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TOWARD A UNIFIED THEORY OF
DECISION CRITERION LEARNING IN
PERCEPTUAL CATEGORIZATION
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Optimal decision criterion placement maximizes expected reward and requires sensitivity to the
category base rates (prior probabilities) and payoffs (costs and benefits of incorrect and correct
responding). When base rates are unequal, human decision criterion is nearly optimal, but when
payoffs are unequal, suboptimal decision criterion placement is observed, even when the optimal
decision criterion is identical in both cases. A series of studies are reviewed that examine the gen-
erality of this finding, and a unified theory of decision criterion learning is described (Maddox &
Dodd, 2001). The theory assumes that two critical mechanisms operate in decision criterion learning.
One mechanism involves competition between reward and accuracy maximization: The observer
attempts to maximize reward, as instructed, but also places some importance on accuracy maximi-
zation. The second mechanism involves a flat-maxima hypothesis that assumes that the observer’s
estimate of the reward-maximizing decision criterion is determined from the steepness of the objec-
tive reward function that relates expected reward to decision criterion placement. Experiments used
to develop and test the theory require each observer to complete a large number of trials and to
participate in all conditions of the experiment. This provides maximal control over the reinforce-
ment history of the observer and allows a focus on individual behavioral profiles. The theory is
applied to decision criterion learning problems that examine category discriminability, payoff matrix
multiplication and addition effects, the optimal classifier’s independence assumption, and different
types of trial-by-trial feedback. In every case the theory provides a good account of the data, and,
most important, provides useful insights into the psychological processes involved in decision crite-
rion learning.
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tivariate signal-detection theory

Categorization is a primary component of
the behavior of all organisms. Rats categorize
bits of food as “large” or “small,” with small
pieces being eaten immediately and large
pieces being hoarded (Wishaw, 1990; Wishaw
& Tomie, 1989). The feeding deer must cat-
egorize a sound, like leaves rustling, as indic-
ative of “‘a hunter approaching” or “no hunt-
er approaching,” with an approaching
hunter leading the deer to cease feeding and
to run. The expedition doctor camped out
near the summit of K2 must categorize a
climber’s difficulty breathing as a sign of
“pulmonary edema” or “exhaustion,” with a
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pulmonary edema diagnosis leading to im-
mediate retreat. These are all categorization
problems because in every case there are
many (generally an infinite number of) in-
formation states, but only a few (often two)
courses of action. Categorization perfor-
mance is governed by the organism’s experi-
ence with the environment and the reinforc-
ing consequences of the decisions that they
make. With experience, organisms become
adept at many categorization tasks. If they did
not, they would die. In light of this fact, it is
reasonable to hypothesize that in many do-
mains, human and other organisms’ catego-
rization performance is nearly optimal (Ash-
by & Maddox, 1998). Although optimality can
be defined in many ways, a common defini-
tion is performance that maximizes expected
reward (Green & Swets, 1967). To maximize
expected reward, one needs explicit knowl-
edge of the distributional properties of the
categories, or essentially an infinite amount
of experience. Neither is likely. Even so, fairly
small samples yield reasonable estimates of
the relevant information. Of course, as events
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recede into the past, their impact is dimin-
ished. Temporal discounting processes (see
Mazur, 1988) are therefore relevant, but are
not discussed here.

Optimal categorization performance of-
ten requires the organism to place a decision
criterion along the relevant dimension. Us-
ing the examples above, the rat must set a
criterion on size, the deer must set a crite-
rion on loudness, and the expedition doc-
tor must set a criterion on ease of breath-
ing, with values below the criterion leading
to one categorization response, and values
above the criterion leading to the other cat-
egorization response. The location of the
optimal decision criterion is affected by the
category base rates (i.e., the prior probabil-
ity of each category) and the entries in the
category payoff matrix (i.e., the costs and
benefits associated with correct and incor-
rect categorization responses). For exam-
ple, during hunting season the deer’s deci-
sion criterion might be set at a lower
loudness value than during the off-season
because hunters are more prevalent during
hunting season. Similarly, the decision cri-
terion might be set at a lower loudness val-
ue for a mother deer with her fawn than for
a deer without offspring because the cost
associated with an incorrect “no hunter”
decision for the mother deer might be
greater than for the deer without offspring.

As outlined in detail below, the location of
the optimal decision criterion is determined
from the product of the baserate ratio with
the payoff ratio (see Equations 2 and 4 be-
low). For example, suppose that Category A
is three times more likely to occur than Cat-
egory B, the benefit of each correct A re-
sponse is equal to the benefit of each correct
B response, and the cost of each incorrect A
response is equal to the cost of each incorrect
B response. Under these conditions, the base-
rate ratio of Category A to B is 3:1, and the
payoff ratio of Category A to B is 1:1 (because
the benefits for the two categories are equal
and the costs of the two categories are equal).
Contrast that with a situation in which Cate-
gory A and Category B are equally likely to
occur, the benefit of each correct A response
is three times the benefit of each correct B
response, and the cost of each incorrect A
response is equal to the cost of each incorrect
B response. Under these conditions, the base-
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rate ratio is 1:1, and the payoff ratio is 3:1
(because the benefit for a correct A response
is three times the benefit for a correct B re-
sponse and the costs of the two categories are
equal). Because the product of the base-rate
and payoff ratios is 3:1 in both cases, the op-
timal decision criterion is identical in both
cases.

A robust finding in the decision criterion
literature is that decision criterion placement
in unequal base-rate conditions is consistently
closer to optimal than decision criterion
placement in unequal payoff conditions, even
when the optimal decision criterion is iden-
tical across the two conditions (e.g., Green &
Swets, 1967; Healy & Kubovy, 1981; Kubovy &
Healy, 1977; Lee & Janke, 1964, 1965; Lee &
Zentall, 1966; Ulehla, 1966). Although this
empirical result has been replicated many
times, the range of experimental contexts in
which this phenomenon has been studied is
fairly limited. For example, most of this work
used a fixed category discriminability, d' =
1.0 (where d’ is defined as the standardized
distance between the category means). In ad-
dition, in most of this work, payoff manipu-
lations were instantiated by manipulating the
benefit or gain associated with correct re-
sponses (usually in the form of points that
were converted to money following the ex-
periment), while the cost or loss associated
with an incorrect response was fixed at zero.
Also, most of these studies examined decision
criterion learning when base rates and pay-
offs were manipulated separately across ex-
perimental conditions, while situations in
which base rates and payoffs were manipulat-
ed simultaneously within the same condition
were excluded. Finally, in most of this work
the observer received trial-by-trial feedback
regarding the correctness of his or her re-
sponse.

One focus of my research has been to ex-
plore the generality of this empirical result by
broadening the range of experimental con-
texts used to examine decision criterion
learning with unequal base rates and payoffs.
In particular, I have examined decision cri-
terion learning (a) across a wide range of cat-
egory discriminabilities, (b) in situations in
which incorrect responses led to a loss of
points, (c) in situations in which base rates
and payoffs are manipulated simultaneously
within the same experimental context, and
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(d) for trial-by-trial feedback based on the ob-

jectively correct response versus feedback
based on the response made by the optimal
classifier. A second focus of my research has
been to develop and test specific hypotheses
regarding decision criterion learning by com-
paring human decision criterion learning
with that of the optimal classifier (for related
work from animal learning, see Alsop, 1998;
Herbranson, Fremouw, & Shimp, 1999;
Shimp, 1966, 1969, 1973; Shimp, Long, &
Fremouw, 1996; see also Staddon, 1992; Stad-
don & Ettinger, 1989; Stephens & Krebs,
1986). Although in practice performance is
often suboptimal, using the optimal classifier
as a benchmark has provided many useful in-
sights into the nature of performance subop-
timalities and has provided a useful starting
point for developing and testing theoretically
motivated models of performance. As a result
of this work, my colleagues and I have re-
cently proposed, and are now testing, a uni-
fied theory of decision criterion learning
(Maddox & Dodd, 2001). In fact, predictions
derived from the theory helped to guide the
choice of experimental contexts outlined
above.

This article provides an overview of my re-
cent work on decision criterion learning
when base rates and payoffs are manipulated
across a wide range of experimental contexts,
and reports on the status of a recently pro-
posed unified theory of decision criterion
learning. The theory has its roots in signal-
detection theory, and thus makes use of para-
metric properties of stimulus distributions,
likelihood ratios, likelihood-ratio-based deci-
sion criteria, and other related constructs.
Following the lead of many colleagues in the
animal learning literature (Davison & Nevin,
1999; Skinner, 1977; White & Wixted, 1999;
Wixted & Gaitan, in press), it is important to
note that although these constructs help us
to understand and characterize decision cri-
terion learning behavior, I am not arguing
that people (or nonhuman animals) possess
explicit information about the stimulus dis-
tributions, likelihood ratios, or decision cri-
teria. Rather, the position is that people gain
information (likely implicitly') about the cat-

I The distinction between implicit and explicit mem-
ory and the importance of each system in category learn-
ing have received much attention in the past few years.
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egorization problem as a function of experi-
ence with the stimuli and with the reinforcing
consequences of the decisions they make
(i.e., their reinforcement history). It is ac-
knowledged that there are likely many differ-
ent mathematical systems (or algorithms)
that can capture the behavioral profile of de-
cision criterion learning, and that the present
system is only one. Even so, this particular
theoretical approach does provide insight
into categorization behavior, and more im-
portantly leads to specific testable predic-
tions.

Much of the research in cognitive psy-
chology uses college-age individuals who
perform some task for a few hundred trials.
Different groups of individuals often partic-
ipate in different conditions of the experi-
ment, and statistical analyses based on anal-
yses of variance are used. The present
approach is different. In line with many col-
leagues who study animal learning, partici-
pants complete several thousand trials and
participate in all conditions of the experi-
ment. One advantage of this approach is
that there is more control over the partici-
pant’s reinforcement history, and thus its
effects on behavior are more easily identi-
fied. By examining a wide range of experi-
mental conditions (i.e., reinforcement his-
tories) within observers, behavioral profiles
can be directly compared across reinforce-
ment histories. A second advantage of this
approach is that it focuses on the individu-
al. This turns out to be important in cate-
gory learning because it is often (if not al-
ways) the case that behavioral profiles
generated by averaging across a large num-
ber of participants are not indicative of in-
dividual profiles. In fact, Maddox (1999; see
also Ashby, Maddox, & Lee, 1994; Estes,
1956; Maddox & Ashby, 1998; Smith & Min-
da, 1998) showed that averaging alters the
structure of categorization data in such a

The current thinking is that there are at least two cate-
gory learning systems, and that one relies predominantly
on explicit memory processes, whereas the other relies
predominantly on implicit memory processes (Ashby &
Ell, 2001, 2002; Ashby, Maddox, & Bohil, in press). The
neurobiological basis of these systems is an area of active
research (Filoteo, Maddox, & Davis, 2001a, 2001b;
Knowlton, Mangels, & Squire, 1996; Maddox & Filoteo,
2001; see Ashby & Ell, 2001, for a review), and is one in
which animal learning theorists are making a major con-
tribution.
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way that the correct model of individual
performance might provide a poor account
of averaged performance, and even worse,
an incorrect model of individual perfor-
mance might provide an excellent account
of averaged performance. A third advan-
tage is that a model-based approach to data
analyses can be utilized in which we develop
a series of nested models that are applied
simultaneously to the data from all experi-
mental conditions separately for each ob-
server. Each model makes different assump-
tions about the effects of the various
reinforcement histories on the behavioral
profiles observed in each condition.

The second section of this paper outlines
the basic properties of many natural catego-
ries and offers the normal distribution as a
good model of natural categories. The third
section provides an overview of the task used
to study decision criterion learning. The
fourth section formalizes the behavior of the
optimal classifier for normally distributed cat-
egories, and reviews briefly a signal-detection-
based model of categorization, called decision-
bound theory. This theory, developed by Ashby
and Maddox (1993; Maddox & Ashby, 1993),
assumes that observers attempt to use the
same strategy as the optimal classifier but fail
because of inherent suboptimalities in per-
ceptual and cognitive processing. The fifth
section introduces a unified theory of deci-
sion criterion learning that my colleagues
and I have proposed and currently are test-
ing. The sixth section reviews a series of stud-
ies that examine the generality of decision
criterion learning across experimental con-
texts that include (a) a wide range of cate-
gory discriminabilities, (b) cases in which in-
correct responses lead to point losses, (c)
separate and simultaneous base-rate/payoff
manipulations, and (d) feedback based on
the objectively correct response or on the re-
sponse of the optimal classifier. In each case
the main empirical results are reviewed and
implications for the validity of the unified
theory are discussed.

THE NORMAL DISTRIBUTION
AS A MODEL OF
NATURAL CATEGORIES

To examine rigorously the optimality of
categorization performance, one must first
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identify the basic properties of most every-
day categorization problems and build these
properties into the experimental categories
used in the laboratory. Although no set of
properties is common to all natural-environ-
ment categories, many such categories have
the following six properties. First, the stim-
ulus dimensions typically are continuous val-
ued rather than binary valued. For example,
the loudness of the leaves rustling varies con-
tinuously. Second, most categories contain a
large, often infinite, number of exemplars.
For example, there are many levels of loud-
ness of the leaves rustling that are character-
istic of a hunter approaching. Third, many
categories have a graded structure in which
the exemplars are symmetrically and uni-
modally distributed around some prototype,
or at the very least there is evidence that
people make this assumption (e.g., Fried &
Holyoak, 1984). Fourth, categories generally
overlap, meaning that perfect performance
is impossible. For example, no matter how
advanced a deer’s auditory capabilities,
there will be times when it continues feeding
even though a hunter caused the leaves to
rustle and times when it runs when only the
wind caused the leaves to rustle. Category
overlap is directly related to the predictabil-
ity or discriminability of the stimulus dimen-
sion for correct categorization. For example,
the loudness of the leaves rustling might dis-
tinguish between a hunter approaching or
not approaching when the wind is calm but
not during a windstorm. Throughout this ar-
ticle, the term category discriminability will be
used to refer to the standardized distance be-
tween category means, also called category d’
(Green & Swets, 1967). The more discrimi-
nable two categories are along a particular
dimension, the larger is d’. Fifth, the cate-
gory base rates often differ. For example,
during hunting season the sound of leaves
rustling is more likely to be caused by an
approaching hunter than by some harmless
source, whereas during the off-season the
sound of leaves rustling is less likely to be
caused by an approaching hunter. Finally,
the benefits associated with correct catego-
rization decisions might differ and the costs
associated with incorrect categorization de-
cisions might differ. For example, the bene-
fit of correctly categorizing rustling leaves as
indicative of an approaching hunter proba-
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bly exceeds that of correctly categorizing
rustling leaves as not indicative of an ap-
proaching hunter, insofar as the former
saves the deer’s life. Similarly, the cost of
falsely categorizing rustling leaves as not in-
dicative of an approaching hunter will ex-
ceed that of falsely categorizing rustling
leaves as indicative of an approaching hunt-
er, because the former could lead to the
deer’s death. In general terms, such costs
and benefits make up the elements of the
payoff matrix.

A model that possesses the first four prop-
erties is the normal distribution. It is a con-
tinuous-valued, unimodal, and symmetric dis-
tribution. It contains an infinite number of
exemplars that overlap with exemplars from
other categories. With normally distributed
categories, it is also straightforward to manip-
ulate category discriminability (d'), and to
manipulate the category base rates and pay-
offs associated with each categorization re-
sponse. The studies reviewed in this article all
used normally distributed overlapping cate-
gories that were composed of a large number
of continuous-valued stimuli within the
framework of a perceptual categorization task
(also called the randomization technique; Ashby
& Gott, 1988).

THE PERCEPTUAL
CATEGORIZATION TASK

In a typical perceptual categorization task,
the experimenter defines two normally dis-
tributed categories. On each trial one cate-
gory is chosen at random in accord with the
base rates. A single stimulus is selected at ran-
dom from the chosen category and is pre-
sented to the observer until he or she re-
sponds. Once the observer responds,
feedback is provided. Following a short inter-
trial interval, the next stimulus is presented.
An example is provided in Figure 1. In this
example, the categories are univariate nor-
mally distributed, and the stimulus is a bar
that varies in height across trials, with “short”
bars being generally indicative of Category A
and “tall” bars generally being indicative of
Category B. In many of our studies, instruc-
tions indicate that the observer is performing
a simulated medical diagnosis task in which
the height of the bar denotes the outcome of
some continuous-valued medical test. In the
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top portion of Figure 1, a bar height sampled
from Category A is presented to the observer.
The observer studies the bar and responds
“A” or “B.” The observer is informed of the
“potential gain” available for the correct re-
sponse (here, 3 points). Thus, an A response
will earn the observer 3 points, with the
change as denoted by the “gain” in the feed-
back display. In addition, the “total gain” and
the “total potential gain” earned so far in the
experiment are displayed (note that, prior to
the current trial, the observer in Figure 1 had
10 points). A B response would earn the ob-
server 0 points. The bottom portion of Figure
1 shows the same information for a stimulus
sampled from Category B. Note that in this
case the observer receives only 1 point for a
correct B response, whereas the same observ-
er received 3 points for a correct A response.
Note also that incorrect responses receive 0
points. This is an example of a payoff manip-
ulation in which the gain (or benefit) for a
correct A response is three times larger than
the benefit for a correct B response. In other
studies the benefits are equal for both cate-
gories, but the base rates are manipulated in
such a way that three times as many stimuli
are sampled from Category A than are sam-
pled from Category B. Manipulations of this
type form the foundation of the research pro-
gram described here.

THE OPTIMAL CLASSIFIER
AND DECISION-BOUND THEORY

Optimal Classifier

Because the normal distribution is a good
model of many everyday categories, it is re-
flected in the categories of our experimental
paradigm, the perceptual categorization task.
The next step toward a rigorous examination
of the optimality of categorization perfor-
mance is to formalize the behavior of the op-
timal classifier with normally distributed cat-
egories. The optimal classifier is a
hypothetical device that maximizes expected
reward (Green & Swets, 1967). Consider the
situation facing the deer in the forest that
must decide whether a hunter is “approach-
ing” or ‘“not approaching” based on the
loudness of the leaves rustling. Denote “not
approaching” as Category A, “approaching”
as Category B, and the loudness of the leaves
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Category Stimulus
(Response Terminated)
A
B
Fig. 1.

rustling as x. Assume that x is normally dis-
tributed for each category with means pwp and
g, and the standard deviations g, and o, as
shown in Figure 2a. The optimal classifier
perfectly records the loudness, denoted as x.
In other words, given a fixed physical input,
the optimal classifier will show no variability
in the perceptual representation. The opti-
mal classifier has perfect knowledge of the
form of the category distributions, and the
parameters that describe the distribution.
This information is used to compute the like-
lihood ratio of the two category distributions,
called the optimal decision function,

l(x) = f(aB)/ f(A), (1)

where f(x]i) is the likelihood of test result x
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Response Feedback (1000ms)

Gain: 3
Potential Gain: 3
A

Total Gain: 13
Total Potential Gain: 13

Gain: 0
Potential Gain: 3

Total Gain: 10
Total Potential Gain: 13

Gain: 1
Potential Gain: 1

Total Gain: 11
Total Potential Gain: 11

Gain: 0
Potential Gain: 1

Total Gain: 10
Total Potential Gain: 11

Timing of a typical trial and hypothetical feedback displays for the perceptual categorization task.

for category i. The likelihood ratio will be
greater than one when the likelihood of test
result x, given Category B, is larger than the
likelihood given Category A. The likelihood
ratio for any value of x will be affected by the
category discriminability, d’. Three levels of
category d' (1.0, 2.2, and 3.2) are depicted
in Figure 2.

The optimal classifier has perfect knowl-
edge of the category base rates and the costs
and benefits associated with correct and in-
correct responses. In other words, the opti-
mal classifier knows the probability that a
hunter will be approaching or not approach-
ing. The optimal classifier also knows the
benefit of a correct ‘“‘not approaching” deci-
sion, the benefit of a correct “approaching”
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a)
d'=1.0 Bo=1.0 Bo=3.0
A B
X
b) -
d'=2.2 Bo=1.0 fo=3.0
A B
)
i
c)
d'=3.2 Bo=10 Bo=3.0
A B
=
!
|

Stimulusq Value (x) 7

Fig. 2. Hypothetical distributions for Categories A and B when category discriminability (d') is equal to (a) 1.0,
(b) 2.2, and (c) 3.2. The B, = 1 decision criterion denotes the criterion that is optimal when the base rates are equal
and the payoff matrix is symmetric. This is also referred to as the equal likelihood decision criterion. The $, = 3
decision criterion denotes the criterion that is optimal when there is a 3:1 base-rate ratio or when the payoff matrix
is asymmetric with a 3:1 cost-benefit ratio.
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decision, the cost of an incorrect “not ap-
proaching” decision, and the cost of an in-
correct ‘“‘approaching” decision. The base
rates and the costs and benefits that make up
the elements of the payoff matrix are used to
determine the value of the optimal decision cri-
lerion:

Bo = [P(A)/P(B)]
X [(Vaa = Voa)/ (Vo — Vap)],  (2)

where P(i) is the base-rate (i.e., prior) prob-
ability for category i, V,p and Vg are the
benefits associated with correct responses,
and WV, and Vg are the costs associated with
incorrect responses (with lowercase letters
denoting response and uppercase letters de-
noting categories). The optimal classifier uses
lo(x) and B, to construct the optimal decision
rule:

If (%) > Bos
then respond B, otherwise respond A. (3)

Several points are in order. First, note that
the Equation 3 decision rule is deterministic,
because all stimulus values that fall into one
region [where /,(x) < B,] elicit Response A,
and all stimulus values that fall into the other
region [where /,(x) > B,] elicit Response B.
The partition between the regions [where
lo(x) = Byl is called the optimal decision bound.
In the univariate case, the optimal decision
bound is simply a point along the stimulus
dimension. In the multivariate case, the op-
timal decision bound is either linear or qua-
dratic (see Ashby & Maddox, 1990, 1992, for
examples). Second, note that when the base
rates are equal and the cost-benefit differ-
ences are equal [i.e., P(A) = P(B) and (V4
— Wa) = (b = Vap)l, Bo = 1.0, and the
response associated with the most likely cat-
egory is given. Third, note also that situations
exist for which a base-rate and payoff manip-
ulation can have identical effects on the op-
timal decision criterion. For example, sup-
pose the category “hunter not approaching”
is three times more likely than the category
“hunter approaching,” and the payoff matrix
is unbiased [i.e., if P(A) = 3P(B) and (V5 —
Wa) = (Vpp — Vap)]l, or suppose the cost—
benefit difference for “hunter not approach-
ing” is three times larger than for “hunter
approaching” and the base rates are equal
[i.e., when (Vo — Va) = 3(Vpg — Vi) and
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P(A) = P(B)], then B, = 3.0 (see Figure 2).
In this case, the optimal classifier will make a
“hunter not approaching” decision unless
the likelihood of the “hunter approaching”
is at least three times larger than the likeli-
hood of the “hunter not approaching.” Fi-
nally, when base rates and payoffs are manip-
ulated simultaneously, the optimal decision
criterion can be derived from an indepen-
dent combination of the separate base-rate
and payoff decision criteria. This is seen
more clearly in a mathematically equivalent
formulation of Equation 2 in which the nat-
ural log is applied to both sides, yielding

log B, = log[P(A)/P(B)]
+ log[Vaa — Voa)/ (Vop — Vap) 1. (4)

Notice that logf, is determined completely
by the sum of an independent base-rate and
payoff term. This is referred to as the inde-
pendence assumption of the optimal classifier.
This example illustrates that optimal cate-
gorization performance that maximizes ex-
pected reward (e.g., length of life) requires
knowledge of the distributional properties of
the categories, such as category discrimina-
bility, the category base rates, and the costs
and benefits associated with different re-
sponses. For example, whether the deer con-
cludes that a hunter “is approaching” or “is
not approaching” based on the loudness of
the leaves rustling depends on how reliably
the loudness of the leaves rustling indicates a
hunter approaching (category d’ informa-
tion), the likelihood of a hunter during that
time of the year (category base-rate infor-
mation), how hungry the deer is, whether a
fawn is present, and so forth (cost-benefit in-
formation). To reiterate a point made earlier,
I am not arguing that organisms have explicit
knowledge of these details. Rather, my posi-
tion is that experience with these stimuli and
with the consequences of the organism’s de-
cisions leads the organism to behave in a
manner that can often be captured by the op-
timal classifier or by models that incorporate
reasonable suboptimalities. The approach
taken in the research reviewed below was to
expose observers to a wide range of category
distribution, base-rate, and payoff conditions,
and to compare observers’ performance with
that of the optimal classifier. When perfor-
mance did not match that of the optimal clas-
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sifier, the aim was to develop psychologically
meaningful hypotheses regarding the locus of
these suboptimalities, and to test them within
the framework of a statistically rigorous mod-
el-based approach. The foundation of this
model-based approach is provided by a signal-
detection-based model of categorization,
called decision-bound theory (Ashby, 1992a; Ash-
by & Maddox, 1993; Maddox & Ashby, 1993),
which is reviewed next.

Decision-Bound Theory

The optimal classifier decision rule (Equa-
tion 3) has been rejected as a model of hu-
man performance, but in many cases, perfor-
mance approaches that of the optimal
classifier as the observer gains experience
with the task. Ashby and colleagues argued
that the observer attempts to respond in ac-
cord with the optimal classifier, but fails be-
cause of various suboptimalities in perceptual
and cognitive processing (Ashby, 1992a; Ash-
by & Lee, 1991; Ashby & Maddox, 1993, 1994;
Ashby & Townsend, 1986; Maddox & Ashby,
1993). They proposed a series of decision
bound models to test specific hypotheses
about the locus of performance suboptimali-
ties. Two suboptimalities inherent in humans
and other organisms are perceptual and crite-
rial noise. Perceptual noise exists because
there is trial-by-trial variability in the percep-
tual information associated with each stimu-
lus. Assuming a single perceptual dimension
is relevant, the observer’s perception of stim-
ulus 7, on any trial, is given by x,; = x5 + ¢,
where x; is the observer’s mean perception,
and e, is a random variable that represents
the effects of perceptual noise. At the cogni-
tive level, there is trial-by-trial variability in the
observer’s memory for the decision criterion
(termed criterial noise). Because of criterial
noise, the decision criterion used on any trial
is given by B. = B + ¢, where B is the ob-
server’s average decision criterion, and ¢ is a
random variable that represents the effects of
criterial noise (assumed to be univariate nor-
mally distributed).

Because perceptual and criterial noise ex-
ist, the observer cannot attain the level of
performance reached by the optimal classi-
fier (i.e.,, cannot maximize expected re-
ward). Even so, decision-bound theory as-
sumes that the observer attempts to use the
same strategy as the optimal classifier, but
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with less success due to the effects of per-
ceptual and criterial noise (and other possi-
ble suboptimalities). Hence, the simplest de-
cision-bound model is the optimal
decision-bound model. The optimal decision-
bound model is identical to the optimal clas-
sifier (Equation 3) except that perceptual
and criterial noise are incorporated into the
decision rule. Specifically,

If lo(xpi) > Bo + s
(5)

It is important to note that the optimal de-
cision-bound model often predicts perfor-
mance that is very nearly optimal. For ex-
ample, in many cases, perceptual noise will
be small, and the perceptual representation
will be close to veridical. In addition, experi-
ence with a task and certain types of decision
criteria decrease the magnitude of criterial
noise. Despite this fact, it is important to ac-
knowledge these inherent sources of noise
and to account for them within theories of
categorization.

Before continuing, a few words are in order
regarding the relations between the decision
rules of the optimal classifier (Equation 3)
and the optimal decision-bound model
(Equation 5). As outlined above, the optimal
classifier decision rule is deterministic. Spe-
cifically, the same response is always given to
the same stimulus. In the learning literature
this is commonly referred to as a maximizing
strategy (Herrnstein, 1961, 1970; Herrnstein
& Heyman, 1979; Williams, 1988). The opti-
mal decision-bound model decision rule, on
the other hand, is not deterministic, because
the same response is not always given to the
same stimulus, which implies some level of
matching. It is deterministic, however, in the
sense that the probability of responding B is
equal to 1 when [, (x,;) > B, + €. Thus, the
optimal decision-bound model can predict
responding that ranges from maximizing
(when perceptual and criterial noise are 0)
through various levels of matching (e.g., over-
or undermatching), depending on the mag-
nitude of the perceptual and criterial noise.
Issues of matching and maximizing in cate-
gory learning are addressed by Ashby and
Maddox (1993).

In the mid-1990s I began a research pro-
gram to examine decision criterion learning

then respond B, otherwise respond A.



576

(Equation 2). This research is unique be-
cause it bridges the gap between traditional
categorization studies that focus on processes
involved in category structure learning and
decision-making studies that focus on pro-
cesses involved in base-rate and payoff learn-
ing by allowing both issues to be examined
within a single unified theoretical framework.

A UNIFIED THEORY OF
DECISION CRITERION
LEARNING IN PERCEPTUAL
CATEGORIZATION

This section describes the observers and
the basic design of the experiments, then
briefly reviews two important empirical re-
sults that led to the development of the uni-
fied theory. Finally, the theory is described,
and four studies conducted to test the unified
theory are reviewed.

Observer and Task Specifics

All of the studies reviewed below used the
perceptual categorization task described in
Figure 1. Each observer participated in all
conditions of each experiment (i.e., a within-
observer design was used). Depending on the
study, this required the observer to complete
4 to 15 experimental sessions and several
thousand trials. In light of this fact, all ob-
servers were recruited from the university
community through advertisements and were
paid for their participation. Observers were
instructed to maximize the number of points
earned in each experimental condition, and
were told that their point totals would be con-
verted into money that would constitute their
compensation for participating. A typical ex-
perimental session lasted approximately 1 hr,
and the observer generally completed 400 to
800 trials in a session. All of the studies used
univariate normally distributed categories
and the height of a bar as the stimulus.

Because the focus was on decision criterion
learning that is primarily affected by base-rate
and payoff manipulations (Equation 2), and
was not on decision function learning that is
primarily affected by the category distribu-
tions (Equation 1), it was important to ensure
that observers had accurate knowledge of the
category structures before being exposed to
base-rate and payoff manipulations. To
achieve this goal, all of the studies reviewed
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below contained at least one session (400 to
800 trials) at the beginning of the study and
60 trials at the beginning of each experimen-
tal condition in which no base-rate or payoff
manipulation was present. This is referred to
as the baseline condition. Observers were
trained in the baseline condition until per-
formance reached a rigid accuracy-based per-
formance criterion, and the optimal decision
bound model (Equation 5) provided the
most parsimonious account of the data. This
approach ensures accurate knowledge of the
category structures, allowing us to assume
that the observer is using the optimal deci-
sion function [i.e., {(x) = [,(x)], and mini-
mizes any within-observer carryover effects
from one experimental condition to the next.

A Unified Theory of Decision Criterion
Learning and a Hybrid Model Framework

In the 1960s and 1970s several experiments
examined decision criterion learning under
unequal base-rate or payoff conditions (e.g.,
Green & Swets, 1967; Healy & Kubovy, 1981;
Kubovy & Healy, 1977; Lee & Janke, 1964,
1965; Lee & Zentall, 1966; Ulehla, 1966).
Two robust findings emerged from this work.
First, comparisons of the optimal decision cri-
terion with the observer’s decision criterion
suggested that observers used a criterion that
was more conservative than the optimal de-
cision criterion. For example, if the base rates
or payoffs were such that B, = 3, then ob-
servers tended to use a B between 1 and 3.
This was termed conservative cutoff placement,
because the decision criterion was not shifted
far enough toward the optimal value. Second,
observers’ decision criterion estimates were
closer to the optimal value when base rates as
opposed to payoffs were manipulated, even
when the optimal decision criterion was iden-
tical across base-rate and payoff conditions.
Several explanations for these results have
been offered in the literature and are re-
viewed elsewhere (Healy & Kubovy, 1981;
Maddox & Bohil, 2000), but none has been
generally accepted.

The first few studies conducted in our lab-
oratory were designed to replicate and ex-
tend the previous research (Bohil & Maddox,
2001; Maddox, 1995; Maddox & Bohil, 1998a,
1998b, 2000) using decision-bound theory.
Although useful, one weakness of the deci-
sion-bound theoretical approach to decision
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criterion learning used in these studies is that
no mechanisms were postulated or formal-
ized to guide decision criterion placement.
Rather, the decision criterion, 3, was freely
estimated from the data.

In this section I outline a formal theory of
decision criterion learning, and a model
based instantiation. The idea is to use deci-
sion bound theory as the basic modeling
framework, but to supplement the model by
postulating psychologically meaningful mech-
anisms that guide decision criterion place-
ment. In other words, instead of simply esti-
mating the decision criterion value directly
from the data, I propose two mechanisms
that constrain the decision criterion value.
These mechanisms are consistent with the
laboratory conditions under which conserva-
tive cutoff placement and better decision cri-
terion learning in base-rate over payoff con-
ditions have been observed.

Flat-maxima hypothesis. The first mechanism
is based on the flat-maxima hypothesis (Buse-
meyer & Myung, 1992; von Winterfeldt & Ed-
wards, 1982) and was developed to account
for the finding that observers tend to use a
criterion that is more conservative than the
optimal decision criterion when base rates or
payoffs are manipulated (conservative cutoff
placement). As suggested by many research-
ers, suppose that the observer adjusts the de-
cision criterion based (at least in part) on the
change in the rate of reward, with larger
changes in rate being associated with faster,
more nearly optimal decision criterion learn-
ing (e.g., Busemeyer & Myung, 1992; Dusoir,
1980; Erev, 1998; Erev, Gopher, Itkin, &
Greenshpan, 1995; Kubovy & Healy, 1977;
Roth & Erev, 1995; Thomas, 1975; Thomas &
Legge, 1970). To formalize this hypothesis
one can construct the objective reward function.
The objective reward function plots objective
expected reward on the y axis and the deci-
sion criterion value on the x axis (e.g., Bu-
semeyer & Myung, 1992; von Winterfeldt &
Edwards, 1982). To generate an objective re-
ward function, one chooses a value for the
decision criterion and computes the expect-
ed reward for that criterion value. This pro-
cess is then repeated numerous times for dif-
ferent decision criterion values. The expected
reward is then plotted as a function of the
decision criterion value. Figure 3a displays
the objective reward function for category d’
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Fig. 3. Panel a: expected reward as a function of the

decision criterion (relative to the optimal decision crite-
rion; i.e., k — k,), called the objective reward function
for category discriminability, " = 1.0. The three lines
are the tangent lines at Points a, b, and c on the objective
reward function that denote the derivative or steepness
of the objective reward function at each point. Panel b:
steepness of the objective reward functions from Panel a
along with the three points highlighted in Panel a.

= 1.0. Specifically, Figure 3a plots expected
reward as a function of the deviation between
the decision criterion () and the optimal de-
cision criterion (,) standardized by category
d'. This k — k, measure = log(B)/d" —
log(B,)/d" = log(B/B,)/d" is the ratio of the
observed and optimal decision criterion stan-
dardized by category d’. Notice that for large
deviations from the optimal decision criteri-
on, the expected reward is small, and as the
deviation from the optimal decision criterion
decreases, the expected reward increases. No-
tice also that when the deviation from opti-
mal is zero (i.e., when the decision criterion
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is the optimal decision criterion), expected
reward is maximized.

The derivative of the objective reward func-
tion at a specific k — k, value determines the
change in the rate of expected reward for
that & — k, value; the larger the change in
the rate, the “steeper” the objective reward
function at that point. Derivatives for three k
— k, values are denoted by the three tangent
lines denoted as a, b, and c in Figure 3a. No-
tice that the slope of each tangent, which de-
fines the derivative, decreases as the deviation
from the optimal decision criterion decreases
(i.e., as we go from Pointa to b to ¢). In other
words, the change in the rate of reward or
steepness declines as the decision criterion
approaches the optimal decision criterion.
Figure 3b plots the relationship between the
steepness of the objective reward function
(i.e., the derivative at several k& — k, values)
and k — k,. The three derivatives denoted in
Figure 3a are highlighted in Figure 3b. If the
observer adjusts the decision criterion based
on the change in the rate of reward (or steep-
ness of the objective reward function), as de-
scribed above, then steeper objective reward
functions should be associated with more
nearly optimal decision criterion values, be-
cause only a small range of decision criterion
values around the optimal value have nearly
zero derivatives (or small steepness values).
Flat objective reward functions, on the other
hand, will lead to less optimal decision crite-
rion placement because a larger range of de-
cision criterion values around the optimal val-
ue have derivatives near zero. Interestingly,
nearly all the work conducted in the 1960s
and 1970s used tasks in which the category
discriminability (d") was 1.0. The objective re-
ward function is shallow for d’ = 1.0, which
might explain the prevalence of conservative
cutoff placement (see Figure 3a). As we will
see shortly, the flat-maxima hypothesis makes
strong predictions about the effects of several
environmental factors such as category d’,
the base-rate/payoff ratio, and various linear
transformations of the payoff matrix entries
on decision criterion placement.

It is important to note that the flat-maxima
hypothesis applies only to learning of the 7re-
ward-maximizing decision criterion. As out-
lined shortly, the observed decision criterion
is assumed to be a weighted average of the
reward- and accuracy-maximizing decision
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Fig. 4. Schematic illustration of the COBRA hypoth-
esis. See text for details.

criteria. Although the flat-maxima hypothesis
offers an explanation for the prevalence of
conservative cutoff placement, it does not of-
fer an explanation for the robust finding that
the observed decision criterion is closer to
optimal in base-rate, compared to unequal
payoff, conditions.
Competition-between-reward-and-accuracy-maxi-
mization (COBRA) hypothesis. The second
mechanism assumed to influence decision
criterion placement is based on Maddox and
Bohil’s (1998a) COBRA hypothesis and was
developed to account for the finding that ob-
servers show more nearly optimal decision
criterion placement in unequal base-rate con-
ditions than in unequal payoff conditions.
COBRA postulates that observers, although
they attempt to maximize expected reward
(consistent with instructions, and monetary
compensation contingencies), also place im-
portance on accuracy maximization. In other
words, in the observer’s reinforcement his-
tory both goals have been associated with pri-
mary reinforcement, so even though they are
instructed to maximize reward in the labo-
ratory, they cannot because of conditioned
reinforcing outcomes. Consider the univari-
ate categorization problems depicted in Fig-
ure 4. Panel a displays a 3:1 base-rate condi-
tion, and Panel b displays a 3:1 payoff
condition. As suggested by Equation 2, ex-
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pected reward is maximized in both cases by
using the optimal reward-maximizing deci-
sion criterion, k., = log(B,,)/d" =log(3)/d’.
Thus, an observer who attempts to maximize
expected reward should use the same deci-
sion criterion in both conditions. However,
whereas the accuracy- and reward-maximizing
decision criteria are the same in the 3:1 base-
rate condition (i.e., kyo = ky,), they are dif-
ferent in the 3:1 payoff condition [k,, =
log(B.o)/d" = log(1l)/d']. (When base rates
are equal, it is always the case that the accu-
racy-maximizing decision criterion B,, = 1.)
When base rates are manipulated, accuracy
and reward can be maximized simultaneous-
ly, because k., = k,,, but when payoffs are
manipulated, both goals cannot be achieved
simultaneously because k., # k,,. An observ-
er who places importance (or weight) on
both goals will use a decision criterion inter-
mediate between the accuracy- and reward-
maximizing decision criteria in the payoff
condition, and thus will show more conser-
vative cutoff placement in the payoff condi-
tion than in the base-rate condition. To in-
stantiate this hypothesis we assume a simple
weighting function, k = wk, + (1 — w) ky,
where w (0 = w = 1) denotes the weight
placed on expected accuracy maximization.
Other weighting schemes are possible. For
example, instead of generating an interme-
diate decision criterion, it is possible that the
two decision criteria compete on each trial
for the opportunity to generate the categori-
zation response (for related proposals, see
Ashby, Alfonso-Reese, Turken, & Waldron,
1998). The current approach is simple to in-
stantiate and has met with reasonable success
(Maddox & Dodd, 2001). This weighting
function results in a single decision criterion
that is intermediate between that for accuracy
maximization and that for reward maximiza-
tion. For example, in Figure 4b, k; denotes a
case in which w < .5, whereas ko denotes a
case in which w > .5.

Framework for a hybrid model. Maddox and
Dodd (2001) developed a hybrid model of
decision criterion learning that incorporated
both the flatmaxima and COBRA hypothe-
ses. Specifically, the model assumes that the
decision criterion used by the observer to
maximize expected reward (k) is determined
by the steepness of the objective reward func-
tion (see Figure 3). A single steepness param-
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eter is estimated from the data that deter-
mines a distinct decision criterion in every
condition for which the steepness of the ob-
jective reward function differs. (As will be
shown shortly, several different experimental
manipulations, e.g., category discriminability,
have strong effects on the steepness of the
objective reward function and thus offer pow-
erful tests of the flatmaxima hypothesis.)
The COBRA hypothesis is instantiated in the
hybrid model by estimating the accuracy
weight, w, from the data. To facilitate the de-
velopment of each model, consider the fol-
lowing equation that determines the decision
criterion used by the observer on condition ¢
trials (k;):

ki = why, + (1 — w)k,. (6)

When base rates are manipulated, the observ-
er’s estimate of the reward-maximizing deci-
sion criterion, derived from the flat-maxima
hypothesis, is also the best estimate of the ac-
curacy-maximizing decision criterion, result-
ing not in competition but simply in use of
the reward-maximizing decision criterion.
When payoffs are manipulated, on the other
hand, the reward- and accuracy-maximizing
decision criteria are different. Fortunately, by
pretraining each observer on the category
structures in the baseline condition (de-
scribed earlier), we are essentially pretraining
the accuracy-maximizing decision criterion.
This criterion is then entered into the weight-
ing function along with the observer’s esti-
mate of the reward-maximizing decision cri-
terion to determine the criterion used on
each trial.

Model details and general nested model fitting
procedure. Because all of the studies conduct-
ed by my colleagues and me used within-ob-
server designs and examined decision crite-
rion learning across several blocks of trials,
we could apply the hybrid model framework
simultaneously to the data from all experi-
mental conditions separately for each observ-
er and for each block of trials. The model
parameters were estimated using maximum
likelihood procedures (for details, see Ashby,
1992b; Maddox & Dodd, 2001; Wickens,
1982). In every application of the hybrid
model framework to individual observer de-
cision criterion learning data, we began by
applying four “base” models, each of which
makes different assumptions about the k. and
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Fig. 5. Nested relation among the four base versions
of the hybrid model. These models were applied to all
studies reviewed in this article. The number in parenthe-
ses denotes the number of free parameters. The arrows
point to a more general model. See text for details.

w values. These four base models have a nest-
ed structure, which means that a more spe-
cific or “nested” model can be obtained from
a more general model by setting some of the
parameters of the more general model to
constants. One advantage of a nested mod-
eling approach is that rigorous statistical tests
can be used to determine whether the addi-
tional parameters of a more general model
provide a statistically significant improvement
in fit over a more specific, nested model. The
details of this nested model testing procedure
are outlined elsewhere (e.g., Ashby, 1992b;
Maddox & Dodd, 2001; Wickens, 1982) and
will not be elaborated here.

The nested structure of the four base mod-
els is presented in Figure 5. The number of
free parameters is presented in parentheses.
The arrows point to the more general model.
Models at the same level have the same num-
ber of free parameters. The optimal model as-
sumes that the reward-maximizing decision
criterion is optimal (i.e., k. = k), and that
there is no competition between reward and
accuracy maximization (i.e., w = 0). This
model instantiates neither the flat-maxima
nor the COBRA hypothesis. The flat-maxima
model assumes that the reward-maximizing de-
cision criterion (k) is determined by the
steepness of the objective reward function,
and that there is no competition between ac-
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curacy and reward maximization (i.e., w = 0).
A single steepness parameter is estimated
from the data. This single steepness parame-
ter determines a different decision in every
condition for which the steepness of the ob-
jective reward function differs. This model
contains the optimal model as a special case
in which the steepness value is equal to zero
(i.e., k. = k,), and instantiates the flat-maxi-
ma hypothesis but not the COBRA hypothe-
sis. The COBRA model assumes that the re-
ward-maximizing decision criterion is optimal
(i-e., k. = k,), but permits competition be-
tween reward and accuracy maximization by
estimating the Equation 6 w parameter from
the data. This model contains the optimal
model as a special case in which w = 0, and
instantiates the COBRA hypothesis but not
the flatmaxima hypothesis. The hybrid (w)
model instantiates both the flat-maxima and
the COBRA hypotheses. It assumes that k; is
determined by the steepness of the objective
reward function, and that there is a compe-
tition between accuracy and reward maximi-
zation. This model includes the previous
three models as special cases.

Across a large range of experimental con-
texts, the most common finding was for the
hybrid model to provide a statistically signif-
icant improvement in fit over the two models
that instantiate only one component of the
unified theory (i.e., the flat-maxima and CO-
BRA models), and over the optimal model
that instantiates neither. In addition, the fit
of the hybrid model was generally good, usu-
ally accounting for over 90% of the responses
from each individual observer. Depending on
the experimental factors of interest, more
general models were also applied to the data.
In all of these cases, the more general models
were constructed by including different ac-
curacy weight parameters for different exper-
imental conditions. In the review that follows,
only the most informative models will be dis-
cussed. I turn now to a review of recent work
that examined decision criterion learning un-
der a range of experimental conditions.

EXTENDING THE RANGE OF
EXPERIMENTAL DECISION
CRITERION LEARNING CONTEXTS

Category Discriminability Effects on
Decision Criterion Learning

Most previous studies of decision criterion
learning focused on cases in which category
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discriminability d' = 1.0. Observers showed
conservative cutoff placement in base-rate
and payoff conditions, with the magnitude of
conservative cutoff placement being larger in
payoff than in base-rate conditions. Because
the objective reward function is relatively flat
for d' = 1.0, one possibility is that some of
the performance suboptimality observed in
these studies was due to poor learning of the
reward-maximizing decision criterion. It is
possible that better decision criterion learn-
ing might result if the objective reward func-
tion was steeper. Thus, it is of interest from
an empirical standpoint, and from the stand-
point of our unified theory, to extend the
range of category discriminabilities investi-
gated.

Figure 6a displays the objective reward
functions for three levels of category d': 1.0,
2.2, and 3.2. Figure 6b plots the relation be-
tween the steepness for each objective reward
function (i.e., the derivatives for each objec-
tive reward function) and k — k. The tangent
lines in Figure 6a labeled 1, 2, and 3 denote
the k& — k, value associated with the same
fixed steepness value for d’ = 1.0, 2.2, and
3.2, respectively. The horizontal line on Fig-
ure 6b denotes the same fixed nonzero steep-
ness value, and the vertical lines denote the
associated k — k, values for each category d'.
Notice that for this fixed nonzero steepness
the deviation between the decision criterion
and the optimal value, k — k,, differs system-
atically across category d' conditions in such
a way that the decision criterion, k, is closest
to the optimal value, k,, for category d’ = 2.2,
is farthest from optimal for 4’ = 1.0, and is
intermediate for d' = 3.2. If the observer ad-
justs the reward-maximizing decision criteri-
on based on the change in the rate of reward
(or steepness of the objective reward func-
tion), as suggested by the flat-maxima hy-
pothesis, then performance should be closest
to optimal when category d' = 2.2, farthest
from optimal when category d' = 1.0, and
intermediate when category d' = 3.2.

Maddox and Dodd (2001) examined deci-
sion criterion learning in a 3:1 base-rate con-
dition, two 3:1 payoff no-cost conditions, and
two 3:1 payoff cost conditions at each of three
category discriminabilities (d" = 1.0, 2.2, and
3.2) for a total of 15 conditions. In the 3:1
payoff no-cost conditions, the cost of an in-
correct response was set to zero. In the 3:1

581

0

3

Expected Reward

2 - 0 1

N

Decision Criterion (k-k,)

b —d1
—d‘z
|—a'3

Steepness

Decision Criterion (k-k,)

Fig. 6. Panel a: expected reward as a function of the
decision criterion (relative to the optimal decision crite-
rion; i.e., k — k,), called the objective reward function
for category discriminability, ' = 1.0, 2.2, and 3.2. The
three lines are tangent lines, one for each d’ level, with
the same slope and thus the same derivative or steepness.
Panel b: steepness of the objective reward functions from
Panel a along with the three points highlighted in Panel
a. The three points all have identical steepness as denot-
ed by the horizontal line. The resulting decision criterion
is closer to the optimal value for d" = 2.2, is farthest from
optimal for d’ = 1.0, and is intermediate for d' = 3.2.

payoff cost conditions, the observer lost
points for an incorrect response. Data from
the two no-cost conditions and from the two
cost conditions were collapsed. Each of 6 ob-
servers completed six 60-trial blocks in each
condition. Figure 7 displays data from a rep-
resentative observer, showing the deviation
from optimal points, defined as (observed
points — optimal points)/(optimal points —
points for 0% correct). Two key results stand
out. First, in line with the flatmaxima hy-
pothesis, performance was closest to optimal
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Fig. 7. Deviation from optimal points for a represen-
tative observer from Maddox and Dodd (2001).

for d' = 2.2, was farthest from optimal for d’
= 1.0, and was intermediate for d’ = 3.2. Sec-
ond, performance was closer to optimal in
the base-rate condition than in either payoff
condition, as predicted by COBRA. In addi-
tion, performance was closer to optimal in
the payoff no-cost conditions (when no
points were lost for an incorrect response)
than in the payoff cost conditions (when
points were lost for an incorrect response).
The latter finding is important because, draw-
ing upon decision theory, Maddox and Bohil
(2000) had speculated that more emphasis
might be placed on accuracy maximization
(and thus point totals would be farther from
optimal) when incorrect responses led to an
actual loss of points.

The four base models outlined in Figure 5
were applied simultaneously to the data from
all 15 conditions separately by observer and
60-trial block. One additional model, the hy-
brid (W55 W cosy) Model, was developed to test
the hypothesis proposed by Maddox and
Bohil (2000) that the weight placed on ac-
curacy maximization was greater when incor-
rect responses led to an actual loss of points.
In this model the w,, parameter was applied
to the data from the payoff cost conditions,
and the wyq cos¢ parameter was applied to the
data from the payoff no-cost conditions. The
hybrid (Weost; Who cost) Model accounted for
91% to 93% of the responses in the data from
each observer (92.2% of the responses in the
data from the representative observer dis-
played in Figure 7). It is important to em-
phasize that the hybrid (weosg Who cost) Model
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assumes that the observer’s reward-maximiz-
ing decision criterion was determined from
the steepness of the objective reward func-
tion. Because of the strong influence of cat-
egory discriminability on the steepness of the
objective reward function (see Figure 6), this
model is constrained to predict that the re-
ward-maximizing decision criterion will be
closest to optimal for d' = 2.2, farthest from
optimal for d' = 1.0, and intermediate for d’'
= 3.2. The excellent fit of this model provides
strong support for the flat-maxima hypothesis
as it applies to category discriminability ma-
nipulations.

The models were applied separately to
each block of trials but the most interesting
performance trends were observed early and
late in learning. Figure 8a displays the steep-
ness, Weos, and wye cose Values early and late
in learning for a representative observer, and
Figure 8b displays the same parameters aver-
aged across fits to each individual observer’s
data. The results can be summarized as fol-
lows. First, there was a large decline in the
steepness parameter from early to late in the
session, suggesting that the observer’s esti-
mate of the reward-maximizing decision cri-
terion, k., approached the optimal value. Sec-
ond, the weight placed on accuracy in both
the cost and no-cost conditions declined from
early to late in the session, suggesting that
observers became more willing to sacrifice ac-
curacy in the interest of reward maximization
as they gained experience with the task. Fi-
nally, both early and late in the session, the
weight placed on accuracy was larger in the
cost than in the no-cost conditions, suggest-
ing that observers were less willing to sacrifice
accuracy when they lost points for incorrect
responses.

Payoff Matrix Multiplication and Addition
Effects on Decision Criterion Learning

Most previous studies of the effects of un-
equal payoffs on decision criterion learning
examined cases in which the cost of an in-
correct response led to no loss of points. This
is referred to as a payoff no-cost condition.
In the last section, we reviewed a study by
Maddox and Dodd (2001) that compared de-
cision criterion learning in payoff no-cost
conditions with decision criterion learning in
payoff cost conditions. They found poorer de-
cision criterion learning in payoff cost con-
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Fig. 8. Panel a: parameter values from the hybrid
(Weost; Wno cost) Model for a representative observer from
Maddox and Dodd (2001). Panel b: parameter values
from the hybrid (Weos; Wno cost) Model averaged across
fits of the model separately to each individual observer.
The parameter values are plotted on a log scale for the
data early in learning (Blocks 1 and 2) and late in learn-
ing (Blocks 5 and 6).

ditions, and suggested that observers might
place more weight on accuracy maximization
when an incorrect response led to a reduc-
tion in the number of points. The accuracy
weight parameters estimated from the hybrid
model supported this claim. In light of this
finding, and because the costs and benefits
associated with different natural-environment
categorization problems vary widely, an ex-
amination of decision criterion learning un-
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der a wide range of cost-benefit conditions is
in order. Maddox, Dodd, and Bohil (2001)2
examined decision criterion learning in each
of eight 3:1 payoff conditions. Consider the
condition denoted shallow/no cost (B) in Ta-
ble 1. In this condition, V5 = 4, V,g = 2, V,p
= 1, and Vp = 1. Notice that the shallow/
no-cost (A), shallow/cost-LRG, and shallow/
cost-LRL conditions can be derived from the
shallow/no-cost (B) condition by subtracting
1, 2 and 3, respectively, from all payoff matrix
entries (LRG stands for long-run gain and
LRL stands for long-run loss, both of which
will be elaborated shortly). Each of these con-
ditions is related to the other via a simple ad-
ditive transformation referred to as payoff ma-
trix addition (PMA). Next take each of the four
“shallow” payoff matrices and multiply all en-
tries by six. The resulting four “steep’ payoff
matrices are displayed in Table 1. Each of the
four steep payoff matrices is related to its as-
sociated shallow payoff matrix by a simple
multiplicative transformation referred to as
payoff matrix multiplication (PMM). In the no-
cost and cost-LRG conditions, the optimal
classifier will start the experiment with 0
points, and will gain points over the course
of the experiment. In the cost-LRL condi-
tions, on the other hand, the optimal classi-
fier will start the experiment with 0 points,
and will lose points over the course the ex-
periment.

Based on previous research (Maddox &
Bohil, 2000; Maddox & Dodd, 2001) the most
reasonable prediction is that more weight will
be placed on accuracy in the cost conditions
than in the no-cost conditions, but no a priori
predictions have been offered with respect to
the cost-LRG versus cost-LRL comparison.
One possibility is that the weight placed on
accuracy will be the same in the two cost con-
ditions. A second possibility is that the weight
placed on accuracy will be greater when there
is a long-run loss of points accrued over the
course of the experiment, perhaps because
the observer realizes that there is no way to
gain points, thus leading to an exclusive focus
on accuracy. A third possibility is that less
weight will be placed on accuracy in the long-

2Maddox, W. T., Dodd, J. L., & Bohil, C. J. (2001).
Payoff matrix multiplication and addition effects on decision
criterion learning in simulated medical diagnosis. Unpub-
lished data.
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Table 1

Category cost-benefit conditions from Maddox, Dodd and Bohil (2001). P(A) = Category A
base rate. P(B) = Category B base rate. Vl] = the value (cost or benefit) associated with an i

response to a stimulus from Category J. LRL =

long-run loss. LRG = long-run gain.

Base rates Cost benefits

P(A) P(B) Vaa VoA Von Van Bo
Shallow/ cost LRL .50 .50 -2 -1 -2 3
Shallow/cost LRG .50 .50 -1 0 -1 3
Shallow/no cost (A) .50 .50 0 1 0 3
Shallow/no cost (B) .50 .50 1 2 1 3
Steep/cost LRL .50 .50 —-12 -6 —-12 3
Steep/cost LRG .50 .50 -6 0 —6 3
Steep/no cost (A) .50 .50 0 6 0 3
Steep/no cost (B) .50 .50 6 12 6 3

run loss condition because the observer re-
alizes (perhaps implicitly) that no strategy will
yield a gain over the course of the experi-
ment, thus leading to less focus on accuracy.

The shallow versus steep distinction is
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Fig. 9. Panel a: objective reward function for the shal-
low/no-cost and steep/no-cost conditions from Maddox,
Dodd, and Bohil (2001). Panel b: steepness of the objec-
tive reward functions from Panel a.

made because the steepness of the objective
reward function is affected by PMM. Figure
9a displays the objective reward function for
the shallow/no-cost (A) and steep/no-cost
(A) payoff conditions used in this study. The
objective reward functions for the other three
shallow conditions have the same shape as
the shallow/no-cost (A) condition, but have
different asymptotes. Similarly, the objective
reward functions for the other three steep
conditions had the same shape as the steep/
no-cost (A) condition, but have different as-
ymptotes. Figure 9b plots the relation be-
tween the steepness for each objective reward
function (i.e., the derivatives for each objec-
tive reward function) and k& — k,. The hori-
zontal line on Figure 9b denotes a fixed non-
zero steepness value, and the vertical lines
denote the associated k — k, values. First, no-
tice that for a fixed nonzero steepness the re-
ward-maximizing decision criterion, k, dif-
fered systematically across steep and shallow
payoff matrix conditions in such a way that
the reward-maximizing decision criterion is
closer to the optimal value, k,, for steep than
for shallow payoff matrices. Thus, PMM af-
fects the steepness of the objective reward
function and thus should affect the optimality
of reward-maximizing decision criterion
placement with steeper objective reward func-
tions being associated with more nearly opti-
mal decision criterion placement. Second, al-
though PMA affects the maximum expected
reward and thus the peak (or asymptote) of
the objective reward function in Figure 9a, it
does not change the shape or steepness of
the objective reward function as shown in Fig-
ure 9b. Thus, reward-maximizing decision cri-
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Fig. 10. Deviation from optimal points for a represen-
tative observer from Maddox, Dodd, and Bohil (2001).

terion placement should be unaffected by
PMA (although the weight placed on accu-
racy in COBRA might). Finally, note that
PMA and PMM do not affect the value of the
optimal decision criterion.

Maddox et al. (2001) had 8 observers com-
plete six 60-trial blocks in each of the eight
3:1 payoff conditions. Performance differed
little across the two no-cost conditions, so
these data were collapsed. Figure 10 plots the
deviation from optimal points for a represen-
tative observer. As predicted from the flat-
maxima hypothesis, performance was closer
to optimal for the steep than for the shallow
payoff matrices. Performance was also closer
to optimal for the no-cost relative to the cost
conditions.

Model-based analyses. The four base models
of Figure 5 were applied simultaneously to
the data from the eight payoff conditions in
Table 1 separately by observer and block. A
hybnd (Weost LRLS Weost-LRGS Wno cost) Model was
also applied that estimated one accuracy
weight from the two cost conditions that re-
sulted in a long-run loss (i.e., the shallow and
steep cost-LRL conditions), a second accura-
cy weight from the two cost conditions that
resulted in a long-run gain (i.e., the shallow
and steep cost-LRG conditions), and a third
accuracy weight from the four nonnegative
cost conditions (i.e., the shallow and steep
no-cost [A] and no-cost [B] conditions). This
model allowed us to determine whether the
weight placed on accuracy differed across
cost and no-cost conditions, as suggested by
Maddox and Dodd (2001), and whether the
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weight placed on accuracy differed across
long-run gain and long-run loss conditions.
To determine whether observers were sensi-
tive to the objective reward function steep-
ness differences caused by PMM, the flat-max-
ima hypothesis was instantiated in two
different ways. In one version, the PMM ver-
sion, a single steepness parameter was esti-
mated from the data that determined two dis-
tinct k. values. One applied to the four steep
payoff matrices, and the other applied to the
four shallow payoff matrices. This version as-
sumes that the observer is sensitive to steep-
ness differences caused by payoff matrix mul-
tiplication, and is constrained to predict that
the decision criterion will be closer to opti-
mal for steep than for shallow payoff matrices
as shown in Figure 9. In a second version, the
no-PMM version, the single steepness param-
eter determined a single k. value that applied
to all eight conditions. In other words, this
version assumed that the observer is not sen-
sitive to steepness differences caused by pay-
off matrix multiplication, and instead be-
haves as if steepness of the objective reward
function is equivalent across all eight condi-
tions. Both versions of the flat-maxima model
have one steepness parameter, and thus the
fits of the two versions were compared di-
rectly. In fitting the two hybrid models, both
versions of the flat-maxima hypothesis were
tested.

To determine whether observers were sen-
sitive to the steepness of the objective reward
function as it relates to payoff matrix multi-
plication we compared the fits of the hybrid
(w) and h}’brid (wcost—LRL; Weost-LRG> Wno COSI)
models that assumed sensitivity to payoff ma-
trix multiplication effects (i.e., the PMM ver-
sions) with those that assumed a lack of sen-
sitivity (i.e., the no-PMM versions). For all 8
observers across all six blocks (except for 1
observer in Block 1), the version of the mod-
el that assumed sensitivity to payoff matrix
multiplication, and thus more nearly optimal
reward-maximizing decision criterion place-
ment for steep than for shallow payoff matri-
ces, provided the better account of the data.
In addition, the model accounted for 90% to
92% of the responses in the data from each
observer (91.5% of the responses in the data
from the representative observer displayed in
Figure 10).

Figure 11a displays the steepness, weose R
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rately to each individual observer. The parameter values
are plotted on a log scale and for the data early in learn-
ing (Blocks 1 and 2) and late in learning (Blocks 5 and
6).

Weost LRG> and Wy cos¢ Values early and late in
the session for a representative observer, and
Figure 11b displays the same parameters av-
eraged across fits to each individual observ-
er’s data. Several results are of interest. First,
the steepness parameter declined from early
to late in learning, replicating the finding
from Maddox and Dodd (2001). Second, the
accuracy weights remained relatively stable
from early to late in the session in the payoff
cost conditions, but declined from early to
late in learning in the no-cost conditions.
Third, more weight was placed on accuracy

W. TODD MADDOX

in the cost conditions for which a long-run
gain was possible than in the cost conditions
for which a long-run loss was expected. Al-
though one might wish to speculate on the
locus of this latter effect, this result requires
replication before any strong claims can be
made.

Decision Criterion Learning for Separate and
Simultaneous Base-Rate and Payoff
Manipulations

Until recently, nearly all studies of decision
criterion learning focused on categorization
problems in which base rates or payoffs were
manipulated (however, see Healy & Kubovy,
1981). Given the fact that base rates and pay-
offs likely vary within the same natural-envi-
ronment categorization problem, it is of in-
terest to examine decision criterion learning
in categorization problems that include si-
multaneous base-rate and payoff manipula-
tions. Among other benefits, an examination
of decision criterion learning under simulta-
neous base-rate/payoff conditions also allows
a rigorous test of the independence assumption
of the optimal classifier in human decision
criterion learning. Recall from Equation 4
that the optimal classifier’s decision criterion
is determined from an independent combi-
nation of baserate and payoff information.
Encouraged by the successful application of
the flat-maxima hypothesis to category dis-
criminability and payoff matrix multiplication
manipulations when base rates and payoffs
were manipulated separately, Bohil and Mad-
dox (2002)3 generated predictions from the
flatmaxima hypothesis for cases in which
base rates and payoffs were manipulated si-
multaneously and to test those predictions
empirically. Bohil and Maddox examined de-
cision criterion learning for 16 observers in
three 60-trial blocks in each of the following
10 base-rate/payoff conditions: 2:1B, 2:1P,
3:1B, 3:1P, 2:1B/2:1P, 3:1B/3:1P, 2:1B/3:1P,
3:1B/2:1P, 1:2B/3:1P, and 3:1B/1:2P, where B
and P denote base rate and payoff, respec-
tively. These conditions permitted a test of
three a priori predictions from the flat-max-
ima hypothesis.

First, the flat-maxima hypothesis predicts

3 Bohil, C. J., & Maddox, W. T. (2002). A test of the
optimal classifier’s independence assumption in perceptual cate-
gorization. Manuscript submitted for publication.
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superior performance in 2:1 over 3:1 condi-
tions because the objective reward function is
steeper in 2:1 conditions. Figure 12a displays
the objective reward function for a 2:1 and a
3:1 base-rate (or payoff) condition. (The ob-
jective reward functions are identical for base-
rate and payoff conditions with the same ra-
tio.) Figure 12b plots the relation between
the steepness for each objective reward func-
tion (i.e., the derivatives for each objective re-
ward function) and k& — k,. Notice that for a
fixed nonzero steepness, the decision criteri-
on, k, is closer to the optimal value, k,, for
the 2:1 than for the 3:1 condition. Thus, the
flat-maxima hypothesis predicts more optimal
reward-maximizing decision criterion place-
ment in 2:1 than in 3:1 conditions. Figure 13a
displays the deviation from optimal points for
the 2:1 and 3:1 base-rate and payoff condi-
tions for a representative observer. These
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Fig. 13. Panel a: deviation from optimal points for a

representative observer from Bohil and Maddox (2002).
Panel b: observed decision criterion (from signal-detec-
tion theory) for the same representative observer minus
the decision criterion predicted from the independence
assumption.

data show more nearly optimal performance
in the 2:1 and 3:1 conditions as predicted
from the flat-maxima hypothesis. Second, the
flatmaxima hypothesis predicts that the ob-
server’s reward-maximizing decision criterion
should be closer to the optimal value than
that predicted from the optimal classifier’s in-
dependence assumption in the corresponding
simultaneous base-rate/payoff conditions.
These are defined as simultaneous base-rate/
payoff conditions for which the base rate and
the payoff bias the observer toward the same
categorization response, that is, the 2:1B/
2:1P, 3:1B/3:1P, 2:1B/3:1P, and 3:1B/2:1P
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conditions. Third, the flat-maxima hypothesis
predicts that the observer’s reward-maximiz-
ing decision criterion should be farther from
the optimal value than that predicted from
the optimal classifier’s independence assump-
tion in the conflicting simultaneous base-rate/
payoff conditions. These are defined as si-
multaneous base-rate/payoff conditions for
which the base rate and the payoff bias the
observer toward different categorization re-
sponses, that is, the 1:2B/3:1P and 3:1B/1:2P
conditions.

The latter two predictions were generated
as follows. First, we selected a single nonzero
steepness value and derived the decision cri-
terion from the associated objective reward
function for the 2:1B, 2:1P, 3:1B, 3:1P, and
the six simultaneous base-rate/payoff condi-
tions. This yielded the decision criterion val-
ue for each of the six simultaneous base-rate/
payoff conditions for that steepness. Second,
for each of the six simultaneous base-rate/
payoff conditions, appropriate 2:1B, 2:1P,
3:1B, and 3:1P decision criteria were com-
bined (using Equation 4) to generate the de-
cision criterion values for the six simulta-
neous base-rate/payoff conditions predicted
from the independence assumption of the
optimal classifier. Third, this process was re-
peated for a large number of nonzero steep-
ness values. Note that, because the emphasis
was on nonzero steepness values, the focus
here was on cases in which a suboptimal de-
cision criterion was utilized. Finally, for each
of the six simultaneous base-rate /payoff con-
ditions the log(B) value predicted from the
flat-maxima hypothesis was plotted as a func-
tion of the log(p) value predicted from the
independence assumption of the optimal
classifier. These are depicted in Figure 14 by
the solid curve. The broken line is included
for comparative purposes, and denotes a sit-
uation in which the two hypotheses make
identical predictions. Identical plots resulted
for the 2:1B/3:1P and 3:1B/2:1P and for the
1:2B/3:1P and 3:1B/1:2P cases, so these were
collapsed.

The most striking finding for the simulta-
neous base-rate/payoff conditions (Figures
14a through 14c) is that the decision crite-
rion predicted from the flat-maxima hypoth-
esis is always larger, and thus closer to the
optimal value, than that predicted from the
independence assumption of the optimal

W. TODD MADDOX

classifier. Thus, it follows that the flat-maxi-
ma hypothesis predicts that the decision cri-
terion will be closer to the optimal value
than that predicted from the independence
assumption. Only when the 2:1B, 2:1P, 3:1B,
and 3:1P decision criteria are optimal do the
flatmaxima and independence-assumption
decision criteria converge (not shown). Fig-
ure 14d plots the flat-maxima hypothesis and
independence assumption predictions for
the two conflicting simultaneous base-rate/
payoff conditions. Here, the flat-maxima hy-
pothesis predicts worse decision criterion
learning than does the independence as-
sumption of the optimal classifier. One ad-
vantage of these analyses is that specific vio-
lations of the independence assumption are
predicted a priori, and, if these predictions
are supported by the data, are well captured
by the flat-maxima hypothesis without re-
quiring any additional assumptions. Figure
13b displays the observed decision criterion
value (derived from signal-detection theory;
Green & Swets, 1967) minus the decision cri-
terion value predicted from the indepen-
dence assumption for the same representa-
tive observer whose data are displayed in
Figure 13a. Notice that the value is positive
for the corresponding conditions and is neg-
ative for the conflicting conditions. In other
words, and in line with the flat-maxima hy-
pothesis, decision criterion placement is
closer to optimal than that predicted by the
independence assumption for the corre-
sponding conditions, but is farther from op-
timal for the conflicting conditions.

The four base models of Figure 5 were ap-
plied simultaneously to the data from each of
the following 10 base-rate/payoff conditions:
2:1B, 2:1P, 3:1B, 3:1P, 2:1B/2:1P, 3:1B/3:1P,
2:1B/3:1P, 3:1B/2:1P, 1:2B/3:1P, and 3:1B/
1:2P separately by observer and block. In ad-
dition, we applied a hybrid (wp; Weorrs Weony)
model that estimated one accuracy weight for
the two separate payoff conditions (i.e., 2:1P
and 3:1P), a second accuracy weight for the
four corresponding simultaneous base-rate/
payoff conditions (i.e., 2:1B/2:1P, 3:1B/3:1P,
2:1B/3:1P, and 3:1B/2:1P), and a third ac-
curacy weight for the two conflicting simul-
taneous base-rate/payoff conditions (i.e.,
1:2B/3:1P and 3:1B/1:2P). The model ac-
counted for 90% to 92% of the responses in
the data from each observer (91.8% of the
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responses in the data from the representative
observer displayed in Figure 13). Figure 15a
displays the steepness, wp, Weory, and Wy, val-
ues for early and late learning for a represen-
tative observer, and Figure 15b displays the
same parameters averaged across fits to each
individual observer’s data. The steepness val-
ues declined from early to late in the session,

suggesting that the observer’s reward maxi-
mizing decision criterion approached the op-
timal value. The accuracy weights suggested
that the most weight was placed on accuracy
in the separate payoff conditions, the least
weight was placed on accuracy in the conflict-
ing simultaneous base-rate/payoff conditions,
and an intermediate amount of weight was
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placed on accuracy in the corresponding si-
multaneous base-rate/payoff conditions. The
fact that the weight placed on accuracy was
low in the conflicting simultaneous base-rate/
payoff conditions suggests that observers
were more willing to sacrifice accuracy in the
interest of reward maximization when the
payoffs were biased toward one category
while the base rates were biased toward the
other category.

Model-based tests of the optimal classifier’s in-
dependence assumption. Although the hybrid
model provided a good account of the data

W. TODD MADDOX

and captured performance in the separate
and simultaneous base-rate/payoff condi-
tions, suggesting violations of the optimal
classifier’s independence assumption, the
best test is to compare the hybrid model with
a model that assumes an independent com-
bination of base-rate and payoff information
in simultaneous conditions. To achieve this
goal, a variant of the hybrid (w) model was
developed that assumed independence in the
simultaneous base-rate/payoff conditions. In
the resulting Aybrid (w) independence model, we
applied the hybrid model framework to de-
termine the decision criteria in the separate
base-rate and separate payoff conditions (i.e.,
2:1B, 2:1P, 3:1B, and 3:1P), and then com-
bined these independently (following Equa-
tions 2 and 4) to derive the decision criteria
in the simultaneous base-rate/payoff condi-
tions. (An “independence” variant of the hy-
brid (wp; Weorr; Weonr) Model cannot be de-
veloped because it contains accuracy weights
associated specifically with the simultaneous
base-rate/payoff conditions.) Note that the
hybrid (w) and hybrid (w) independence
models have the same number of parameters,
so the fits can be compared directly.

In support of the flat-maxima hypothesis,
for 72% of the data sets, the hybrid (w) mod-
el provided a better account of the data than
did the hybrid (w) independence model.
One advantage of this approach is that the
models are identical in all respects except in
whether they apply the flat-maxima hypothe-
sis or independence assumption to the si-
multaneous base-rate/payoff conditions. In
other words, the flatmaxima and indepen-
dence models both assumed that the flat-
maxima and COBRA hypotheses were valid in
the separate base-rate/payoff conditions. Al-
though this approach provides a statistically
rigorous comparison of the flat-maxima and
independence assumptions, one could argue
that it biases the results in favor of the flat-
maxima hypothesis, because the flat-maxima
hypothesis is used to generate the decision
criteria for the separate base-rate/payoff con-
ditions. Another approach would be to de-
velop a model that instantiated the indepen-
dence assumption of the optimal classifier by
freely estimating separate decision criterion
values in the 2:1B, 2:1P, 3:1B, and 3:1P con-
ditions and then combining these indepen-
dently (following Equation 4). Although this
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approach lacks a rigorous underlying theory
for determining the four separate base-rate/
payoff condition decision criteria, it does ap-
pear to give the independence assumption
the best chance of accounting for the data.
The four-decision criterion parameter model
was applied to the data and compared with
the four-parameter hybrid (wp; Weorr; Weont)
model. The hybrid (wp; wWeorr; Weons) model
provided a better account of the data for 3 of
16 observers in Trial Block 1 and for 10 of 16
observers in Blocks 2 and 3. So although the
independence assumption was supported ear-
ly in learning, the flat-maxima model was sup-
ported later in learning, after substantial ex-
perience had accrued. Taken together, these
model-based comparisons suggest that the hy-
brid model, which embodies the flat-maxima
and COBRA hypotheses, provides an excel-
lent account of decision criterion learning
across (a) different base-rate/payoff ratios,
(b) separate base-rate/payoff manipulations,
(c) corresponding simultaneous base-rate/
payoff manipulations, and (d) conflicting si-
multaneous base-rate/payoff manipulations.
The hybrid model accounts for the observed
violations of the independence assumption
without incorporating any additional assump-
tions.

Feedback Effects on Cost—Benefit
Decision Criterion Learning

Most work on decision criterion learning
uses trial-by-trial feedback based on the be-
havior of the objective classifier that obtains
100% accuracy. The feedback displays depict-
ed in Figure 1 are based on the behavior of
the objective classifier. The COBRA hypoth-
esis postulates that decision criterion learning
will be more suboptimal in payoff than in
base-rate conditions because accuracy and re-
ward can be maximized simultaneously in
base-rate conditions, whereas some measure
of accuracy must be sacrificed in payoff con-
ditions to maximize reward. The optimal clas-
sifier is willing to sacrifice some measure of
accuracy to maximize reward, whereas hu-
man observers seem to place importance on
both goals resulting in behavior that does not
maximize reward. Because of the importance
of reward maximization in many natural-en-
vironment categorization problems, it is of in-
terest to examine the effects of other types of
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feedback that might lead the observer to be
more willing to sacrifice accuracy.

Maddox and Bohil (2001, Experiment 2)
had 8 observers complete three 120-trial
blocks to examine the effects of different
types of corrective feedback on decision cri-
terion learning in a 3:1 no-cost condition
(the shallow/no-cost [A] condition from Ta-
ble 1). The aim was to determine whether
certain types of feedback might make observ-
ers more willing to sacrifice accuracy. Four ex-
perimental conditions were constructed from
the factorial combination of two category dis-
criminabilities (d’ = 1.0 vs. 2.2) with two
types of feedback (objective vs. optimal clas-
sifier). With objective classifier feedback, on each
trial observers were told the number of
points they earned on that trial (gain) and
their cumulative total (total gain). They were
also told the number of points that would
have been earned had they responded with
the objectively correct category label (poten-
tial gain) and the cumulative total had they
been correct on every trial (total potential
gain). With optimal classifier feedback, on every
trial observers were told the number of
points they earned on that trial (gain) and
their cumulative total (total gain). They were
also told the number of points that would
have been earned by the optimal classifier
and the cumulative total for the optimal clas-
sifier. Whereas the objective classifier will nev-
er respond incorrectly, on a certain propor-
tion of trials the optimal classifier will
respond incorrectly, but always in the interest
of reward maximization. The hypothesis was
that optimal classifier feedback might help
observers learn to sacrifice accuracy to max-
imize reward.

Figure 16 plots the deviation from optimal
points for the objective and optimal classifier
feedback conditions at each level of d’ for a
representative observer. As predicted by the
flat-maxima hypothesis, performance was
closer to optimal for d' = 2.2 than for d' =
1.0. In addition, optimal classifier feedback
led to superior performance compared with
objective classifier feedback, suggesting that
optimal classifier feedback helped the observ-
er sacrifice accuracy in the interest of reward
maximization. The four base models in Fig-
ure 5 were applied simultaneously to the data
from all four conditions, separately by ob-
server and block, and one additional model,
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Fig. 16. Deviation from optimal points for a represen-
tative observer from Maddox and Bohil (2001).

the hybrid (wypj; w,y) model was applied to de-
termine whether the weight placed on accu-
racy differed across feedback conditions. The
prediction was that optimal classifier feed-
back would lead to less weight being placed
on accuracy. The hybrid (wepj; wopy) model
generally provided the most parsimonious ac-
count of the data, accounting for 88% to 92%
of the responses in the data from each ob-
server (91.9% of the responses in the data
from the representative observer displayed in
Figure 16). Figure 17a displays the steepness,
Wobj, Wopt Values for early and late learning
for a representative observer, and Figure 17b
displays the same parameters averaged across
fits to each individual observer’s data. Two
results stand out. First, the steepness values
declined from early to late in the session as
in the three previous studies. Second, the
weight placed on accuracy remained high
and relatively stable in the objective classifier
feedback condition (w,p;), and was lower and
declined from early to late in the session for
optimal classifier feedback (wyp,). This latter
result suggests that observers were better able
to sacrifice accuracy when feedback was based
on the optimal classifier and continued to im-
prove with experience.

CONCLUSION

This article outlines a recently developed
unified theory of decision criterion learning
and reviews studies that tested the generality
of decision criterion learning under a wide
range of experimental conditions. The theo-
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Fig. 17. Panel a: parameter values from the hybrid
(wobj; wWopr) model for a representative observer from
Maddox and Bohil (2001). Panel b: parameter values
from the hybrid (wpj; wop) model averaged across fits
of the model separately to each individual observer. The
parameter values are plotted on a log scale for the data
early in learning (Block 1) and late in learning (Blocks
2 and 3). Obj = objective classifier feedback. Opt = op-
timal classifier feedback.

ry assumes that two mechanisms are operative
in decision criterion learning. One mecha-
nism involves competition between reward
and accuracy maximization. When both goals
cannot be achieved simultaneously, the op-
erative decision criterion falls somewhere be-
tween the accuracy- and reward-maximizing
decision criteria. The second mechanism in-
volves a flat-maxima hypothesis that assumes
that the observer’s estimate of the reward-
maximizing decision criterion is determined
from the steepness of the objective reward
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function that relates expected reward to de-
cision criterion placement.

Following the lead of most animal learning
theorists, our participants completed several
thousand trials and participated in all condi-
tions of the experiment. This approach offers
rigorous control over the participant’s rein-
forcement history, and thus allows a better
understanding of its effects on behavior. By
examining a wide range of experimental con-
ditions (i.e., reinforcement histories) within
observer, we are able to directly compare be-
havioral profiles across reinforcement histo-
ries. This approach also focuses on individual
behavior, as opposed to behavior aggregated
over several participants. As shown in the
1950s (Estes, 1956) and reiterated more re-
cently (Ashby et al., 1994; Maddox, 1999;
Maddox & Ashby, 1998; Smith & Minda,
1998), averaging can alter the structure of
data in such a way that the correct model of
individual performance might provide a poor
account of averaged performance, and even
worse, an incorrect model of individual per-
formance might provide an excellent account
of averaged performance.

To date, this unified theory of decision cri-
terion learning and several model-based in-
stantiations has been applied to categoriza-
tion problems that examine category
discriminability, payoff matrix multiplication
and addition effects, the optimal classifier’s
independence assumption, and different
types of trial-by-trial feedback. For many of
these manipulations, the flat-maxima and
COBRA hypotheses make strong a priori pre-
dictions. In every case, a hybrid model frame-
work that incorporated simultaneously the
flatmaxima and COBRA hypotheses provid-
ed a good account of the data, and provided
useful insights into the psychological process-
es involved in decision criterion learning. In
particular, human observers appear to learn
the optimal reward-maximizing decision cri-
terion (or come very close to learning it)
within 100 to 200 trials. In addition, the
weight placed on accuracy is strongly affected
by such factors as payoff matrix addition and
the nature of the simultaneous base-rate/pay-
off condition (e.g., whether the base-rate and
payoff ratios are corresponding or conflict-
ing). Although all of this work was conducted
with human subjects, our hope is that re-
searchers interested in the optimality of non-
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human categorization behavior will find this
approach useful and will incorporate it into
their own research.

This body of research represents an impor-
tant starting point, but much more work is
needed to fully understand decision criterion
learning. For example, all of this work was
limited by the use of equal variance catego-
ries. Most natural categories likely do not
have this property, so extensions to unequal
category variances are in order. In addition,
with the exception of a few early studies, all
of this work used unidimensional stimuli. Al-
though the dimensionality of the stimulus ap-
pears to have the largest effect on time need-
ed to learn the category structures,
extensions to multidimensional categories
are still in order. Finally, all of the modeling
work was conducted at the block-by-block lev-
el instead of the trial-by-trial level. The cur-
rent models provide information about “‘av-
erage” performance within a block of trials,
and by applying the models separately to
each block of trials they provide information
about learning. Other models have been pro-
posed in the literature that model trial-by-trial
changes in the decision criterion (e.g., Bu-
semeyer & Myung’s, 1992, hill-climbing mod-
el; Erev’s, 1998, criterion reinforcement
learning model; Wallsten & Gonzalez-Valle-
jo’s, 1994, stochastic judgment model). An
exciting avenue for future research will be to
develop a trial-by-trial analogue of the hybrid
model.
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