
responses; Group 2 made relatively few er-
rors; and Group 3 made virtually none. This
result complements the findings of Miller et
al. (1980) with responses defined by their lo-
cation rather than by the stimulus.

The reinforcer is, of course, the third term
of the discriminated operant, and conditional
discrimination accuracy also depends on
whether the consequences of the two correct
responses (i.e., those specified for reinforce-
ment) in a standard two-stimulus two-re-
sponse conditional discrimination are the
same or different. For example, Peterson,
Wheeler, and Trapold (1980) trained pigeons
in a conditional discrimination problem in
which a green center key signaled that a peck
to the side key with vertical lines was correct,
and a red center key signaled that a peck to
the side key with horizontal lines was correct.
One group of pigeons received food accom-
panied by a tone for both kinds of correct
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Fig. 2. The conditional discrimination matrix. The
stimuli are designated S and the responses B, and the
cells of the matrix are designated as the stimulus–re-
sponse combinations.

responses; another group received food plus
tone for one kind of correct response and
tone alone (i.e., no food) for the other. The
latter group was substantially more accurate
than the former, especially when delays were
introduced between the center-key color and
the side-key choice. This exemplifies the dif-
ferential outcome effect first reported by Trapold
(1970), and is here interpreted as resulting
from the larger difference between discrimi-
nated operants for the latter group. These re-
sults are entirely consistent with the depen-
dency of multiple- and concurrent-schedule
performances on the degree of differentia-
tion between the two discriminated operants,
as discussed above.

In the model that we develop below, we
employ a theoretical parameter, dsb , that mea-
sures the distinctiveness of the relation be-
tween the conditional stimuli and the re-
sponses they occasion for one discriminated
operant relative to another. The value of this
parameter should be affected, for example,
by the difference between the conditional
stimuli and by the delay between the condi-
tional stimuli and responses. We employ a
second parameter, dbr , to represent the dis-
tinctiveness of the relation between behavior
and reinforcement for one discriminated op-
erant relative to another. The value of dbr re-
flects the joint effects of variables that influ-
ence response–reinforcer contingencies such
as the qualities or delays of the outcomes and
the topographical differentiation of respons-
es. It is important to observe that response
differentiation will be reflected in both pa-
rameters: For example, in Eckerman’s (1970)
study, increasing the separation between cor-
rect responses would increase both dsb and
dbr .

A MODEL OF
DISCRIMINATED

OPERANT BEHAVIOR

In view of the discussion above, an ade-
quate model must include terms for the de-
gree of differentiation between two operants
based on the stimulus–response relation
(what response goes with what stimulus) and,
separately, the response–reinforcer contin-
gencies that define those two operants (what
reinforcer goes with what response). We be-
gin with a brief review of earlier modeling

efforts, partly to set the stage for the present
model and partly because they will be re-
ferred to below.

Background

Nevin, Jenkins, Whittaker, and Yarensky
(1977,2 1982) proposed a model of signal-de-
tection performance based on the direct and
generalized strengthening effects of reinforc-
ers obtained in the cells of the matrix of Fig-
ure 2, which simply expands Figure 1 with
notation for all four cells. The basic notion
was that reinforcers for B1 on S1 trials (R11)
would also strengthen B1 on S2 trials, to the
extent that S1 and S2 are confusable. Thus,
although R21 is actually zero, it may effectively
be greater than zero. Likewise, reinforcers for
B2 on S2 trials (R22) would also strengthen B2

on S1 trials. The subject was assumed to
match the ratio of B1 and B2 to the ratio of
direct and generalized reinforcers, separately
on S1 and S2 trials (for full rationale and equa-
tions, see Nevin, 1981; Nevin et al., 1982).

Davison and Tustin (1978) arrived at a sim-
ilar formulation by a different route. Taking
the generalized matching law (Equation 2) as
their starting point, they proposed that S1 and
S2 could be construed as biasing response al-
location toward B1 or B2, respectively. Because
we will have several occasions to refer to their
formulation below, we present their equa-
tions and measures here:

aB R11 115 cd , (3a)1 2B R12 22

and

aB c R21 115 , (3b)1 2B d R22 22

2 Nevin, J. A., Jenkins, P., Whittaker, S., & Yarensky, P.
(1977, November). Signal detection and matching. Paper
presented at the meetings of the Psychonomic Society,
Washington, DC.
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where c represents inherent bias that is con-
stant with respect to the reinforcer ratio and
a represents the sensitivity of choice alloca-
tion to the reinforcer ratio, as in Equation 2.
The parameter d—stimulus bias—represents
the discriminability between S1 and S2. If d 5
1, signifying zero discriminability, response
ratios are identical on S1 and S2 trials. To show
that d is predicted to be independent of re-
inforcement, Equation 3a is divided by Equa-
tion 3b and the reinforcers cancel out. Re-
arranging and taking square roots,

0.5B B11 22d 5 . (4)1 2B B12 21

Thus, d is measured directly by the geometric
mean of the ratios of correct to incorrect re-
sponses in the presence of Stimuli 1 and 2.

To show that sensitivity to reinforcement
(a) is predicted to be independent of stimu-
lus discriminability, Equation 3a is multiplied
by Equation 3b and d cancels out. Taking
square roots,

0.5 aB B R11 21 11b 5 5 c , (5)1 2 1 2B B R12 22 22

where b, the geometric mean of the ratios of
responses to Alternatives 1 and 2 given Stim-
uli S1 and S2, is an overall measure of behavior
allocation. Empirically, of course, d may de-
pend on reinforcer scheduling, and a may de-
pend on the S1-S2 difference. Many experi-
ments have explored these questions (e.g.,
McCarthy & Davison, 1979, 1980a, 1984) with
no simple conclusion emerging (for review,
see Alsop & Davison, 1991).

Although the model of Davison and Tustin
(1978) has been successful as a descriptive
framework, it does not address the processes
that determine sensitivity to reinforcement: a
is simply a free parameter. With reference to
the study by Miller et al. (1980), Davison and
Jenkins (1985) suggested that if two concur-
rently available response alternatives were not
well differentiated, reinforcers obtained by
one response might have the effect of
strengthening the other response. The idea
is basically similar to the generalized strength-
ening effects across stimuli proposed by Nev-
in et al. (1977, Footnote 2). To characterize
the discriminability of the response–reinforc-
er contingency, Davison and Jenkins intro-
duced a second parameter, dr. They suggest-

ed that conditional discrimination
performance depended jointly on stimulus
discriminability and contingency discrimina-
bility according to the following equations:

B d R 1 R11 r 1 25 d , (6a)s1 2B d R 1 R12 r 2 1

and

B 1 d R 1 R21 r 1 25 , (6b)1 2B d d R 1 R22 s r 2 1

where ds represents stimulus discriminability,
as does d in the Davison-Tustin model, and dr

represents contingency discriminability. Dav-
ison and Jenkins showed that the value of dr

described the degree of undermatching in
concurrent schedules and conditional dis-
criminations (i.e., the extent to which a , 1
in Equations 2, 3a, and 3b). Moreover, dr

could be identified with parameters of the ex-
perimental contingencies in the same way
that ds could be identified with stimulus pa-
rameters.

The Davison-Jenkins (1985) model re-
quires discrimination, as measured by ds, to
be unaffected by dr. This may be seen by di-
viding Equation 6a by 6b, canceling out the
reinforcer terms and showing that ds, like
Davison and Tustin’s d, is given by Equation
4. This result leads to a problem. If dr 5 1.0,
representing a total failure to discriminate
which reinforcer goes with which response,
the model predicts that response ratios will
be constant and independent of reinforcer
ratios. Thus, performance in S1 5 ds, and per-
formance in S2 5 1/ds for all reinforcer ratios.
However, it is highly unlikely that such differ-
ential control by the stimuli could be effective
in the absence of differential control by the
reinforcement contingency. The situation is
similar to that with identical multiple VI VI
schedules signaled by red and green keylights
discussed above: Although red and green may
be highly discriminable by some other mea-
sure, equal response rates are forced if the
contingencies of reinforcement are not dis-
criminated.

The foregoing discussion suggests that it is
essential to distinguish between stimulus dis-
criminability as a theoretical parameter and
stimulus control or discrimination as measured
by Equation 4. We will have occasion to re-
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mind readers of this point as the argument
proceeds.

Although stimulus discriminability and
contingency discriminability were conceptu-
alized similarly in the Davison-Jenkins (1985)
model, they were not treated similarly in its
equations; and it is the equations that do the
work. A model that avoids the difficulty in-
herent in the Davison-Jenkins model, and
which gives algebraic as well as conceptual
equivalence to stimulus and contingency dis-
criminability, was introduced jointly by Alsop
(1987)3 and by Davison (1987)4 and first pub-
lished by Alsop (1991) and Davison (1991b).
It addresses steady-state behavior only, leaving
for future development the consideration of
transition states such as acquisition or extinc-
tion. The model will be reviewed and devel-
oped here for a simple conditional discrimi-
nation performance, and then will be
extended to describe performance in related
cases that include complex conditional dis-
criminations, reinforcement for convention-
ally defined ‘‘errors’’ in conditional discrim-
inations, and multiple and concurrent
schedules.

Initial Assumptions

We assume that behavioral allocation is
based on strict matching of behavior ratios in
the presence of (or following) conditional
stimuli to the effective allocation of reinforcers
for responses in the presence of these stimuli.
In spirit, this assumption is similar to Killeen’s
(1994) argument that reinforcement acts on
the effective response unit for the organism,
which may not be the same as the unit spec-
ified by an experimental contingency. Our
model is principally concerned with estimat-
ing the effective allocation of reinforcers
when the stimulus–response and response–
reinforcer contingencies defining the dis-
criminated operants are confusable. Initially,
a model will be developed for four discrimi-
nated operants, comprising two conditional
stimulus conditions and two responses. Later,

3 Alsop, B. (1987, June). Choice models of signal detection
and detection models of choice. Paper presented to the 10th
Harvard Symposium on the Quantitative Analysis of Be-
havior, Boston.

4 Davison, M. (1987, June). Stimulus discriminability,
contingency discriminability, and complex stimulus control. Pa-
per presented to the 10th Harvard Symposium on the
Quantitative Analysis of Behavior, Boston.

the model will be generalized to any number
of discriminated operants.

As described above, the simplest condition-
al discrimination involves the successive and
randomized presentation of one or the other
of two stimuli, designated S1 and S2, where
two response alternatives, B1 and B2, are si-
multaneously available. When S1 is present, B1

may be deemed correct and is reinforced ac-
cording to some schedule, and when S2 is
present, B2 may be deemed correct and is re-
inforced according to a separate schedule.
The paradigm is summarized in the 2 3 2
matrix of Figure 2, which repeats Figure 1
with added notation. The four resulting dis-
criminated operants are designated accord-
ing to their stimulus and response identifi-
cation.

For the simple case described in Figure 1,
reinforcers can occur only in Cells 11 and 22,
and are designated R11 and R22. These rein-
forcers are assumed to strengthen the re-
sponses that produce them, designated B11

and B22. However, to the extent that the stim-
uli are confusable, R11 will also strengthen re-
sponding in Cell 21, designated B21; likewise,
R22 will also strengthen responding in Cell 12,
designated B12, as suggested by Nevin et al.
(1977, Footnote 2). Let us assume that the
conditional stimuli, as identified with re-
sponses, are located on a dimension of psy-
chometric space. We shall not endeavor here
to locate the stimuli in an absolute sense, but
just to measure their distance apart. Follow-
ing Davison (1991b), we assume that the psy-
chometric distance between two stimuli is giv-
en by dsbi1i 2, where i1 and i2 designate the two
stimulus conditions. Such a measure ranges
from one (the stimuli are completely nondis-
criminable) to infinity (the stimuli are per-
fectly discriminable). We assume that the dis-
tances between stimuli satisfy a ratio scale, so
that it is meaningful to assert that, for ex-
ample, dsb13 5 2*dsb12. This assumption implies
a log interval scale, and we will sometimes
report values of log dsb (with values between
zero and infinity).

Further, again following Davison (1991b),
we assume that the generalization of rein-
forcer effects from Stimulus S1 to Stimulus S2

decays inversely with dsb12. Thus, the effective
reinforcer contribution of R11 to Response 1
in Stimulus 2 is R11/dsb12. The function is por-
trayed in Figure 3. It is similar to the expo-
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Fig. 3. The assumed decrease in reinforcer value act-
ing on a stimulus–response pair as a function of the psy-
chometric distance between that stimulus–response pair
and the pair that gained reinforcement.

Fig. 4. How the effects of a single reinforcing event
in Cell 11 are generalized via Cell 12 to Cell 22 in the
conditional discrimination matrix. Equivalent processes
(not shown) will also generalize this event into Cells 12
and 21. The same process is assumed to occur for rein-
forcers delivered in any cell of the matrix.

nential decay function conjectured by Shep-
ard (1958) as the universal form of
generalization gradients, but it falls off rela-
tively more steeply at small values and less
steeply at large values. Future modeling ef-
forts may need to explore the exponential or
other forms of the decay function.

As we noted above, dsb is conceptually sim-
ilar, in determining the effective reinforcer
allocation, to the measure of stimulus dis-
criminability (d or log d) offered by Davison
and Tustin (1978). However, it is also impor-
tant to note that these measures are not the
same, because the mechanisms and equations
are very different. The measure log d is cal-
culated from discrimination performance,
which (as suggested above) may be affected
by variables other than the discriminability of
their respective stimulus–response pairs, such
as the discriminability of their respective re-
sponse–reinforcer contingencies. For exam-
ple, in matching to sample, log d decreases
when a delay is inserted between the choice
response and the reinforcer, even though the
stimuli, the responses, and the relations be-
tween them (i.e., respond to the key with the
same color as the sample) are unchanged
(McCarthy & Davison, 1986). As we will show,
this decrease in log d is compatible with in-
variance in dsb , which would be consistent
with the unchanged relation between the
samples and the choice responses.

By analogy to the treatment of stimulus–
response confusability, we assume that re-
sponse–reinforcer contingencies are also con-
fusable. To the extent that they are confused,

a reinforcer delivered for B11 will also
strengthen B12, and a reinforcer delivered for
B22 will also strengthen B21. Again following
Davison (1991b), we assume that the gener-
alization of reinforcer effects from response
B11 to Response B12 decays inversely with dbr12.
Thus, the effective reinforcer contribution of
R11 to Response 2 in Stimulus 1 is R11/dbr12. If
the response–reinforcer contingencies are
perfectly differentiable, dbr 5 `, and the re-
inforcer strengthens only the response that
produced it. If the response–reinforcer con-
tingencies are indistinguishable, dbr 5 1, and
the reinforcer strengthens both responses
equally, regardless of which response pro-
duced it. As for dsb , we will generally report
values of log dbr , which ranges from zero to
infinity. The parameter dbr is affected by such
variables as the differences between the re-
sponse definitions (e.g., along a strip key, as
in Eckerman’s, 1970, study), the differences
in the outcomes of the responses (as in Pe-
terson et al., 1980), or the delay between re-
sponses and reinforcers (as in McCarthy &
Davison, 1986, where dbr is expected to de-
crease with increases in delay). Figure 4
shows how the values of log dsb12 and log dbr12

affect the generalization of the effects of a
single reinforcer obtained by B1 in the pres-
ence of S1 across stimuli and responses.
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Fig. 5. The effective reinforcer allocations in the four
cells of the conditional discrimination matrix under con-
ditions of reinforcement for B1 in the presence of S1 and
for B2 in the presence of S2.

To get an intuitive sense of the model, con-
sider the subject as experiencing the varia-
tions and repetitions in its behavior within a
stream of environmental events—lights,
tones, and the like—some of which recur
from time to time. When a reinforcer dis-
rupts the flow of the stream, its strengthening
effect is felt directly on the relation between
current or recent environmental events and
the response being emitted when the rein-
forcer arrived. The strengthening effect also
generalizes to other environmental events
and responses to the extent that they are con-
fusable with those that occurred in close con-
tiguity with the reinforcer, as measured by the
inverse of dsb and dbr. We assume that this pro-
cess operates following each reinforcer, as
suggested in Figure 4, to increment the val-
ues of the cells in the matrix of Figure 2. The
rate or probability of reinforcement correlat-
ed with a particular discriminated operant af-
fect only the stable-state values assigned to
the relevant cells. As noted earlier, we are not
yet attempting to address acquisition or tran-
sition states. We assume that nonoccurrence
of R1 or R2 does not reduce the effective re-
inforcement in any cell. Because it operates
sequentially, reinforcer by reinforcer, the
model is molecular and dynamic. However,
the model is molar in the sense that, after
prolonged experience under constant exper-
imental conditions, the direct and general-
ized reinforcement values of the cells will set-
tle into stable ratios, and it is these ratios that
determine choice.

The effective numbers of reinforcers, di-
rect or generalized, that have accumulated
during steady-state performance are given by
the expressions in the four cells in Figure 5.
When the experimenter presents a particular
stimulus repeatedly during prolonged expo-
sure to the experimental conditions, the sub-
ject is assumed to emit one or the other of

the measured responses in accordance with
the ratio of effective reinforcers that have ac-
crued to the two cells of the matrix that cor-
respond to that stimulus. In its basic form,
our model is concerned solely with reinforcer
frequencies in the cells of the matrix and not
with their values (as determined by magni-
tude or quality); we will discuss the extension
of the model to encompass such factors in
the section on concurrent schedules, below.

More generally and formally, we assume
that responses allocated to the cells of the
matrix in Figure 2 match the ‘‘apparent,’’
‘‘perceived,’’ or ‘‘effective’’ long-term alloca-
tion of reinforcers, which will deviate from
their veridical (i.e., experimenter-measured)
allocation to the extent that dsb and dbr are less
than infinite, as shown in Figure 5. We rec-
ognize that terms like apparent, perceived, and
effective reinforcers may seem loose, but here
they occur as technical terms that are defined
quantitatively by equations describing how,
through generalization engendered by con-
fusion between stimulus–response relations
and between response–reinforcer relations,
the experimenter-measured reinforcer allo-
cations are transformed into quantities that
affect behavior. The terms are always used as
a convenient shorthand for the operations of
our proposed equations.

The resulting equations that predict re-
sponding in the presence of, or following, the
two conditional stimuli are, for S1,

R22R 111B d d d d R 1 R11 sb12 br12 sb12 br12 11 225 c 5 c ,
B R R d R 1 d R12 11 22 sb12 11 br12 221

d dbr12 sb12

(7a)

and for S2,

R R11 221
B d d d R 1 d R21 sb12 br12 br12 11 sb12 225 c 5 c .
B R R 1 d d R22 11 11 sb12 br12 221 R22d dsb12 br12

(7b)

The values of dsb12 and dbr12 can be estimated
by a nonlinear optimization program (see Ap-
pendix B) from a set of data taken across con-
ditions that vary the ratio of R11 to R22.

As in the generalized matching law (Baum,
1974), c represents a constant proportional
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preference (inherent bias; see Davison & Tus-
tin, 1978) for one alternative response over
the other. The value of c should be unaffect-
ed by changes in the conditional stimuli or
in the frequency of reinforcers for the two
correct responses. It need not, however, re-
main constant when either the response to-
pographies or the magnitudes of reinforcers
are changed.

The assumption that behavior allocation
between cells strictly matches (equals) the ef-
fective reinforcer frequencies in the cells has
the benefits of simplicity. It might be objected
that such an assumption is too simple because
it is well known (e.g., Baum, 1974; see Davi-
son & McCarthy, 1988, for review) that such
strict matching seldom occurs, and that un-
dermatching (less change in behavior ratios
than in reinforcer ratios) is the norm. How-
ever, as we now show, undermatching arises
naturally from this model when the discrim-
ination between alternatives is less than per-
fect.

If Equations 7a and 7b are multiplied to-
gether, we can obtain a theoretical measure
of overall response bias (B):

B B11 212B 5
B B12 22

R R R22 11 22R 1 111 d d d dsb12 br12 sb12 br125 · . (8)
R R R11 22 111 1 R22d d d dbr12 sb12 sb12 br12

In this expression, B is the geometric mean
of the ratios of responses (i.e., B1/B2) taken
across the two choice alternatives. When dsb

5 1.0, the four operants are effectively sig-
naled by the same stimulus and the rows of
the matrix in Figure 2 collapse into a single
row, as in continuous free-operant two-key
concurrent schedules. Equation 8 then be-
comes

2 R22R 111 B B d11 21 br2B 5 5 c . (9) 
B B R12 22 11R 1 22 dbr 

In this expression, B is equivalent to b, the
combination response bias measure used by
Davison and Tustin (1978) to characterize
differential responding with respect to rein-

forcement (see Equation 5) but only when dsb

5 1.0. Note, however, that the reinforcer
term is not the same as in Equation 5. We use
the upper case here because B is not equiva-
lent to b when dsb . 1.0. (Recall that stimulus-
related parameters analogous to dsb canceled
out when Equations 3a and 3b in the Davison-
Tustin model or Equations 6a and 6b in the
Davison-Jenkins model were multiplied. The
same sort of cancellation does not occur
when Equations 7a and 7b are multiplied un-
less dsb 5 1.0. The implication is that the re-
lation between overall response bias and re-
inforcer allocation depends on the
discriminability of stimulus–behavior rela-
tions; we return to this point below.)

Equation 9 is the same as the equation that
follows Equation 11 of Davison and Jenkins
(1985), who showed that it gave a good ac-
count of choice data normally construed as
undermatching when fitted by the general-
ized matching law. When dbr approaches in-
finity, Equation 9 simplifies to

R11B 5 , (10)
R22

showing that overall behavior allocation to
Responses 1 and 2 strictly matches the ratio
of obtained (and, in this case, perceived) re-
inforcers.

To obtain a theoretical measure of stimulus
discrimination, we begin by dividing Equa-
tion 7a by 7b, which yields

B B11 222D 5
B B12 21 (11)

R R22 11R 1 1 R11 22d d d dsb12 br12 sb12 br125 · .
R R R R11 22 11 221 1
d d d dbr12 sb12 sb12 br12

In this expression, D is the geometric mean
of the ratios of responses normally construed
as ‘‘correct’’ responses and ‘‘errors.’’ Setting
dbr 5 ` and taking square roots, Equation 11
simplifies to

0.5B B11 22D 5 5 d . (12)sb1 2B B12 21

Note that reinforcer frequencies and bias
have canceled out in this expression, imply-
ing that, if dbr 5 `, D is independent of the
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ratio of reinforcers, real or apparent. Equa-
tion 12 is the same as Equation 4, which spec-
ified the parameter d in the Davison-Tustin
model. This measure was, in their model, a
pure measure of the effect of stimulus dis-
parity because they ignored dbr, effectively set-
ting it at infinity. The equivalence of D, d, and
dsb holds only if dbr 5 `; accordingly, we use
the upper-case D here and note that when dbr

is less than infinite, D will depend on the dis-
criminability of response–reinforcer relations
as well as stimulus–response relations.

So far, we have considered cases in which
dsb 5 1 and dbr 5 `; we now explore some
other cases involving extreme parameter val-
ues. When dsb 5 dbr 5 1.0, both response ra-
tios are predicted to be equal to c, and there
will be no effect of varying R11 or R22. By con-
trast, when both dsb and dbr are very large,
Equation 7a will approximate 1` and Equa-
tion 7b will approximate 2`, implying error-
less performance that is unaffected by vary-
ing R11 or R22.

When dbr 5 1.0, the absence of any appar-
ent differential reinforcement leads to the ab-
sence of control by changes in the reinforcer
ratio for correct responses (Equation 9 5 c),
and no differential responding with respect
to stimuli (Equation 11 5 1.0 regardless of
the value of dsb). The basic result, then, is that
according to Equations 7a and 7b and their
combinations, differential responding with
respect to reinforcement can occur only if dbr

. 1.0. Moreover, differential responding with
respect to stimuli depends on effective (rath-
er than arranged) differential reinforcement
with respect to responding. There can be no
stimulus control without effective differential
reinforcement (cf. the model suggested by
Davison and Jenkins, 1985, Equations 6a and
6b, in which stimulus control could occur
without effective differential reinforcement).

More generally, the effects of dsb and dbr on
differential responding with respect to Stim-
uli S1 and S2 (measured by log D) and with
respect to Responses B1 and B2 (measured by
log B) as functions of R11/R22 are summarized
by the examples in Figure 6. The upper pan-
els show the effects of the log reinforcer ratio
on log B as predicted by Equation 9 for two
representative values of dsb: a fairly easy dis-
crimination, dsb 5 10, in the left panel and a
difficult discrimination, dsb 5 2, in the right
panel. As dbr varies parametrically in four

steps from 1 to 1,000, the bias functions be-
come progressively steeper in both panels,
and will reach an asymptote at exact match-
ing when dbr 5 ` (not shown). This predicted
steepening parallels the changes that have
been observed with concurrent VI VI sched-
ules as a function of disparity between alter-
natives, as reported by Miller et al. (1980).
Note that the functions are roughly linear
over the center of the range, and thus con-
form approximately to the generalized
matching law when it is restated in loga-
rithms. Note also that the functions are steep-
er at each intermediate value of dbr when dsb

is 2 than when it is 10, and that the curvilin-
earity is more pronounced when dsb is smaller
than when it is larger. Thus, choice allocation
is predicted to be more sensitive to the rein-
forcer ratio when the stimuli are more con-
fusable.

The lower panels of Figure 6 show how log
D depends on the reinforcer ratio at two val-
ues of dbr when dsb varies parametrically in
four steps, as predicted by Equation 11. When
dbr 5 10 and dsb 5 1,000, the function is nearly
flat and log D approaches its maximum of
1.0, the limiting value permitted by dbr. As dsb

decreases, log D decreases systematically and
the functions assume an inverted-U shape un-
til, at dsb 5 1, log D falls to 0. When dbr 5 2,
the maximum value of log D is 0.3 (i.e., log
2), and compared with the predictions for dbr

5 10, log D is less affected by variations in log
reinforcer ratios. These examples illustrate
the fact that the accuracy of a discrimination
depends jointly on the discriminability of the
stimulus–behavior relations and the behav-
ior–reinforcer relations.

The effects of dsb and dbr are exactly inter-
changeable in their effects on log D. For ex-
ample, the values of log D for dsb 5 10, dbr 5
2 and for dsb 5 2, dbr 5 10 are identical, as
can be seen by inspection of Equation 11 and
by comparison of the shallow inverted-U
functions for these parameter values in the
lower panels of Figure 6. By contrast, the up-
per panels show that the effects of dsb and dbr

on log B are not interchangeable. For exam-
ple, the function for dsb 5 10, dbr 5 2 is sub-
stantially shallower than the function for dsb

5 2, dbr 5 10. More generally, when dbr ap-
proaches one, the effects of both the stimulus
difference and the reinforcer ratio are pro-
gressively weakened until behavior allocation
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Fig. 6. Upper panels: log B (Equation 8) as a function of the log reinforcer ratio for two values of response–
reinforcer discriminability (dbr). Lower panels: log D (Equation 11) as a function of the log reinforcer ratio for two
values of stimulus–response discriminability (dsb). Note that we use log B and log D to signify theoretical predictions
(see Appendix A). Parameter values are for dbr in the upper panel and for dsb in the lower panel.

is indifferent to all reinforcer ratios. However,
when dsb approaches one, measured discrim-
ination decreases at all values of the reinforc-
er ratio, but the sensitivity of choice alloca-
tion to the reinforcer ratio increases and
approaches strict matching. In this sense,
then, the discriminability of stimulus–re-
sponse relations and the discriminability of
the response–reinforcer contingency are pre-
dicted to have different behavioral effects
even though they are conceived of, and treat-
ed, in parallel.

Reinforcers for Errors with Two
Stimuli and Two Responses

Although most conditional discrimination
experiments employ the contingencies de-
scribed above (reinforcement for B1 only on
S1 trials, and reinforcement for B2 only on S2

trials), the effects of reinforcement for re-
sponses conventionally termed ‘‘errors’’—B1

given S2, and B2 given S1—are of major inter-
est. First, reinforcement of only ‘‘correct’’ re-
sponses is simply an extreme, and maybe un-

usual, point on the continuum of
discriminated operant contingencies. Any se-
rious model of contingencies of reinforce-
ment must deal with the entire continuum,
and must provide measures of dsb and dbr that
are unaffected by the distribution of reinforc-
ers in the matrix. Second, the introduction of
reinforcement for errors makes direct con-
tact with multiple concurrent schedules, in
which each of two simultaneously available re-
sponses may be reinforced on different
schedules depending on the stimulus signal-
ing them (e.g., McLean & White, 1983).

The approach taken above naturally gen-
eralizes to reinforcers delivered in any cell of
the matrix, with no further assumptions. Re-
inforcers delivered in any cell of a matrix will
have an influence on the effective reinforcer
rate in other cells depending on the discrim-
inability of both stimulus–response relations
and response–reinforcer relations between
those cells. The appropriate equations (for a
2 3 2 matrix, suppressing the further sub-
scripting of dsb and dbr) are, for S1,
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Fig. 7. Upper panel: the matrix of events in a three-
stimulus two-response detection matrix in which rein-
forcers are available for B1 in the presence of S1 and S3

and for B2 in the presence of S2. Lower panel: the effec-
tive reinforcer matrix for the events in the upper panel.

Fig. 8. The matrix of events in a three-stimulus three-
response detection matrix in which B1 is reinforced in
the presence of S1, B2 in the presence of S2, and B3 in
the presence of S3.

R R R12 21 22R 1 1 111B d d d d11 br sb sb br5 c , (13a)
B R R R12 11 21 221 R 1 112d d d dbr sb br sb

and, for S2,

R R R11 12 221 1 R 121B d d d d21 sb sb br br5 c . (13b)
B R R R22 11 12 211 1 1 R22d d d dsb br sb br

More Than Two Stimuli and Two Responses

The conventional conditional discrimina-
tion procedure employs a pair of stimuli, S1

and S2. We now consider the case of more
than two stimuli, some of which may share
identical reinforcer contingencies. This situ-
ation requires additional stimulus–response
discriminability parameters. Assuming sym-
metry (i.e., the discriminability of S1 from S2

is the same as the discriminability of S2 from
S1), there will, for N stimuli, be N!/(N 2 1)!
such parameters. This number quickly gets
out of hand, requiring an unachievable num-
ber of experimental conditions to provide ac-
curate estimates of the parameter values. As
a formal demonstration only, here we will
take three stimuli and two responses and,
rather than show the equations directly, we
will show a matrix of effective reinforcer val-
ues. We will assume that reinforcers are avail-
able for B1 in the presence of both S1 and S3

and for B2 in the presence of S2. The ar-
ranged stimulus–response–reinforcer matrix
is shown in the top of Figure 7 and the effec-
tive stimulus–response–reinforcer matrix is
shown at the bottom.

Note that apparent reinforcement for S1

and S3 is more similar when both stimuli sig-
nal reinforcement for the same response
than when they signal reinforcement for dif-
ferent responses. The similarity of effective
reinforcement for responses to otherwise dis-
tinctive stimuli may contribute to their mem-
bership in the same stimulus class in research
on categorization or stimulus equivalence.

N Responses, M Stimuli

The generalization of the present model to
more than two stimuli and more than two re-
sponses is straightforward. For example, con-
sider the conditional discrimination matrix
shown in Figure 8. We require three pairwise
stimulus–behavior discriminability parame-
ters, dsb12, dsb13, and dsb23. Likewise, we also re-
quire three behavior–reinforcement discrim-
inability parameters, dbr12, dbr13, and dbr23. As in
the two-stimulus two-response model, we as-
sume that reinforcers delivered in one cell
generalize to behavior in all other cells to an
extent that depends on the discriminability of
the stimulus–behavior relations within col-
umns, on the discriminability of the re-
sponse–reinforcer relations within rows, or
on both of these. Thus, R11 reinforcers affect
responses in Cell 12 according to R11/dbr12, in
Cell 13 according to R11/dbr13, and so on. This
operation specifies the decremental effects of
what are, essentially, stimulus–behavior and
behavior–reinforcer distances to elucidate for
the reader the ideas underlying the model.
As in the basic two-stimulus two-response case
developed above, the effects of reinforcers in
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Fig. 9. The effective reinforcer matrix for the three-
stimulus three-response detection matrix shown in Fig-
ure 8.

all cells, weighted by their psychological dis-
tances from that cell, add within a cell to pro-
vide an overall effective reinforcer value for
that cell. Within each row of the matrix, re-
sponse allocation is assumed to match the rel-
ative effective reinforcer value. The model for
the three-stimulus example described here
reduces directly to the two-stimulus case de-
scribed above when S3 is eliminated. The ef-
fective reinforcer matrix for the above 3 3 3
matrix (with reinforcers only as R11, R22, and
R33) is shown in Figure 9.

The expressions in the above matrix are te-
dious, rather than complicated. However, us-
ing the same idea of the generalization of re-
inforcer effects to other stimulus–behavior
pairs, equations for any N 3 M matrix, with
reinforcers in any or all cells, can be ob-
tained. There is also no reason why, again us-
ing the same basic theory, we should not ex-
pand the model into three dimensions (e.g.,
the third dimension might be the discrimi-
nability between a set of second-order con-
ditional cues or stimulus-choice delays).

Requirements for an Effective Model

An effective model for conditional discrim-
ination and other performances (and indeed,

any model for any system) has a number of
immutable requirements. These can be sum-
marized as follows: Any parameter that pur-
ports to be a measure of an independent-var-
iable effect must remain unaffected by the
variation of other independent variables that
purport to affect other parameters. For in-
stance, dsb should be affected, in an appro-
priate direction, by changes in conditional
stimuli, but should not be affected by chang-
es in reinforcer frequencies or, more partic-
ularly, by changes in response–reinforcer dif-
ferentiation. Equally, dbr should be affected in
an appropriate direction by changes in re-
sponse–reinforcer differentiation, but not by
changes in conditional stimuli. In other
words, derived parameters should show what
Nevin (1984) termed parameter invariance.

Such parameter invariance is of prime im-
portance, and an example is useful here.
When Davison and McCarthy (1980) varied
the frequency of reinforcers delivered for er-
rors (i.e., they arranged R12 and R21 reinforc-
ers), they found that the Davison-Tustin
(1978) measure of stimulus discriminability,
log d, decreased with increasing error-rein-
forcement probability. This reinforcer manip-
ulation should, in theory, not have affected a
conditional-stimulus measure. They, and Nev-
in et al. (1982), went to some pains to extend
the Davison-Tustin model so that the invari-
ance of this stimulus measure could be pre-
served. As it turned out, neither extension
was satisfactory, but the model presented
here naturally, and without modification,
deals with reinforcement for errors, and so
has the potential to deal directly with such
data and preserve parameter invariance. We
shall return to an analysis of these data later.

Parameter invariance requires that the
terms of our model be measured in ways that
permit unambiguous assignment of numeri-
cal values, and that these values behave in ac-
cordance with the principles of measurement
theory. For example, from a series of condi-
tions of a three-stimulus three-response pro-
cedure, one can estimate log dsb12, log dsb23,
and log dsb13 by a criterion of best fit. If the
parameters characterize distances in psycho-
metric space according to an interval scale,
these three values of log dsb must be related
by the expression log dsb13 5 log dsb12 1 log
dsb23. Moreover, the appropriate values must
remain unchanged when Stimuli 1 and 2, 2
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and 3, or 1 and 3 are employed in two-stim-
ulus two-response procedures. These require-
ments can be confirmed (or disconfirmed) if
our basic parameters are quantified on log
interval scales, which we assume throughout
and test wherever possible, for example, with
temporal, color, and luminance discrimina-
tion (Davison, 1991b; Godfrey & Davison,
1998).

APPLICATION OF THE
MODEL TO CONDITIONAL

DISCRIMINATION DATA

2 3 2 Conditional Discrimination

Alsop (1988) and Alsop and Davison
(1991) reported an experiment that mea-
sured response–reinforcer discriminability
(log dbr) and stimulus–response discrimina-
bility (log dsb) for seven stimulus pairs or-
dered in terms of stimulus disparity. They
used a standard signal-detection procedure
with different light intensities as the condi-
tional stimuli. These data constituted a de-
tailed assessment of the current model: If the
model is correct, the estimated value of dsb

should be ordinally related to the stimulus
disparity, and the estimated value of dbr

should not change systematically with chang-
es in stimulus disparity. Figure 10 (upper pan-
el) shows that the first of these predictions
was clearly supported. The situation with re-
gard to the second prediction (lower panel)
is less clear. There does appear to be a U-
shaped relation between dbr and stimulus dis-
parity. However, a Friedman test for a qua-
dratic relationship fails to find a significant
quadratic trend at p 5 .05, so the U-shaped
function is more apparent than real, or is not
statistically evident because of large variances
in some measures over subjects (i.e., in the
A, B, and G sets). There is a serious problem
in estimating dbr when dsb is high (such as in
Set G) because the few errors that are emit-
ted have a very strong effect on dbr, and a
difference of one or two responses in each
error cell can radically change the value of
dbr. For the present analysis, we used the Hau-
tus (1995) correction on the data (see Ap-
pendix B) to try to eliminate problems of es-
timating the parameters when few responses
are emitted in some cells of the matrix.

Reanalysis of Alsop’s (1988) data reveals

the predicted changes in the slope of the
function relating log B to the log reinforcer
ratio: As dsb increases, the slope decreases
(upper panels of Figure 6). However, the in-
verted-U form predicted for the function re-
lating log D to the reinforcer ratio (lower
panels of Figure 6) appears only at the lowest
nonzero level of stimulus differences ar-
ranged in his experiment. This failure of pre-
diction is not decisive because the reinforcer
ratio was varied by less than 61 log unit, thus
capturing only the central, relatively flat part
of the function. The same restriction of range
applies to the data of McCarthy and Davison
(1979, 1980a), who also failed to find the pre-
dicted inverted-U relation. More seriously,
Whittaker (1977), using rats in a yes-no sig-
nal-detection procedure, varied the reinforc-
er ratio for the two choice responses over a
much wider range than has been usual, and
failed to find both the inverted-U relation be-
tween log D and the reinforcer ratio and the
predicted change in the slope of the relation
between log B and the reinforcer ratio when
the disparity of the conditional stimuli was
changed. The relation between log B and the
log reinforcer ratio also failed to give any ev-
idence of the predicted curvilinearity (Figure
6, top panels), and is thus incompatible with
the results reported by Davison and Jones
(1995). However, Whittaker used ratio sched-
ules, so the obtained reinforcer ratio covaried
with response allocation, and conducted only
8 to 15 sessions of 300 trials per session in
each condition. Recent research (Davison &
Jones, 1998) suggests that even when rein-
forcer ratios are controlled, stability takes a
long time to occur at extreme ratios. Thus,
Whittaker’s study probably needs to be rep-
licated.

As noted above, our model predicts an
asymmetry between the effects of dsb and dbr

on the relation between B and the reinforcer
ratio: B becomes more sensitive to the rein-
forcer ratio as dbr increases, but becomes less
sensitive as dsb increases. Exactly this result
was reported by Nevin, Cate, and Alsop
(1993) in an experiment in which S1 and S2

were bright and dim keylights, and B1 and B2

were defined as short or long latencies of a
single response. They varied the reinforcer
ratio with large or small differences between
S1 and S2, and with large or small differences
between the criteria for short or long laten-
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Fig. 10. Reanalyses of the signal-detection data reported by Alsop (1988) and by Alsop and Davison (1991). The
upper panel shows the value of log dsb as a function of the ordinally increasing disparity between the intensity of S1

and S2. The lower panel shows estimates of log dbr for each disparity level.

cies. They obtained similar values for log d,
the Davison-Tustin measure of discrimina-
tion, in two conditions, one with a small S1-S2

difference and large B1-B2 difference and the
other with a large S1-S2 difference and a small
B1-B2 difference. In the first of these condi-
tions, log b was a steep and orderly increasing
function of the log reinforcer ratio, with a,
the generalized-matching-law measure of sen-
sitivity, about 0.75. In the second, log b was a
more variable and shallower function of the
log reinforcer ratio, with a values ranging
from 20.14 to 0.40. Their results, which are
shown in Figure 11, confirm a counterintui-
tive prediction of our model that is shown in
Figure 6.

When Nevin et al. (1993) estimated the pa-

rameters of our model, dsb increased with the
luminance difference between S1 and S2, and
dbr increased with the difference between cri-
teria for short and long latencies. However,
the estimated value of dbr depended on the
S1-S2 difference, violating the requirement of
parameter invariance. This violation may
have resulted from the fact that some re-
sponses were not scored because their laten-
cies did not meet the experimenters’ criteria.
For example, when B1 and B2 were defined as
responses with latencies between 1.0 and 2.0
s and between 2.0 and 3.0 s, respectively, a
latency of 0.9 s would not be counted even
though it might belong to the functional class
of ‘‘short’’ latencies. Moreover, obtained la-
tencies depended on stimulus intensity as
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Fig. 11. Differential responding to B1 or B2, measured
by log b, as a function of the obtained log reinforcer ratio
(redrawn from Nevin, Cate, & Alsop, 1993).

well as the latency criteria, so the functional
(as opposed to experimenter-defined) re-
sponse classes were not independent of the
conditional stimuli. In view of these prob-
lems, the failure of parameter invariance is
perhaps not surprising.

Godfrey (1997; Godfrey & Davison, 1998)
avoided these problems by defining S1 and S2

by the luminance of a center key, and defin-
ing B1 and B2 by the luminances of the choice
keys, with bright and dim lights presented ir-
regularly on the left and right keys. Her pro-
cedure identifies the choice responses by the
stimuli signaling them, as in matching to sam-
ple or in a switching-key concurrent sched-
ule, and permits the differentiation between
B1 and B2 to be specified on the same exper-
imental continuum as S1 and S2, but to be
varied independently of the difference be-
tween S1 and S2. She varied reinforcer ratios
for various different levels of conditional
stimulus disparity and choice stimulus dispar-
ity and found no significant effects of the for-
mer on measures of the latter, nor vice versa.

In particular, she found that discriminability
measures for any particular stimulus disparity
were not different according to whether they
were obtained for a conditional stimulus or a
choice stimulus disparity. This, then, is very
strong evidence for the model.

Value Transfer

Although we have emphasized steady-state
conditional discrimination performance, our
model is also consistent with choice data ob-
tained with novel pairs of stimuli. For exam-
ple, Zentall and Sherburne (1994) trained pi-
geons on randomly alternating simultaneous
discriminations with red (100% reinforce-
ment) versus yellow (0%) and green (50%)
versus blue (0%), with color assignments
counterbalanced across birds. After training
to criterion, they conducted probe choice
tests with yellow and blue, and obtained sig-
nificantly more responses to yellow. This re-
sult follows from our model if we construe
red and yellow as defining B1 and B2 on S1

(red-yellow) trials and green and blue as de-
fining B1 and B2 on S2 (green-blue) trials. For
any value of dsb greater than one (represent-
ing discrimination between the two kinds of
simultaneous-discrimination trials) and dbr

less than infinity (representing differentia-
tion between the response–reinforcer contin-
gencies within each simultaneous discrimi-
nation), yellow obtains greater generalized
strength than blue, as shown in Figure 12. We
suggest that this transfer of value from S1 to
S2 within a simultaneous discrimination,
which has been used to explain transitive in-
ference in pigeons (Fersen, Wynne, Delius, &
Staddon, 1991), follows naturally from our
model.

Reinforcement for Errors

Three experiments with animal subjects
have systematically explored the effects of re-
inforcing responses that are conventionally
designated ‘‘errors.’’ Davison and McCarthy
(1980) trained pigeons to discriminate be-
tween S1 (a 5-s keylight) and S2 (a 10-s key-
light) in a procedure that arranged reinforce-
ment probabilistically for responses in each
of the four cells of the matrix of Figure 2.
Both B11 and B22 were reinforced with a prob-
ability of .7 throughout the experiment, and
the probability of reinforcement for B12 and
B21 was varied across conditions from 0 to .9.
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Fig. 12. The effective reinforcer matrix for the ex-
perimental conditions arranged by Zentall and Sher-
burne (1994).

In this arrangement, the number of reinforc-
ers obtained in each cell of the matrix de-
pends directly on the frequency of responses
in that cell. Nevin, Olson, Mandell, and Yar-
ensky (1975) performed a closely comparable
experiment with rats as subjects and bright or
dim lights as S1 and S2. Although the numbers
of reinforcers (the independent variables in
the model) depended on the numbers and
ratios of responses (the dependent variables)
in both experiments, the model is applicable
because it is based on obtained rather than
scheduled reinforcers.

The third experiment (Nevin et al., 1982)
used an alternative method for scheduling re-
inforcers to insure that the number of rein-
forcers obtained in a cell approximated the
number programmed (Shimp, 1969; Stubbs
& Pliskoff, 1969). The essence of the method
is to arrange the availability of a reinforcer in
a particular cell and withhold reinforcers in
all other cells until that one has been ob-
tained. This has come to be known as inter-
dependent (or just dependent) scheduling,
because reinforcement for one response de-
pends on whether a reinforcer has been
scheduled for and obtained by emitting an-
other response. It has also become known, in
the signal-detection literature (McCarthy &
Davison, 1984), as a controlled reinforcer-ratio
procedure, because the ratio of obtained rein-
forcers is specified in advance, by the exper-
imenter, within the limits of statistical fluctu-
ation. Nevin et al. employed pigeons as
subjects with 2-s and 3-s keylights as S1 and S2

with interdependent scheduling to control
obtained reinforcer ratios, and varied the ra-
tio of reinforcers for B1 and B2 independently
of the ratio of reinforcers for correct respons-
es and errors, as traditionally defined.

Figures 13 and 14 show the results of fitting
Equations 13a and 13b to Davison and Mc-
Carthy’s (1980) and Nevin et al.’s (1982)
data. The predictions fit the data well, with
values of dsb and dbr that are similar to those
obtained for moderately confusable stimuli
when only correct responses are reinforced.
For Davison and McCarthy’s data, mean dsb

values were about 10, but the dbr values ob-
tained were poorly estimated because Davi-
son and McCarthy did not explicitly vary the
reinforcer ratios. Accordingly, we used a dbr

value of 23 (the average for the Nevin et al.
data) for the fits in Figure 13. For Nevin et
al., the average dsb and dbr values were 8 and
23, respectively. As a further check on the
consistency of application of this model, we
looked at deviations of predictions from data
both as a function of the percentage of R1

reinforcers and as a function of the percent-
age of reinforcers in the ‘‘correct’’ R11 and
R22 cells. Fits to these deviations showed no
significant deviations of slopes from a line of
0 slope except for Bird 60 of the Nevin et al.
data.

Our approach has also been supported by
a recent report by Hartl and Fantino (1996).
In a conventional matching-to-sample proce-
dure, they varied the probabilities of rein-
forcement for making one or the other
choice response to a comparison stimulus
that matched the sample, and independently,
for responding to a particular comparison
stimulus regardless of the sample. The latter
variation effectively arranges reinforcers for
errors, and their data were well explained by
an earlier (but algebraically equivalent) ver-
sion of our model (see their p. 23 for discus-
sion). In conclusion, it appears that our mod-
el for the conventional two-stimulus
two-response conditional discrimination ex-
tends naturally, and with the requisite invari-
ance of dsb, to situations in which reinforcers
occur in all four cells of the 2 3 2 matrix.

Matching to Sample and Its Variants

As we have noted above, the conventional
three-key matching-to-sample paradigm is a
two-stimulus two-response conditional dis-
crimination in which the sample, presented
on the center key, serves as the conditional
cue and the side-key choices are defined by
comparison stimuli. The procedure has been
used intensively by researchers whose prima-
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Fig. 13. Predicted and obtained relative distribution of responses for the data reported by Davison and McCarthy
(1980). The straight lines were fitted by the method of least squares.

ry interests are in cognitive processes such as
coding, retrieval, and limited-capacity work-
ing memory, as well as in behavior-analytic re-
search on equivalence classes. We will not at-
tempt to review the massive literature in this
area, but to the extent that our model can
account for performance in this paradigm, it
will provide an alternative to explanations
that invoke cognitive processes.

Identity versus symbolic matching. The best
known version of the matching-to-sample par-
adigm, termed identity matching, employs
comparison stimuli that are physically similar
to the samples. A related version, termed sym-
bolic matching, employs comparison stimuli
from an independent dimension to define
the choice responses. In our model, the pa-

rameter dsb depends on the discriminability of
the relations between the sample and choice-
defining stimuli, whereas dbr depends on the
discriminability of the relations between the
choice responses and the reinforcer. Accord-
ing to our theory, then, in identity matching
the values of dsb and dbr should be identical,
despite the fact that the conditional stimuli
occur successively in time and the stimuli sig-
naling the choice alternatives occur simulta-
neously. This was shown to be the case in the
research reported by Godfrey (1997) and
Godfrey and Davison (1998) (see the section
on 2 3 2 conditional discrimination, above).

Delayed matching and delayed reinforcement. A
widely studied variant of the matching-to-sam-
ple paradigm that is of special interest in re-
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Fig. 14. Predicted and obtained relative distribution
of responses for the data reported by Nevin, Jenkins,
Whittaker, and Yarensky (1982). The straight lines were
fitted by the method of least squares.

search on short-term memory introduces a
delay (or retention interval) between the offset
of the conditional cue and the availability of
the choice responses. We will distinguish two
procedures that are commonly used in re-
search on delay of choice. The first, termed
a fixed-delay procedure, employs a single delay
value between offset of the sample and onset
of the comparison stimuli throughout an ex-
perimental condition, and varies the delay be-
tween conditions in order to determine a de-
lay gradient or forgetting curve. The second,
termed a mixed-delay procedure, arranges a
number of different delays within a single
condition. A well-nigh universal effect of
lengthening the delay is a progressive de-
crease in accuracy of discrimination as mea-
sured by percentage correct or by the Davi-
son-Tustin measure log d (e.g., Cumming,
Berryman, & Nevin, 1963; Harnett, McCar-

thy, & Davison, 1984; White, 1991). In the
terms of our model, this decrease results
from stimulus–response discriminability (dsb)
becoming degraded during the delay with re-
sponse–reinforcer discriminability (dbr) re-
maining high. The present model, then,
would predict that as dsb decreases with in-
creasing delays, log d (the Davison-Tustin
measure that has been used extensively in
this area) should also decrease, but sensitivity
to reinforcement as measured by a, the slope
of the generalized-matching-law relation be-
tween log b and the log reinforcer ratio,
should increase, as shown in Figure 6.

It is also well known that introducing a de-
lay between choice responses and the rein-
forcer (delay of reinforcement) also decreas-
es log d (e.g., McCarthy & Davison, 1991).
However, log d values would fall not because
of decreasing stimulus–response discrimina-
bility, but because of decreasing response–re-
inforcer discriminability. As the delay length-
ens, the delay-of-reinforcement procedure
will come to function as a reinforcement-for-
errors procedure, and will produce the same
effects. But when response–reinforcer dis-
criminability is compromised, sensitivity to re-
inforcement, as measured by a, will also de-
crease.

Rather than attempting to estimate dsb and
dbr from the voluminous data in this area, we
will show some examples of effects that can
be expected when values of log d and a (mea-
sures frequently reported in this area) are
predicted from the present model using rep-
resentative values of dsb and dbr. But first we
develop the model. We shall assume, for con-
venience, that we can specify a dt value for
each constant increment in delay time. What
this means, in effect, is that in each (say) 1-s
interval, a constant value of dt—a discrimi-
nability parameter just like dsb and dbr—oper-
ates in the usual way on the effective rein-
forcer matrix that exists at the start of this 1-s
interval to produce a new effective reinforcer
matrix. This simply has the effect of progres-
sively moving the effective reinforcer matrix
towards nondifferential reinforcement with
respect to responses (i.e., equal reinforcer
frequencies for the two responses in the pres-
ence of each stimulus). The selection of a 1-
s step is, of course, arbitrary, and smaller
steps will simply require a smaller dt value.

Because effective reinforcer allocation
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Fig. 15. Log discrimination and sensitivity to reinforcement, as measured using the Davison-Tustin (1978) model,
when the delay between stimulus presentation and choice is varied for some representative values of log dsb and log
dbr. The value of dt is constant across time.

changes over the course of the delay, the
model must be applied in a successive, rather
than a simultaneous, manner. That is, for the
delay-of-choice situation, we need to operate
progressively on stimulus–response discrimi-
nability (dsb)using dt during this delay before
applying response–reinforcer confusion when
the choice is emitted. In the delay-of-rein-
forcement situation, the matrix results of
stimulus–response confusion will be progres-
sively operated on by dt over the delay before
being operated on by response–reinforcer
confusion. The particular matrix values that
are current when the choice stimuli are pre-
sented, or when the reinforcer is delivered,
will be used to predict response ratios and
calculate log d.

Figure 15 shows how predicted measures of
discrimination and sensitivity to reinforce-
ment change with increasing delay of choice
with some representative values of dsb and dbr.
Discrimination, measured by log d, falls un-
der all conditions, and sensitivity to reinforce-

ment, measured by a, either increases or may
appear to remain constant when dbr is rela-
tively high and dsb is relatively low.

Figure 16 shows delay-of-reinforcement
predictions. Both log d and a fall with increas-
ing delay with sensitivity being generally high-
er when dbr is greater, though sensitivity is sim-
ilar when dsb and dbr are both high and when
they are both low.

In an extensive experiment, using mixed
rather than fixed delays and quite high con-
ditional stimulus discriminability values (log
d values generally between 1.3 and 1.9), Jones
and White (1992) reported a statistically sig-
nificant increase in sensitivity to reinforce-
ment with increasing stimulus–choice delay,
confirming the predictions in the upper pan-
els of Figure 15. In a related experiment with
fixed rather than mixed delays, Harnett et al.
(1984) found the usual decrement in log d
with increasing delay, and but no statistically
significant change in sensitivity to reinforce-
ment. Because their log d values were some-
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Fig. 16. Log discrimination and sensitivity to reinforcement, as measured using the Davison-Tustin (1978) model,
when the delay between choice and reinforcement is varied for some representative values of log dsb and log dbr. The
value of dt is constant across time.

what lower than those of Jones and White,
this lack of a statistically significant change
accords reasonably with the shallow sensitivity
function predicted in the lower left panel of
Figure 15.

McCarthy and Davison (1986) reported
that both delay of choice and delay of rein-
forcement decreased log d, but that the effect
for delay of choice was greater than that for
delay of reinforcement. This difference is
predicted for cases in which dbr is high, as can
be seen by comparing the left panels of Fig-
ures 15 and 16 (but note that the predicted
decreases in log d are identical when dbr is
moderate, as in the right panels). McCarthy
and Davison (1991) replicated this effect, and
also measured sensitivity to reinforcement (a)
for each stimulus–choice and choice–rein-
forcer delay. Sensitivity to reinforcement de-
creased (though not greatly) when both de-
lays were varied. Although our model
predicts the decrease in a with increasing
choice–reinforcer delay, the decrease in a

with increasing stimulus–choice delay, given
that log d values were around 1.0, is inconsis-
tent with the predictions in Figure 15. Mc-
Carthy and Davison made no correction for
zero cells, and such a correction would have
had the effect of marginally decreasing the
sensitivity (and log d) values at short delays.
However, it remains puzzling that no increase
in sensitivity was found. This last result, then,
appears partially but not strongly to argue
against the present model. In passing, it is
important to note that McCarthy and Davison
did fit Equations 7a and 7b to their data, and
found some changes in dsb and dbr with in-
creasing stimulus–choice and choice–rein-
forcer delays. This lack of invariance is not an
argument against the full model, however, be-
cause they did not use the model with in-
creased confusion with elapsing delays as pre-
sented above.

Finally, McCarthy and Voss (1995), using a
fixed-delay procedure, provided clear evi-
dence that sensitivity to reinforcement fell
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with increasing stimulus–choice delay, both
for small and large reinforcer durations, con-
trary to our prediction. Given the wide range
of results reported on the relation between
sensitivity to reinforcement and delay in de-
layed matching to sample, it is not surprising
that we have some difficulty in modeling in
this area. The majority of results seem to sug-
gest that sensitivity falls with delay, which is
incompatible with our model. However, we
would argue that the final assessment of our
model for delay of choice should await the
empirical resolution of just what variables are
critical to produce increases or decreases in
the value of a with delay; until, in other
words, we have a clear empirical result to
model.5

Second-order discrimination of mixed delays.
Many researchers, but notably White and his
associates (e.g., White, 1985), have varied
stimulus–choice delays within sessions rather
than across conditions. Recently, White and
Cooney (1996) varied the reinforcer ratio
separately following two delays that occurred
in irregular order. For example, in one set of
conditions, reinforcer probabilities for cor-
rect responses to red and green choice keys
varied across conditions from .1 to .9 when
the stimulus–choice delay was 0.1 s but were
constant at .5 when the stimulus–choice delay
was 4 s. In effect, the length of the delay may
be construed as a second-order conditional
cue signaling differential reinforcer probabil-
ities. Overall, White and Cooney found that
the reinforcer ratio arranged at one delay did
not affect performance at the other delay
with a different reinforcer ratio, and conclud-
ed that ‘‘performance at one retention inter-
val is independent of factors that influence
performance at another’’ (p. 55).

The two delays that White and Cooney
(1996) used were highly discriminable (Mc-
Carthy & Davison, 1980a), but if their delays
had been 3.8 and 4 s, they probably would
have found interdependence of reinforcer-ra-
tio effects. To address the generalization of
the effects of reinforcers across different de-
lays, as well as across stimuli and responses,
we introduce the notion of the discriminabil-
ity between stimulus–choice delays, dd. The

5 White and Wixted (1999) recently described an in-
verse relation between discrimination and sensitivity to
relative reinforcement in delayed matching to sample.

model for mixed stimulus–choice delays is ef-
fected by degrading dsb initially by dt, as in the
single-delay model above, and then degrad-
ing each of the resulting reinforcer values by
the appropriate dd values. The development
is done here for just two mixed delays, but
may logically be applied to any number. With
the loss of only a little generality (the effects
of dt), we shall present the development for
a second-order conditional discrimination in
which two stimuli such as continuous versus
flashing house lights, on a separate dimen-
sion from the first-order stimuli, signal differ-
ent sets of first-order stimulus–behavior–re-
inforcer contingencies. These stimuli are
designated SA and SB, and represent the two
delays in White and Cooney’s procedure.

The reinforcer matrix we shall use is shown
in Figure 17. Note that the B1 and B2 contin-
gencies are reversed between the second-or-
der stimuli, SA and SB. The discriminability of
the second-order stimuli is d2, and we assume
that the response–reinforcer discriminability
(dbr) and the first-order stimulus–response
discriminability (dsb) are the same under both
second-order conditional stimuli.

Figure 18 shows the predicted effects of
varying the reinforcer ratio (Ra11/Ra22) in the
presence of SA (analogous to the 0.1-s delay
in the example from White and Cooney,
1996) on responding with respect to S1 and
S2 (log D) and with respect to B1 and B2 (log
B) in the presence of SB (analogous to the 4-
s delay) which, in our example, offers equal
Rb12 and R b21 reinforcer rates. The values of
dsb and dbr are both 10, and the value of d2 is
2 (upper panel) and 10 (lower panel). As
would be expected, when there is little dis-
crimination between SA and SB, varying the
reinforcer ratio in SA has a strong effect on
responding in the presence of SB. The value
of log D in SB is negative because of the re-
versed contingencies of reinforcement. These
values are affected by the discriminability be-
tween SA and SB, and are smaller in an abso-
lute sense when d2 is smaller and are nonlin-
ear with respect to the SA reinforcer ratio.

This analysis shows that the mixed-delay
procedure will affect measurements of stim-
ulus discriminability more than the fixed-de-
lay procedure will, and will provide lower es-
timates of discrimination (log d) than the
single-delay procedure even when reinforcer
ratios are the same at all delays. The exact
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Fig. 17. Upper panel: the matrix of events in a second-order conditional discrimination in which B1 is reinforced
in the presence of S1 and B2 in the presence of S2, both when Stimulus A is presented. The contingencies of rein-
forcement are reversed when Stimulus B is presented. Lower panel: The effective reinforcer matrix for the events
shown in the upper panel.

pattern of results obtained will depend criti-
cally on the distribution and spacing of stim-
ulus–choice delays. More generally, it shows
that the discriminability of second-order cues
correlated with different outcome matrices in
conditional discriminations, as in Hobson
(1978), will affect the estimation of model pa-
rameters.

Complex Stimulus Discrimination

An experiment reported by White et al.
(1984) involved a free-operant conditional
discrimination in which pecking the right key
produced food according to one VI schedule
when a vertical line was projected on both
keys (S1) and pecking the left key produced
food according to another VI schedule when
the line was tilted 15, 30, 45, 60, or 758 (S2–
S6), presented irregularly within a single ex-
perimental condition. This paradigm is like
that discussed in the section on more than
two stimuli and two responses, above, but
with five stimuli assigned to one of the re-
sponses. Left-key pecks given the vertical line,
and right-key pecks given any other orienta-
tion, were neither reinforced nor punished.

The expanded matrix defining the operants
for this case is shown in Figure 19.

When the VI schedules were varied, the re-
lation between the ratio of responses at each
S2–S6 orientation and the associated reinforc-
er ratio depended on the difference in ori-
entation of the stimuli signaling the pairs un-
der investigation. To characterize the results
in terms of the generalized matching law: a
(sensitivity to reinforcement) decreased as
stimulus disparity increased, as predicted by
our model. In a related study, White (1986)
varied stimulus differences between condi-
tions and found the same result: As predict-
ed, sensitivity to reinforcer ratios in a free-
operant conditional discrimination was
inversely related to stimulus disparity across
successive conditions.

This finding is not limited to free-operant
procedures. Davison and McCarthy (1987)
trained pigeons to peck left given a fixed du-
ration of center-key illumination (either 5 s
or 20 s in different parts of their study) and
to peck right given any of 12 other durations
ranging from 2.5 s to 57.5 s in 5-s steps.
Again, the paradigm is like that examined in
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Fig. 18. The predicted effect of varying the reinforcer
ratio in the presence of second-order Conditional Stim-
ulus A on stimulus differentiation (log D, Equation 5)
and response differentiation (log B, Equation 3) in the
presence of second-order Conditional Stimulus B. As not-
ed in the text, SA is analogous to a short delay correlated
with varying reinforcer ratios, and SB is analogous to a
long delay correlated with a constant reinforcer ratio. If
the delays are confusable (d2 small, upper panel), rein-
forcer ratios in SA affect performance in SB, but there is
little effect if the delays are highly discriminable (d2 large,
lower panel).

Fig. 19. The matrix of events in the experiment re-
ported by White, Pipe, and McLean (1984) showing how
the cells of the matrix are subscripted. Response B1 was
reinforced in the presence of a 08 slant, and B2 was re-
inforced in the presence of all other orientations.

the section on more than two stimuli and two
responses, above, but with 12 different stimuli
assigned to one of the responses. When they
varied the reinforcer ratio, they found that
sensitivity to reinforcement was inversely re-
lated to the discriminability of the duration
examined, relative to the fixed duration.

Davison (1989) showed that the present
model gave a good account of Davison and
McCarthy’s (1987) temporal discrimination
data, providing 12 rational dsb estimates and
an appropriate estimate of dbr. More impor-
tant, after best fit discriminability estimates
were obtained, the model predicted almost
exactly the relation between sensitivity to re-

inforcement and discriminability that was
found empirically. In addition, Davison
(1991b) reported the analysis of a set of data
on color discrimination in pigeons, in which
they were required to peck the left or right
side keys according to which of eight color
stimuli (559 to 594 nm in steps of 5 nm) had
been presented. Both the reinforcer ratio for
correct responses and the stimuli signaling
reinforcers for pecking left or pecking right
were varied. This analysis, with seven dsb pa-
rameters, provided an excellent description
of the data, and furthermore the dsb param-
eters were related to wavelength in the same
way as has been found for generalization, dis-
crimination, and color-naming functions for
the pigeon over this wavelength range (Shep-
ard, 1965; Wright, 1974; Wright & Cumming,
1971). Thus, our model provides convergent
measurement of the distances between stim-
uli in psychometric space.

Multiple Stimuli and Multiple
Correct Responses

We next consider the classical recognition
task of psychophysics, in which subjects are
presented with one of N different stimuli in
random order and asked to make one of N
different responses to indicate which stimulus
was presented. Interestingly, humans have
trouble identifying more than seven (62) dif-
ferent tone intensities even when the tones
are highly discriminable in the sense that few,
if any, errors occur when fewer than seven
tones are presented (e.g., Pollack, 1952). The
recognition experiment has been repeated by
Chase (1983) with pigeons as subjects in a
chamber equipped with nine keys. The stim-
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Fig. 20. Percentage correct responses for various ranges of log luminance levels (left panel) reported by Chase
(1983) (represented by separate plots with distinct data points in the left panel) and model predictions assuming
that a 0.4 log luminance difference corresponded to a dsb value of 10 (resulting in various assumed values of dsb,
represented by separate plots with distinct data points in the right panel).

uli were various luminances displayed on a
single rectangular key above the nine re-
sponse keys, presented in discrete trials in ir-
regular order; a single peck at the key desig-
nated as correct for each luminance
produced 2-s access to food. The paradigm is
like that examined in the section on N re-
sponses and M stimuli, above, with the num-
bers of stimuli and responses varied across
conditions. In one series of conditions, Chase
compared performances involving luminance
ranges of 0.8 log units, 1.8 log units, 3.0 log
units, and 3.8 log units, with the number of
stimulus–response pairs varying from three to
nine. Average percentage correct increased
with the range over which the stimuli were
distributed and decreased as a function of
number of stimulus–response pairs defined
within that range, as shown in the left panel
of Figure 20. We modeled Chase’s data by as-
suming that a 0.4 log-unit difference between
stimuli corresponded to a dsb value of 10
(thus, a set of nine stimuli would span a
range of 80 expressed as dsb). Because Chase’s
data were similar for the two largest ranges,
3.0 and 3.8 log units, we treated both as 3.2

log units, or 80 units on the dsb scale. We also
assumed a value of 10 for dbr for the peck–
food relations between adjacent keys. The
overall percentage correct predicted by our
model for Chase’s conditions is shown in the
right panel of Figure 20. Overall, the agree-
ment between Chase’s average data and the
predictions of our model is respectable. Our
model also predicts that errors will be most
frequent in the middle of the stimulus–re-
sponse matrix, as found by Chase with pi-
geons and by Pollack (1952) with humans.

Recognition tasks usually arrange ordinal
stimulus–response mapping: The least in-
tense stimulus is identified with Response 1,
the next with Response 2, and so on. With
pigeons, Chase (1983) compared ordered
and unordered stimulus–response identifica-
tion and found that percentage correct was
substantially lower with unordered identifi-
cation. Our model does not predict a large
decrement with unordered identification, but
it does predict one aspect of Chase’s results:
secondary modes in response probability.
Chase suggested that ‘‘Secondary peaks can
be accounted for if it is assumed that discrim-
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ination among key positions is imperfect’’
(1983, p. 45). This, of course, is exactly what
our parameter dbr quantifies, and our model
predicts secondary peaks at stimuli for which
the correct key happened to be adjacent to
the key being considered, as Chase reported.
For example, when Response 9 was defined
as correct for Stimulus 8, a secondary peak
in the probability of pecking Key 9 appeared
at Stimulus 3, which was correct for Response
8 in the unordered identification set we ex-
plored.

Godfrey (1997) reported an experiment
that compared performance in 2 3 2, 3 3 3,
and 4 3 4 conditional discrimination matri-
ces. The conditional stimuli were intensities
of yellow light displayed on a central key, and
the choice responses consisted of pecking
one of six red keys set around the central key
(thus allowing the potential for 5 3 5 and 6
3 6 matrices, but these were not investigat-
ed). In one condition, two stimuli designated
S2 and S5 were presented successively with re-
inforcement arranged for pecks at Keys B2

and B5. In a second condition, a stimulus of
intermediate intensity (S4) was also present-
ed, with reinforcement arranged for pecks at
Key B4. In a third condition, another stimulus
of intermediate intensity (S3) was included,
with reinforcement arranged for pecks at Key
B3. Thus, it was possible to compare the dis-
criminability of a given pair of stimulus–be-
havior relations (e.g., dsb25) across conditions
with different numbers of discriminated op-
erants. In addition, it was possible to deter-
mine whether log dsb values combined addi-
tively, as we have assumed. The average
parameter estimates and the additivity predic-
tions are presented in Figure 21. Across con-
ditions, there were no systematic changes in
any dsb parameter estimates when further
stimulus–response–reinforcement contingen-
cies were added or subtracted. For example,
log dsb for S2 versus S5 when studied alone (up-
per panel) is not substantially affected by add-
ing one (middle panel) or two (lower panel)
intervening stimuli. The model thus works
well with complex stimulus–response–rein-
forcer relations. Further, as Figure 21 also
shows, the additivity requirement (that, e.g.,
log dsb23 1 log dsb34 5 log dsb24) seems to be
approximately true. However, in all four cases
that could be investigated with these data, the
predicted value of log dsb was somewhat less

than the obtained value. If such findings are
replicated, they could indicate that psycho-
metric space is nonlinear in log terms (and
may be linear in other terms). Clearly, more
research is needed in this area.

One surprising aspect of the results was
that the actual behavior ratios between pairs
of three-term contingencies were unaffected
by the addition of further contingencies, a re-
sult that appears to be incompatible with the
present model. Consider a 2 3 2 matrix of
the form S2:(B2 → R2) and S5:(B5 → R5). If a
further contingency S4:(B4 → R4) is added, in
which S4 is closer physically to S5 than to S2,
we would expect that S5 performance would
gain more reinforcer value than S2 perfor-
mance, leading to a decrement in the S2/S5

behavior ratios. However, given reasonable
discriminability between S4 and S5, the effect
would be rather small, and may not be dis-
cernible in the general error variance. This
effect also requires further investigation. De-
spite such uncertainties, it is clear that our
model provides an effective account of stim-
ulus control and choice in a wide variety of
conditional discrimination paradigms.

MULTIPLE AND
CONCURRENT SCHEDULES

We began this article by discussing some
qualitative similarities that result when the
differences among stimuli, responses, and re-
inforcers are varied. Our argument began
with conventional multiple and concurrent
schedules, but the remainder of our devel-
opment dealt with experimental paradigms in
which the reinforcement contingencies for
two or more concurrently available choice re-
sponses depend on the values of two or more
successively presented stimuli. In effect, all
such paradigms can be characterized as mul-
tiple concurrent schedules. We now apply the
general model that successfully accounted for
a large array of findings in these paradigms
to the presumably simpler cases: multiple and
concurrent schedules.

Multiple Schedules

As we noted at the outset, all measured be-
havior occurs in a setting that includes un-
measured, extraneous behavior and reinforc-
ers. A 2 3 2 matrix that incorporates
extraneous behavior (Be) and reinforcers (Re)
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R R R R R R21 1e 2e 1e 21 11B R 1 1 1 R 1 1 11e 11 2e1 2 1 2d d d d d d d dsb br sb br sb br sb brB11 5 . (15)
B21 R R R R R R2e 11 21 11 2e 1eB R 1 1 1 R 1 1 12e 1e 211 2 1 2d d d d d d d dsb br sb br sb br sb br

for a standard single-key multiple schedule
with distinctive stimuli S1 and S2 to signal the
components would look like Figure 22, and
the resulting equations, including discrimi-
nability parameters, would be, for S1,

R R R21 1e 2eR 1 1 111B d d d d11 sb br sb br5 (14a)
B R R R1e 2e 11 21R 1 1 11e d d d dsb br sb br

and, for S2,

R R R11 2e 1eR 1 1 121B d d d d21 sb br sb br5 . (14b)
B R R R2e 1e 21 11R 1 1 12e d d d dsb br sb br

Dividing these equations gives us an expres-
sion for the relation between the response ra-
tio, B1/B2, and the reinforcer rate in each
component, in Equation 15, below. Some
simplifying assumptions are needed to re-
duce the number of free parameters in Equa-
tion 15. It may seem reasonable to assume
that the discriminability of response–reinforc-
er contingencies such as (B1:key peck → R1:
food) and (Be:scratch → Re:relief of itch)
would be essentially infinite. However, key
pecking for magazine grain and pecking at
the chamber floor for spilled grain might be
moderately confusable, but the frequencies
of these events are unknown, and we do not
wish to adopt the probably incorrect assump-
tion that Re is the same in both components.
If variable-time reinforcement is explicitly
used to simulate Re, the extraneous reinforc-
ers are countable, but dbr may range from one
to near infinity, depending on the subject’s
response rate, interresponse-time distribu-
tion, and reinforcement history. Related dif-
ficulties arise with Be: Unless we adopt Herrn-
stein’s (1970) restrictive (and probably
incorrect) assumptions that B 1 Be 5 k, and
that k is the same for both schedule compo-

nents, the number of free parameters in
Equations 1 and 2 is excessive.

It is possible to model multiple VI extinc-
tion schedules, which are common in the
study of stimulus control, by assuming that dbr

is infinite. Then, Equation 15 simplifies to

B B (R 1 R /d )1 1e 2e 1e sb5 d · · . (16)sbB B (R 1 R /d )2 2e 1e 2e sb

This expression implies that if the ratios of
extraneous responses and their reinforcers in
S1 and S2 remain constant, the ratio of mea-
sured responses depends on dsb but is inde-
pendent of reinforcer rate in S1, as found by
Cumming (1955).

Finally, if Re is simulated by reinforcement
for a specified alternative response, the ma-
trix for the resulting multiple concurrent
schedule is just like that for reinforcement
for ‘‘errors,’’ for which performance is read-
ily modeled (Equations 13a and 13b). Re-
search on the simulation of extraneous rein-
forcers in multiple schedules has been
reported by Davison (1993), Lobb and Davi-
son (1977), McLean and White (1983), and
McLean (1992, 1995). The findings in gen-
eral suggest that simulated extraneous rein-
forcers are reallocated between components,
especially when they are arranged on ratio
schedules. The present model cannot direct-
ly, without further assumptions, predict the
degree of reallocation of Re between multiple-
schedule components; it simply allows for it
(but see Davison, 1993). One result is clearly
predicted from Equations 13a and 13b: ‘‘Suc-
cessive independence’’ (the independence of
log response ratios in one component from
the conditions of reinforcement in the other
component; McLean & White, 1983) will oc-
cur when dsb12 is asymptotically large (as with,
e.g., red vs. green signaled components; see
Charman & Davison, 1983). However, succes-
sive independence will not hold when dsb12 is
small because the effects of reinforcers in one
component will generalize and contribute to
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Fig. 21. Left: data from Godfrey (1997) comparing obtained dsb in 2 3 2, 3 3 3, and 4 3 4 conditional discrim-
ination tasks using the same stimuli. Right: predicted stimulus–behavior discriminability values for some pairwise
combinations obtained by adding log dsb for component pairs (e.g., using log dsb23 1 log dsb34 to predict log dsb24).
The top panel shows data from Stimuli 2 and 5 in a 2 3 2 task, the center panel shows data from Stimuli 2, 4, and
5 in a 3 3 3 task, and the bottom panel shows data from Stimuli 2, 3, 4, and 5 in a 4 3 4 task.

Fig. 22. A detection matrix for multiple schedules in-
corporating extraneous behavior and reinforcers.

effective reinforcement in the other compo-
nent and vice versa, as explained above for 2
3 2 conditional discriminations.

Concurrent Schedules

Conventional two-key concurrent sched-
ules are arranged in the presence of a single
stimulus condition, so S1 and S2 are equiva-
lent and its matrix (Figure 23) would collapse
into a single row (which simplifies subscript-
ing). The resulting equation for the B1/B2 ra-
tio is
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Fig. 23. A detection matrix for concurrent schedules
incorporating extraneous behavior and reinforcers.

Fig. 24. The predicted relation between log response ratios and log reinforcer ratios in concurrent VI VI sched-
ules. The parameters of each graph are, respectively, the value of the extraneous reinforcer rate (or the third-
alternative reinforcer rate) and the value of the response–reinforcer discriminability between the first two alternatives
and the third alternative. The data were simulated by distributing a total of 40 reinforcers between the first two
alternatives.

R R2 eR 1 11B d d1 br12 br1e5 . (17)
B R R2 1 eR 1 12 d dbr12 br 2e

If we assume that Be → Re is infinitely discrim-
inable from B1 → R1 and B2 → R2, the equa-
tion simplifies to

R2R 11B d1 br125 , (18)
B R2 1R 12 dbr12

which, as noted above, provides a good ac-
count of concurrent VI VI schedule perfor-
mance.

The predictions of this approach are that
the ratio of responses B1 and B2 will be un-
affected by the value of Re if, and only if, dbr1e

and dbr 2e are infinite (no confusion). Such a
situation is shown in the right graphs in Fig-
ure 24. Interpreting this situation as a three-
alternative concurrent schedule, the con-
stant-ratio rule (i.e., constancy of choice
ratios between a pair of alternatives when a
third is added or removed; Luce, 1959) will
be correct under these conditions—that is,
only when both differences between defined
and extraneous response–reinforcer contin-
gencies are highly discriminable. If they are
less than highly discriminable, then because
the effects of Re are additive, increasing ex-
traneous reinforcer rates (or decreasing ar-
ranged R1 and R2 reinforcer rates) will de-
crease response differentiation between B1

and B2 (Figure 24, left and center panels). In
generalized-matching terms, sensitivity to re-
inforcement is predicted to fall as arranged
R1 and R2 reinforcer rates decrease, assuming
a constant third-alternative reinforcer rate. If
extraneous reinforcers are assumed to exist
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in their experiments, this result was reported
by Alsop and Elliffe (1988) and by Elliffe and
Alsop (1996). The present model predicts
that overall reinforcer rate does not affect re-
sponse ratios under two specific conditions:
(a) if the extraneous reinforcer rate has a val-
ue of zero or (b) if there is perfect discrimi-
nation between the pair of response–rein-
forcer contingencies under consideration
and any substantive extraneous reinforcer
rate. The same conclusions follow for explic-
itly defined and reinforced third-alternative
responses.

We have assumed in this discussion that if
the two alternatives being examined are Al-
ternatives 1 and 2, the response–reinforcer
discriminability between Alternatives 1 and 3
and between Alternatives 2 and 3 are equal.
However, the values of these discriminabilities
may not be equal if B1 and B2 are topograph-
ically different.

As Davison and Jenkins (1985) pointed
out, and as we illustrate in Figure 24, Equa-
tion 18 implies that the relation between the
log response ratio and the log reinforcer ratio
is nonlinear whenever dbr is less than infinity.
The nonlinearity should become more ap-
parent as reinforcer ratios become more ex-
treme. Using a switching-key procedure with
only moderately discriminable keylight lumi-
nances to signal the alternatives, Davison and
Jones (1995) arranged reinforcer ratios that
were as extreme as 160:1. They reported sta-
tistically significant nonlinearity between log
response and reinforcer ratios in the direc-
tion predicted by our model.

A second implication of Equation 18 is
that, if dbr12 is not infinite, responding will be
maintained in the extinction component of
concurrent VI extinction schedules, as has
been reported by several researchers (e.g.,
Catania & Cutts, 1963; Davison & Hunter,
1976). Moreover, when R2 is zero, Equation
18 simplifies to B1/B2 5 1/dbr12; that is, the
response ratio is constant and independent
of R1. Davison and Jones (1998) reported a
switching-key experiment supporting this pre-
diction. Subsequent research in Davison’s lab-
oratory, using extended training under each
experimental condition, has provided further
support, and it would be interesting to ex-
plore the effects of systematically varying the
difference between the stimuli that define the
alternatives. The generalized matching law, of

course, cannot predict anything other than
the absence of responding on the extinction
alternative.

Choice-Controlling Variables

It is well known that many other variables
in addition to reinforcer rate, such as rein-
forcer magnitude, delay, and quality, deter-
mine choice allocation in concurrent sched-
ules (see Davison & McCarthy, 1988, for
review). Such variables can be incorporated
into our model, but not without raising some
theoretical problems. When some variable
such as reinforcer magnitude is arranged dif-
ferentially for two or more choices, both the
values of the reinforcers and the discrimina-
bility of the response–reinforcer relations are
altered. This issue has not arisen previously
because we have modeled only cases in which
the same reinforcer was arranged for all dis-
criminated operants, and only reinforcer fre-
quency varied. We now explore several ways
of addressing additional reinforcer variables,
with reinforcer magnitude (M) as the rele-
vant variable, and neglecting (for this pur-
pose) extraneous behavior and reinforcers.

Research has suggested the following gen-
eralizations that should be accommodated by
the model without adding outrageous num-
bers of parameters:

Result 1. When both reinforcer magnitudes
are varied, log response ratios are a mono-
tonic increasing, probably linear, function of
log magnitude ratio. Linearity cannot be
strongly asserted because researchers have
not varied reinforcer magnitudes over a wide
range of values. The most extensive data
come from Schneider (1973), who used four
magnitude combinations and found no ob-
vious deviations from linearity. It is possible
that Result 1a, below, is more general.

Result 1a. If one magnitude is held con-
stant while the other varies, log response ra-
tios are a monotonic increasing but nonlinear
function of log magnitude ratios (Davison &
Hogsden, 1984).

Result 2. When reinforcer magnitudes are
different but constant for two alternatives and
the ratio of reinforcer rates is varied, log re-
sponse ratios are a biased linear function of
log reinforcer-rate ratios. Again, the data sup-
porting this rather widely accepted general-
ization are sparse, as pointed out by Davison
and McCarthy (1988).



472 MICHAEL DAVISON and JOHN A. NEVIN

Result 3. When reinforcer magnitudes are
different but constant for two alternatives and
reinforcer rates are kept equal while their ab-
solute value is varied, response ratios are a
decreasing function of absolute reinforcer
rate (Davison, 1988).

Result 3a. However, when reinforcer mag-
nitudes are the same for two alternatives, sen-
sitivity to variations in reinforcer rate is an
increasing function of absolute reinforcer
rate (Alsop & Elliffe, 1988; Elliffe & Alsop,
1996; Logue & Chavarro, 1987).

Result 4. When reinforcer magnitudes are
kept in a constant ratio while their absolute
value increases, response ratios decrease
(Logue & Chavarro, 1987).

We consider several ways of dealing with
this complex pattern of results. First, consider
simply multiplying each reinforcer term in
Equation 18 by its corresponding magnitude:

R M2 2R M 11 1B d1 br5 . (19)
B R M2 1 1R M 12 2 dbr

Unfortunately, the apparent simplicity of this
approach is undermined by the fact that the
value of dbr will depend on the difference be-
tween M1 and M2, as in the differential out-
come effect. Any positive ordinal relation pre-
dicts an inverse S-shaped curve for Result 1
and fails to predict the constancy of sensitivity
in Result 2. Equation 19 can account for Re-
sult 3a by allowing for extraneous reinforcers,
as noted above, but this approach predicts
the reverse of Result 3. It is possible to ac-
count for Results 1a and 4 by assuming an
appropriate function for dbr in relation to the
absolute and relative values of M1 and M2, but
this would not be satisfying unless the func-
tion was based on independent evaluation of
the discriminability of different reinforcer
magnitudes.

Second, consider writing separate, multi-
plicative terms for reinforcer frequency and
amount:

R M12 12R 1 M 111 11B d d11 br12 bm125 c · , (20)
B R M12 11 11R 1 M 112 12d dbr12 bm12

where dbm is the discriminability of the rela-
tion between responses and the values of the
reinforcer magnitudes M1 and M2, and dbr is
interpreted as the discriminability of the re-
lation between responses and the frequency
of reinforcers. In this expression, dbm will be
some function of the difference or the ratio
of the reinforcer magnitudes. Equation 20
will behave much like the concatenated gen-
eralized matching law for reinforcer frequen-
cy and magnitude, in that a given pair of un-
equal magnitudes M1 and M2 will establish a
constant bias when reinforcer frequency is
varied (Result 2). However, in all other re-
spects, Equation 20 behaves much like Equa-
tion 19.

A second problem with both of the fore-
going equations is that the value of a rein-
forcer (i.e., its direct and generalized
strengthening effects) may not be linearly re-
lated to its physical magnitude (as specified,
say, by duration of food access; e.g., Epstein,
1981). This leaves us in the uncomfortable
position of having to conjecture both the val-
ue of each reinforcer as a function of M and
the discriminability of the response–reinforc-
er relations as a function of M1 and M2. Ex-
actly the same problems arise when other re-
inforcer parameters, such as delay or quality,
are varied. If our model is to be extended to
choice-controlling variables other than fre-
quency of reinforcement, a substantial re-
search effort will be required to identify in-
dependent functions for the discriminability
and value of the consequences of choice.

Finally, in all fairness, it should be pointed
out that the problems we have in determin-
ing an effective model for the interaction of
reinforcer rates and magnitudes are just as
much problems for the generalized matching
law, unless, of course, one is willing to allow
sensitivities to reinforcer rates and magni-
tudes to vary as a dependent variable in that
description.

The Question of Overmatching

It is clear by inspection of Equations 17 and
18 that strict matching is the upper limit of
sensitivity to reinforcement. However, even
with this clear prediction, we must expect
that the variance in estimating sensitivity to
reinforcement in experimental situations will
provide a distribution of values that may well
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extend on occasion to sensitivities of greater
than one, as reported by Baum (1979).

Overmatching, however, can also be pro-
duced experimentally in two, probably relat-
ed, cases: First, overmatching occurs when
concurrent VI VI performance is punished by
contingent electric shock (de Villiers, 1980;
Farley, 1980; Farley & Fantino, 1978). These
researchers suggested that punishers ob-
tained on a response alternative subtracted
from the reinforcers obtained at that alter-
native. The value of an alternative, under
their matching approach, was thus Ri 2 aPi,
where P is the punishment frequency and a
is a scaling parameter that equates one rein-
forcer to one punisher. Second, overmatch-
ing has been reported when subjects are re-
quired to work for a period of time to change
over from one alternative to another (Baum,
1982; Davison, 1991a). A similar approach to
that used for the quantification of punish-
ment—a subtractive model—has proved ef-
fective here (Davison), and recently Temple,
Scown, and Foster (1995) have shown that
Davison’s model predicts the effect of varying
changeover delays in concurrent VI VI sched-
ules. Naturally, then, in the present approach,
overmatching will require a similar subtrac-
tive model.

It is relatively easy to include subtractive
terms of the form 2w (for a constant punish-
er caused by a changeover delay or a travel
time) to the numerator and denominator of
our concurrent-schedule equation (Equation
18) as suggested by Davison and Jenkins
(1985). However, a further question arises:
Should this factor be subtracted from the ar-
ranged reinforcer frequencies, or from the
frequencies after generalization has oc-
curred? We know of no data to guide us in
this, but the logic of Davison’s (1991a) model
suggests that the subtraction should be after
generalization. Finally, in line with the logic
of our approach and our treatment of rein-
forcer magnitude, an additional parameter
might be necessary that captures the discrim-
inability of the response–punishment contin-
gency.

In summary, the concatenation of choice-
affecting variables (e.g., reinforcer magni-
tude, reinforcer delay, and punishment) with
reinforcer frequency to predict choice re-
mains a challenge to this, and other, treat-
ments of choice. The amount of research that

has been reported in this area is consider-
able. However, some experimental results ap-
pear to be inconsistent with each other, and
none of the experiments have been explicitly
designed as tests of the present approach.
Further detailed research on, for example,
the interaction of reinforcer frequencies and
magnitudes should be able to provide an un-
ambiguous guide to the structure of the equa-
tion for concurrent-schedule behavior allo-
cation.

DISCUSSION

We have presented a particular theoretical
model of discriminated operant behavior that
exemplifies a general perspective that we find
valuable: unified treatment of the ways in
which antecedent stimuli and reinforcers af-
fect behavior, where stimulus and reinforcer
effects are treated equivalently and inter-
changeably. This approach follows from qual-
itative similarities among the effects of exper-
imental variations in stimulus–behavior
relations and behavior–reinforcer relations,
as specified by the experimenter’s definitions
of these terms and the experimentally ar-
ranged contingencies linking them.

The process of translating our general ap-
proach into a particular model was guided by
the more specific and quantitative approach
of signal-detection theory. As initially put for-
ward by Tanner, Swets, Green, and their as-
sociates in the 1950s and 1960s (Green &
Swets, 1966), signal-detection theory specifies
two independent model parameters—d9 and
b—that correspond to two aspects of behav-
ior—discrimination between successive stim-
ulus presentations and bias toward one or the
other choice response. Signal-detection re-
search demonstrated that d9 was in fact in-
dependent of bias, with discrimination de-
pending on the physical properties of the
stimuli and bias depending on such nonstim-
ulus variables as payoffs, costs, and instruc-
tions. That research did not, however, ex-
amine whether b was independent of
discrimination. The demonstration of invari-
ance of d9 across variations in these nonstim-
ulus variables, and between procedures dif-
fering in how responses were defined and
recorded (such as yes-no, forced choice, or
ratings), permitted identification of d9 with
stimulus discriminability. This was a major
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contribution to psychophysics and a chal-
lenge to behavior theory. Could we do the
same sort of thing across a yet wider range of
procedures?

We have followed the detection-theory ap-
proach by defining two independent model
parameters that reflect the discriminability of
stimulus–behavior and behavior–reinforcer
relations as specified for a particular discrim-
inated operant relative to others arranged
within the same experimental session. The
model advanced here has the following gen-
eral properties: First, stimulus–behavior and
behavior–reinforcer relations are conceptu-
alized similarly and their discriminabilities
are quantified identically. Second, reinforcers
are presumed to strengthen the particular ex-
perimentally defined response that produced
it in the presence of the particular environ-
mental stimulus that the experimenter has
currently or recently presented. Third, the
strengthening effect of the reinforcer gener-
alizes to another discriminated operant to the
extent that the stimulus–behavior relation
and the behavior–reinforcer relation charac-
terizing the second operant, taken separately,
are similar to those of the reinforced operant.
Fourth, similarity is expressed as the inverse
of distance in a psychometric space with or-
thogonal axes corresponding to stimulus–be-
havior and behavior–reinforcer relations,
within which all experimentally defined dis-
criminated operants are located. The dis-
tance between any pair of operants is given
by the city-block sum of distances on the stim-
ulus–behavior and behavior–reinforcer axes.

Models and Model Domains

In this paper, we have applied a consistent
conceptual model to a number of research
areas. This model hinges on (a) the sugges-
tion that the effects of stimuli and reinforcers
on behavior are symmetrical, (b) that they act
in a particular way in flat and orthogonal psy-
chometric space, and (c) that generalization
between points in psychometric space occurs
according to a specific quantitative process.
In many ways, only the first of these is critical
to our thinking, and the model developments
done here may have required a degree of
specificity about the second and third points
that is premature. Unfortunately, there are in-
definitely many alternative psychometric
spaces and quantitative generalization pro-

cesses, and quantitative predictions derived
from many of these are indiscriminable from
those derived from many others, given the
usual noise in the data. Over the course of
our 20 years of informal collaboration, we
have explored many of these. We are not
firmly wedded to the specific model we have
offered here, but naturally we have been
guided towards this model from both theo-
retical considerations and from fits to data.

What alternatives are there, in general, to
the approach taken here? The first set of al-
ternatives is in the nature of psychometric
space. It seems to us exceedingly unlikely that
the log dsb 2 log dbr psychometric space is flat
in the way we have assumed, as suggested in
Figure 4. If it is not flat, then the distances
between reinforcing events and the point at
which they affect another response will be in-
accurately measured in our approach. There
are a number of different techniques of de-
termining such spaces, but lacking sufficient
data, we have made the simplest assumption.
Equally, as Davison (1991b) discussed, there
are indefinitely many ways of specifying the
effective distances in psychometric space. We
have assumed city-block measurement (see
Figure 4), in which effects are determined by
the distance along the perimeter of the tri-
angle in psychometric space. Straightforward
alternatives to this distance measurement are
the Euclidean (hypotenuse distance) mea-
surement, and the supremum measurement
(the effective distance is the largest of the dsb

or dbr distances). Davison suggested that the
supremum could be better than the city-block
measurement in predicting detection perfor-
mance, but we have not followed his sugges-
tion here because the gains were slight, and
the equations were more difficult. Other
measures remain to be investigated, and, of
course, the appropriate measurement and
the flatness or otherwise of the psychometric
space interact considerably.

The specific quantitative process of gener-
alization (we assumed a reciprocal process for
dsb and dbr in Equations 7a and 7b) could be
modeled by almost any monotonically de-
creasing nonlinear or even linear function.
Given the noise in the available data, it is not
at all easy to choose among these, and our
decision to use the reciprocal function is
based on simplicity of equation form, togeth-
er with the expectation of greater generaliza-
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tion decrements close to the reinforcing
event than far from it.

Thus, taking all the above considerations
into account, we can estimate the probability
of our having lit upon the correct model as
probably something rather less than 1 in 106.
However, at a more general and conceptual
level, we have, we hope, defined an approach
to the problem of predicting how three-term
contingencies in the context of other three-
term contingencies will affect behavior.

What the Model Does Well

In procedures that arrange two stimuli and
two responses, our model parameters exhibit
independence and invariance when either
stimulus–behavior or behavior–reinforcer re-
lations are varied experimentally. In addition,
our model correctly predicts the opposite ef-
fects of dsb and dbr on sensitivity to variation
in reinforcer ratios, and the effects of rein-
forcers for ‘‘errors.’’ The model extends nat-
urally to procedures involving more than two
stimuli or responses, and correctly predicts
the effects of varying the numbers of discrim-
inated operants and the differences among
them. Moreover, the model parameters are
well behaved in that they change monotoni-
cally with experimentally defined variables
and roughly satisfy additivity within psycho-
metric space. The model can account for
many of the effects of delay of choice and
delay of reinforcement on accuracy of dis-
crimination (measured as log d) in delayed
matching to sample and related procedures.
And finally, it gives a rational account of un-
dermatching on concurrent VI VI schedules.
Thus, its effectiveness is not limited to a sin-
gle paradigm.

What the Model Does Not Do Well

Despite its effectiveness across several dif-
ferent paradigms, the model encounters dif-
ficulties in some of them. In particular, the
model predicts an inverse relation between
the discriminability of stimulus–behavior re-
lations and sensitivity to reinforcer ratios that
is confirmed when stimulus–behavior dis-
criminability is varied by changing the stimuli
themselves. However, it is not always con-
firmed when stimulus–behavior discrimina-
bility is degraded by imposing delays between
the conditional stimuli and the choice re-
sponses in delayed matching to sample. Al-

though the available data are equivocal, our
model’s treatment of stimulus–choice delay
may need to be reconsidered.

In addition, in conditional discrimination
performance, the inverse-U relation between
log D and the reinforcer ratio predicted by
our model and shown in Figure 6 is not gen-
erally obtained, and the data of Whittaker
(1977) do not support the predicted relations
between log B and the reinforcer ratio.

A different sort of problem arises in the
treatment of performance on concurrent VI
VI schedules when variables other than rein-
forcer rate, such as reinforcer magnitude, are
considered. First, there is some uncertainty
about the best way to incorporate terms re-
flecting such variables in the model’s basic
equations; and second, the data now available
are so complex as to defy effective modeling
without ad hoc assumptions concerning ap-
plication to each data set.

Finally, the application of our model to
multiple VI VI schedules is complicated by
the nature of the dependent variable. In the
paradigms in which our model is generally
successful, behavior is readily measured as a
ratio of concurrently available responses. In
standard multiple schedules, by contrast, the
dependent variable is the rate of a single re-
sponse. To accommodate multiple-schedule
(and single-schedule) performance, some ra-
tional and empirically meaningful way to re-
express response rate will be required.

Things Not Modeled Here

We have simply ignored many variables that
affect behavior in the paradigms we have con-
sidered. For example, in discrete-trial condi-
tional discriminations, we ignore the interval
between trials and its well-known effects. Stat-
ed more generally, we do not address the role
of the context within which a given discrimi-
nated operant is defined, except for the gen-
eralized effects of other defined discriminat-
ed operants.

Another variable that we neglect for the
present is whether the reinforcers for the two
sorts of correct responses in a conditional dis-
crimination differ in amount, delay, or qual-
ity. In the section on conditional discrimina-
tions, we cited the research of Peterson et al.
(1980) showing that qualitatively different
outcomes enhanced accuracy in symbolic
matching to sample, especially when delays
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were imposed between stimulus offset and
choice, as an example of the effect of in-
creased discriminability of the response–re-
inforcer relation. One way to model this dif-
ferential outcome effect is to incorporate a
parameter that characterizes reinforcer dis-
criminability into our basic equations and al-
low it to increase with differences in reinforc-
er amount, delay, or quality. However, as
described in the section on choice-control-
ling variables and summarized above, it is not
clear how best to incorporate such changes
in our basic model, and we leave the issue as
a challenge for the future.

Another issue that we ignore for the pur-
poses of this model is the role of the subject’s
history of reinforcement in conditions prior
to the current condition, or stated otherwise,
the length of the effective time window within
which the direct and generalized effects of
reinforcers accumulate. It seems likely that
the length of the time window depends on
the frequency with which experimental con-
ditions are altered, and we simply assume suf-
ficient exposure to insure control by the con-
ditions of reinforcement that are currently
arranged, and no influence of prior condi-
tions.

Relatedly, we do not attempt to model be-
havior during acquisition or transitions be-
tween experimental conditions despite the
fact that our approach is readily translated
into dynamic equations. This is clearly an im-
portant direction to pursue, but there are
many different ways to treat dynamic process-
es, and we need to be sure that our model is
as effective as possible for steady-state behav-
ior before extending its approach to trial-by-
trial or reinforcer-by-reinforcer changes.

Also relatedly, we do not treat the effects
of reinforcement on resistance to change of
discriminated operant behavior (e.g., Nevin,
1992). There are two reasons for postponing
attempts to treat resistance to change within
our general model. First, Nevin’s analyses
have been concerned almost entirely with
changes in the rates of responding in multi-
ple schedules, and response rates (as noted
above) are not comfortably handled by our
model without further assumptions. Second,
Nevin has argued that resistance to change
depends on the stimulus–reinforcer relation
and not on the behavior–reinforcer relation.
In our model, the discriminability of the stim-

ulus–reinforcer relation is implied by the
joint values of the stimulus–behavior and be-
havior–reinforcer discriminabilities, compli-
cating direct application to Nevin’s work.

Research and Applications with Humans

Finally, we consider some ways in which our
model applies to human performance. First,
of course, it models the general properties of
human signal-detection performance; that is
what inspired our approach in the first place
(Nevin, 1969b). We should, however, note
some specific aspects of detection perfor-
mance that are not fully captured here. In the
human psychophysics literature, the well-
known ROC or isosensitivity curve is often
reported to be linear in double-normal co-
ordinates, as predicted by classical signal-
detection theory (Green & Swets, 1966). Our
model predicts an isosensitivity curve that is
concave in such coordinates, with the degree
of concavity being minimal at large values of
dbr but increasing as dbr decreases. This is not
a serious problem because dbr should be large
when ‘‘yes’’ and ‘‘no’’ are well differentiated
and are followed immediately by differential
payoffs, penalties, or other explicit feedback.
Thus, the isosensitivity curve should be nearly
straight in double-normal coordinates, and
the usual noise in the data precludes detec-
tion of slight curvilinearity. Second, many hu-
man isosensitivity curves are asymmetrical,
with slopes less than 1.0, whereas our model
predicts symmetry with an average slope of
1.0. Signal-detection theory accommodates
asymmetry and nonunit slopes by adding a
parameter that reflects the ratio of variances
in the postulated distributions of sensory ef-
fects that account for detection performance
(see Egan, 1975, for treatment of this and re-
lated approaches). We could do likewise by
allowing dsb to take different values for signal
(S1) and noise (S2) trials, but for the present
we refrain from this added degree of com-
plexity (and parametric freedom).6

More generally, our model may help to un-

6 Many of these issues are discussed by Alsop (1998),
whose approach is closely related to ours. In particular,
he states that ‘‘Ultimately, signal-detection performance
is the product of a variety of discriminations involving the
sample stimuli, the response alternatives, and the feed-
back or outcomes for these choices’’ (p. 249). Our model
attempts to formalize and quantify these determiners of
detection performance.
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derstand some sources of variation in human
performance on conditional discriminations
and concurrent schedules. For example, Bar-
on and Surdy (1990) varied the magnitudes
of payoffs and penalties in a continuous rec-
ognition task with young (age 18 to 26 years)
and older (age 62 to 75 years) adults. The
paradigm was a 2 3 2 conditional discrimi-
nation analogous to signal detection, in
which the ‘‘signal’’ was prior exposure to an
item. Recognition performance was generally
less accurate for the older adults, although
the difference decreased with extended prac-
tice. Interestingly, the older adults were also
less sensitive to variations in payoff and pen-
alty magnitudes. In terms of our model, the
implication is that dbr was lower for the older
subjects. Because measured discrimination
depends on dbr, as shown in Figure 6, the age
difference in recognition may have been
overestimated. The general message here is
that dbr must be equated across groups of sub-
jects before differences in discrimination per-
formances with the same stimuli can be com-
pared.

It may be that the age difference in sensi-
tivity to the magnitude of the payoffs and
penalties reported by Baron and Surdy
(1990) could be reduced by enhancing the
distinctiveness of the response–reinforcer re-
lations. Some suggestive data on this issue
have been obtained by Stine-Morrow, Soeder-
berg Miller, and Nevin (in press), who stud-
ied young and older adults in a lexical deci-
sion task. The paradigm was a 2 3 2
conditional discrimination employing spoken
words and confusable nonwords as stimuli.
Over several variations in the context of stim-
ulus presentations, the older subjects were
generally less accurate in distinguishing be-
tween words and nonwords when feedback
and accumulated payoffs were given only at
the end of a block of trials. However, when
immediate feedback signaling money earned
was provided for correct identifications of
words and nonwords on each trial, discrimi-
nation increased markedly for the older
adults and the age difference was eliminated.
In terms of our model, the provision of im-
mediate feedback may be construed as en-
hancing dbr.

Our model may also help to interpret per-
formance deficits in patients with Korsakoff’s
syndrome. Oscar-Berman, Heyman, Bonner,

and Ryder (1980) compared the performanc-
es of Korsakoff patients and normal subjects
on concurrent VI VI schedules, and found
that choice allocation was less sensitive to the
reinforcer ratio for the Korsakoff patients. In
fact, the Korsakoff group median estimated
value of a in Equation 2 above was 0.03, sug-
gesting a very low value of dbr. Korsakoff pa-
tients also exhibit deficits in various discrim-
ination learning and delayed discrimination
tasks. These stimulus-discrimination deficits
may result, at least in part, from the patients’
difficulty in distinguishing the response–re-
inforcer contingencies in these stimulus-con-
trol tasks. Interventions designed to enhance
the discriminability of response–reinforcer
contingencies might ameliorate some of the
apparent deficits in stimulus discrimination.
At the least, therapists must take the discrim-
inability of both stimulus–behavior and be-
havior–reinforcer relations into account in
the functional analysis and modification of
behavior in applied settings. In this way, a
quantitative approach to behavior therapy
(Davison, 1992; McDowell, 1982) may be de-
veloped.

CONCLUSION

The basic approach behind the model we
present here is based on ideas that have in-
formed the experimental analysis of behavior
for many years. For example, reinforcer rates
have been treated as functionally equivalent
to environmental stimuli in the generaliza-
tion-decrement account of extinction: The
richer the schedule during training, the
greater the discriminability of nonreinforce-
ment. We have tried to make the equivalence
of the effects of stimuli and reinforcers ex-
plicit and to quantify the discriminability of
their relations with behavior in concurrent
discriminated operants. We have proposed
some equations suggesting how their effects
may combine and have applied them as
broadly as we are able without ad hoc modi-
fication. The outcome, we believe, is favor-
able enough to encourage further efforts
along these lines. We will continue to explore
alternatives in the domain of integrative mod-
els suggested by our basic approach and ap-
ply them yet more broadly. It is our special
hope that readers will do likewise.
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APPENDIX A
GLOSSARY

Si1,2,. . .n — a set of experimentally specified
stimuli.
Bj1,2,. . .n — a set of experimentally specified re-
sponses.
Rij — an outcome contingent on Bj given Si.
Discriminated operant — a fundamental be-
havioral unit defined as Si:(Bj → Rij).
c — inherent bias in choice between B1 and
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B2 that is independent of S1, S2, and R11/R22;
estimated as the intercept of the least squares
fit to data relating log b (see below) to log
R11/R22.
a — sensitivity of the ratio B1/B2 to the ratio
of reinforcers R1/R2 obtained by B1 and B2,
estimated as the slope of the least squares fit
to data relating log b (see below) to log R11/
R22. Note that when S1 and S2 are indistin-
guishable or undefined, as in two-alternative
concurrent schedules, c and a are estimated
from the logarithmic form of the generalized
matching law: log(B1/B2) 5 a log(R1/R2) 1
log c.
dsbij — a theoretical parameter characterizing
the discriminability of the stimulus–behavior
relations Si1:Bj1, Si2:Bj2.
dbrij — a theoretical parameter characterizing
the discriminability of the behavior–reinforc-
er relations Bj1 → R11, Bj2 → R22.
d — stimulus discriminability in the model of
Davison and Tustin (1978); calculated as the
geometric mean of B11/B12, B22/B21. Fre-
quently reported as log d, estimated as the
difference between intercepts of least squares
fits to data relating log B11/B12 and log B21/
B22 to log R11/R22 over several conditions.
b — overall bias in the model of Davison and
Tustin (1978); calculated as the geometric
mean of B11/B12 and B21/B22. The model pre-
dicts that log b 5 a log (R11/R22) 1 log c.
ds — stimulus discriminability in the model of
Davison and Jenkins (1985); conceptually
and algebraically equivalent to d, and calcu-
lated as for d above.
dr — the discriminability of response–rein-
forcer relations in the model of Davison and
Jenkins (1985); conceptually equivalent to dbr

above, and estimated by nonlinear optimiza-
tion.
B — overall bias in the present model, cal-
culated as for b above. However, it is not pre-
dicted by the same equation and depends on
both dsb and dbr (see text, Equation 8). The
upper case is intended to distinguish its the-
oretical origin, and signifies the value pre-
dicted by our model rather than calculated
or estimated from data.
D — measured discrimination in the present
model, calculated as for d above. However, in
the present model it depends on both dsb and
dbr (see text, Equation 11). The upper case is
intended to distinguish its theoretical origin,
and signifies the value predicted by our mod-

el rather than calculated or estimated from
data.
dt — a theoretical parameter characterizing
the degradation of stimulus–behavior dis-
criminability, dsb, over time separating Si and
Bj, or equivalently, the degradation of behav-
ior–reinforcer discriminability over time sep-
arating Bj and Rij.
dd — a theoretical parameter characterizing
the discriminability of different delays inter-
vening between Si and Bj.
d2 — a theoretical parameter characterizing
the discriminability of different second-order
stimuli signaling different first-order relations
among Si, Bj, and Rij.
dbm — a theoretical parameter characterizing
the discriminability of reinforcers R1 and R2

that differ in magnitude or quality.
Pij — punishers contingent on Si:Rj.
a — a scale factor equating the weakening
effects of a given punisher with the strength-
ening effects of a given reinforcer.
d9 — a parameter in the theory of signal de-
tection corresponding to the discriminability
of a signal in a background of noise, inter-
preted as the difference between the means
of two hypothetical distributions of sensory
effects divided by their standard deviation.
b — a parameter of the theory of signal de-
tection corresponding to response bias, inter-
preted as the location of a response criterion
on the sensory-effect continuum.

APPENDIX B

Fitting the Model

A note is in order here about fitting the
model we have presented. To estimate the
various parameters, various data could be
used in various different ways. For example,
as data, we might fit a proportional model
[Bi/(Bi 1 Bj)] to proportional predictions, us-
ing each cell as a proportion of the other
cells in the presence of each stimulus. Such
a proportional fit would have the effect of dif-
ferentially weighting data that occur around
a response proportion of .5 in comparison
with those more extreme. This would pro-
duce parameter estimates that would be more
accurate for wide generalization (small dis-
criminability) values. The opposite weighting
can be achieved if simple ratios are used, in
which case small degrees of generalization
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(large discriminabilities) would be more ac-
curately estimated. The middle way, which
may have the benefit of equalizing variances
across all values of response measures, is to
use log ratio fits. Tustin and Davison (1978)
showed that log ratio measures were homo-
scedastic in concurrent VI VI performance,
and perhaps this would also apply to the sig-
nal-detection situation. We recommend this
procedure, at least as an interim measure.

A problem arises, however. If we use Equa-
tions 1 and 2 directly to obtain values of dsb

and dbr, optimization programs will frequently
keep increasing the values of both dsb and dbr

without bound. This results from the nature
of the equation, whereby perfect discrimina-
tion has an infinite value. Stable and sensible
fits can, however, be achieved if the equations
are algebraically converted to optimize for
values of psb and pbr [defined as dsb/(1 1 dsb)
and dbr/(1 1 dbr)]. Because these parameters
have a range of 0.5 to 1.0, they can easily be
constrained to fall within this range, or, more
usually, to be less than or equal to 1. We must,
however, remember that if such fitted param-
eter values are found to be either consistently
above 1.0, or less than 0.5, these values con-
tain important information on the adequacy
(indeed, inadequacy) of the model under in-
vestigation.

It is still necessary to decide which data
should be used in log ratios. Again, we rec-
ommend pairwise ratios of responses within
each stimulus (e.g., in a three-response
choice, B1/B2, B2/B3, and B3/B1. This pro-
vides a set of data that are well distributed
between positive and negative values and also
provides some data signal (systematic vari-
ance) for the relative performance (and
hence, the parameter estimate) between B2

and B3 (dbr23). Notice, though, that the pres-
ent models do allow ratios to be taken verti-
cally in a matrix (e.g., B11/B21) when the fre-

quency of presentation of all stimuli is the
same (signal-presentation probability 5 .5 in
a 2 3 2 matrix), or if the response and re-
inforcer numbers are normalized between
stimuli.

A common problem in fitting data from
conditional discrimination situations is low
response numbers in some cells. If both dsb

and dbr are close to infinity, error responses
may only occasionally be emitted. As a result,
parameter estimates may be unattainable (if
response counts are zero), or may be poor in
accuracy. This can be overcome in a number
of ways. First, and this is definitely not rec-
ommended, data can be collected until there
is at least one response in each error cell.
This procedure will bias the estimate of dsb

and dbr, usually towards being too large. Sec-
ond, the fits can be done as relative numbers
rather than log ratios. Although this allows a
fit to be carried out, parameter estimates of
small confusions will be in error. Third, Hau-
tus (1995) has published a theoretical analysis
of the ways in which these problems can be
overcome showing that the procedure of sim-
ply adding 0.5 to response counts in all cells
will usually provide a better estimate of pa-
rameters like dsb and dbr. We recommend that
procedure.

Finally, and more technically, what is the
best way of actually carrying out the fit? The
best we have found is to use a spreadsheet
that incorporates an optimizer. Quattro-Prot
is particularly good in this regard, because it
contains built-in statistical functions that
avoid many columns of calculation. Excelt is
satisfactory, and SigmaPlott is fast. Happily,
they all seem to give very similar answers! The
usual caveats, of course, apply: You should
have seriously more data than the number of
parameters you need to fit. Also, when fitting
large numbers of parameters, optimization
can take some time, even on a fast computer.


