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Fluid turbulence has attracted the attention of physicists, mathe-
maticians, and engineers for over 100 years, yet it remains an
unsolved problem. The reasons for the difficulties are outlined and
recent advances in describing its small-scale statistical structure are
described. Contrary to traditional notions, new experimental evi-
dence indicates that the small scales are anisotropic, reflecting the
overall character of the flow. The consequences of this finding with
regard to the long-held postulate of the universality of the small-
scale turbulence structure are discussed.

The great cloud paintings of Ruisdael and Magritte (Fig. 1)
beautifully express the way we characterize turbulence in

modern texts: it is irregular, has strong vorticity, causes rapid
mixing (a blob of dye would rapidly disperse in Ruisdael’s
turbulent waters), and is a multiscale phemonenon. Fig. 2, a
mural in a Greek restaurant near Fort Myers, FL, is unconvinc-
ing because it misses the vital multiscale characteristic. All
eddies are the same size. If this were in fact the case, there would
be no turbulence problem. The essence of turbulence is its
multiscale behavior.

Because the largest length scales (�) are typically of the order
of 1 km in a cumulous cloud, and the fluctuating turbulent
velocities (u) are of the order of meters per second, the clouds
in the pictures are extremely turbulent, indicating a highly mixed
state. This is characterized by the Reynolds number

Re ' u���, [1]

which is the ratio of the inertial forces (which describe the f luid
acceleration) to viscous forces (which inhibit the f luid mo-
tion). It is very high; of the order 108. (Here � is the kinematic
viscosity of order 10�5 m2�s�1 in a cloud.) Yet what is striking
is the complexity of the structures. No two clouds are alike. We
wonder whether any universal characteristics are present. Can
the scientist generate high Reynolds number turbulence in the
laboratory in such a way that it reduces the complexity, yet
retains the essential ingredients of the high Reynolds number
turbulence?

When we set up an ideal turbulent flow in the laboratory, we
obtain images like that shown in Fig. 3 (1). This is a boundary
layer. A carefully controlled wind of constant mean velocity is
driven (by a fan) over a perfectly f lat plate. The ‘‘no slip’’
condition (e.g., ref. 2) forces the air motion to be zero at the plate
itself, thereby inducing a velocity gradient or shear in the flow.
Unlike the situations of Fig. 1, here the boundary conditions are
carefully controlled. Yet the resulting picture appears to be just
as complex. Apparently, simplifying the boundary conditions
does not help us very much. It is difficult to reduce the
complexity of the turbulence much more than this, although
slightly simpler flows can be contrived.

There are thousands of papers on turbulent boundary layers,
and the subject is still a fertile research area. Boundary layers
occur on the surface of airplane wings, turbine blades, and the
Earth. They affect the drag properties, as well as the dispersion
of pollution and the formation of clouds (which in the Magritte
picture are sitting atop the planetary boundary layer). Pipe
flows, jets, wakes, and convection in a box are other standard

laboratory flows. They are equally complex and the ‘‘solution’’
of one will have direct ramifications for them all. Yet we still do
not have anywhere near a solution to any of these problems in
the sense, say, that we have a solution to the hydrogen atom or
to critical point phenomena. Feynman (3), writing in the 1960s
is still up to date: ‘‘Finally, there is a physical problem that is
common to many fields, that is very old, and that has not been
solved . . . It is the analysis of circulating or turbulent fluids
. . . The simplest form of the problem is to take a pipe that is very
long and push water through it at high speed. We ask: to push
a given amount of water through that pipe, how much pressure
is needed? No one can analyze it from first principles and the
properties of water. If the water flows very slowly, or if we use
a thick goo like honey, then we can do it nicely. You will find that
in your textbook. What we really cannot do is deal with actual,
wet water running through a pipe. That is the central problem
which we ought to solve some day, and we have not.’’

The Turbulence Problem
It is difficult to think of a physics problem that can apparently be
so clearly stated that has evaded a solution for so long.

Why is the turbulence problem so difficult? The equation of
fluid motion, the Navier Stokes equation

�V��t � V��V � �
1
�

�p � ��2V [2]

is a nonlinear partial differential equation. As Feynman states,
there are solutions to this equation for simple laminar flows, like
honey flowing down a plate, that occur at low Reynolds numbers.
But at high Reynolds numbers the essence of the problem lies in
the nonlinearity. It is not possible to develop a perturbation
theory around the linear part of the equation because the theory
has no small parameter: quadratic and higher-order terms are
the essential ingredients of the problem. Thus perturbation
expansions are strongly divergent. In this regard the Navier
Stokes equations are the most intractable of all of the field
equations we know, including those of general relativity. Osborn
Reynolds (4) realized the heart of the problem in the late
nineteenth century. He decomposed the velocity component V
into a mean (U) and a fluctuation (u), i.e., V � U � u. Thus for
a waterfall U is its average speed and u are fluctuations of the
flow about this average; the jittering motion that a speck of dust
would undergo while being advected along by the water. [Even
earlier Leonardo da Vinci, hinting at this decomposition (5),
likened turbulent flow to the way hair falls (the mean motion),
and curls (the fluctuations), on the nape of a woman’s neck].
Substituting U � u for V in Eq. 2 generates high-order terms for
the fluctuating components. These terms are generally of the
same order as the lower-order ones. Engineers, who seek
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solutions for real f lows, attempt to ‘‘close’’ the equations by
modeling the higher-order terms in terms of the lower orders.
The success in this direction has been significant (e.g., refs. 6–8)
but such an approach does not satisfy the mathematician or
physicist. Because a field theoretical solution of the Navier
Stokes equation is elusive (e.g., ref. 9), the fruitful approach
comes from asking questions concerning the physics of the
processes. Here I turn away from the equations of motion and
construct physical models. I ask: Are there any universal aspects
of turbulent flow? Figs. 1 and 3 suggest that the largest scales
depend on the way the turbulent flow is formed, and therefore
are definitely non-universal. They provide the flow with its
special character, be it a cloud, smokestack jet, or waterfall. But
what about the smaller scales? If one takes a cubic meter inside
a cloud, say, and a cubic meter of a volcanic plume, or of a smoke
stack, is it possible that of these scales the turbulence may look
the same? (Of course the picture may have to be scaled by
magnifying one relative to another.) Our present view of tur-
bulence suggests this is the case, at least to a good first
approximation.

Our ‘‘standard model’’ comes from Kolmogorov (10) who in
1941 postulated that there is a cascade of turbulence energy from
largest eddies to smallest eddies (or scales). The rate of energy
input (per unit mass) at the largest scales is equal to the energy

through-put from the large to the small scales. This rate, in turn,
is equal to the energy dissipated by the smallest scales. If we
rapidly stir the bath with a large arm action and then withdraw
our hand, the energy is passed this way to the small scales. The
motion ceases, and the bath is slightly warmer. Turbulence is
highly dissipative. Notice how rapidly the turbulence ceases (in
contrast to the residual wave motion).

Because the average rate of energy dissipation (per unit mass),
��� m2�s3, is the same as the average rate of energy input, it is
determined from the large-scale quantities: the average kinetic
energy per unit mass of the large eddies, u2, and their charac-
teristic ‘‘turn over time’’ (the lifetime of the eddy), ��u. Thus

��� � u3��, [3]

where, both u and � (as in Eq. 1) are average statistical quantities
(root mean square quantities). The model, Eq. 3, works extremely
well, and must be regarded as basic a law that we have in turbulence.
It allows us to model ���, a vital step in closing the turbulence
equations. It also allows us to determine the power of a cloud, or
other turbulent flows, from simple estimates of their size and
characteristic turbulence velocities. For example, for a typical
cumulus cloud, � �1 km and u �1 m�s. Hence ����10�3 m2�s3 and
the total power (�����3 where � is the density, taken here as 1
kg�m3) is 1 megawatt. Volcanic plumes and the Earth’s boundary
layer dissipate even greater amounts of energy.

According to Kolmogorov, as the cascade proceeds the suc-
cessive generations of smaller eddies lose information of the
large-scale structure of the flow. Thus the anisotropy of the large
scales fades and the small scales become statistically isotropic.
Our snapshot of the cubic meter of cloud could be rotated and
reflected without our being concerned. On the other hand, a
slight rotation of the large scales (a complete cloud, Fig. 1) will
tell us something is wrong. That a cascade picture seems

Fig. 1. (Upper) Waterfall by Jacob Van Ruisdael (1628–1682). Rijks Museum,
Amsterdam. (Lower) The Empire of Lights by René Magritte (1898–1967).
[Reproduced with permission (Copyright 2001, Charly Herscovici, Brussels�
Artists Rights Society, New York).]

Fig. 2. Mural in a Greek restaurant, Fort Myers, FL. Photo by author.

Fig. 3. A turbulent boundary on a wall. [Reproduced with permission from
ref. 1 (Copyright 1977, American Institute of Physics).]
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reasonable was appreciated earlier on by L. F. Richardson (10).
The fact that large-scale forcing produces a myriad of smaller
scales is evident to anyone who has stirred a bath. What was new
from Kolmogorov (published in 1941 and known as K41), is the
notion of local isotropy, the isotropy of the small scales. Further,
Kolmogorov postulated that the statistics of these isotropic
scales would have universal behavior, independent of the way the
flow was produced, be it in a cloud, a jet, or a waterfall. The
scales at which this approximately occurs are known as the
universal equilibrium subrange. This is further divided into a
dissipation subrange (the very smallest scales) and the inertial
subrange, those scales larger than the dissipation scales (where
viscosity becomes dominant), but smaller than the large aniso-
tropic scales that define the flow. In the Magritte clouds (Fig. 1b)
the inertial subrange may be of the order meters to millimeters.
Its width increases as the Reynolds number increases (more
vigorous stirring, or an increase of the scale of the flow); as the
Reynolds number increases the anisotropic large scales encroach
less and less on the smallest scales.

In the inertial subrange K41 provides predictions for the way
the statistics of velocity differences, across a separation, r,
behave. Defining this difference u(R � r) � u(R), (where R is a
reference point) as �u(r), K41 predicts that its statistical average
(ensemble or time average) will be only a function of ��� and r
itself. Thus, the structure function, �(�u(r))n�, scales as

�	�u	r

n� � 	���r
n/3. [4]

For n � 2, the variance �(�u(r))2� will increase as r2/3. For this
case the Fourier transform of Eq. 4 yields a �5�3 spectrum (11).
It has been verified in many flows (Fig. 4).

K41 is a pillar of modern turbulence theory. Its prediction for
second-order quantities is remarkable, and its effect on modeling
real turbulent flows cannot be underestimated. Yet soon after it
appeared some insurmountable problems became apparent. The
dissipation rate was found to vary both spatially and temporally
within the flow. Because the ultimate fate of the turbulence
energy is at the small scales, the dissipation rate is related to the

sharp gradients of the velocity that occur there. Thus the
dissipation is a function of various combinations of the velocity
derivatives. Fig. 5 shows a time series of one velocity derivative,
�u��t, in a turbulent flow. The velocity fluctuations themselves
(the u trace) are close to Gaussian, but those of �u��t are strongly
non-Gaussian. This finding implies that dissipation in turbulent
flows is ‘‘spotty’’ or intermittent. There are moments when it is
large, followed by quieter moments. In Kolmogorov the govern-
ing parameter is the average dissipation rate.

Intermittency (Fig. 5) was first observed by Batchelor and
Townsend in 1949 (12), but was anticipated independently by
Landau [see Frisch (10)]. He argued that small f luctuations of �
will be successively amplified as the cascade proceeds. The
turbulence becomes ‘‘lumpy,’’ and complex structures are im-
plied. These were later observed in experimental as well as
computer simulations (Fig. 6; ref. 13). Although the individual
structures are clearly anisotropic, there is a possibility that their
statistical variation is such that the turbulence remains isotropic,
so that the notion of universality may still not be lost. However,
it will be shown that this does not appear to be the case.

The intermittent nature of the velocity dissipation, which is
evident both at the dissipation and inertial scales, suggests that
the turbulence may not be a self similar process: enlargement of
a section of the time series of Fig. 5a will not produce a time
series that is statistically similar to the original one. The quali-
tative nature of the time series changes as one looks successively
at more detailed enlargements. This aspect presents immense
difficulties for the theoretician.

If structure functions from the time series of Fig. 5a are
constructed, a linear trend in the scaling exponent [as predicted
by K41 (Eq. 4)] is not found; it is nonlinear, with increasing
departure from K41 with increasing n. A plot of the scaling
exponent is shown in Fig. 7. Notice that at second order K41 still
holds extremely well. The departure from linearity at higher
orders is caused by the intermittent nature of the turbulence.

It is apparent that the two quantities ��� and r are not enough
to determine the form of the structure function. A new param-
eter must enter. Usually the integral length scale is introduced
(10), and we write

�	�u	r

n� � 	���r
n/3	��r
 � �n � r	n, [5]

where 	n � n�3 � �n is the scaling exponent and �n is the
departure from K41. [For �n � 0 (4) reduces to K41, Eq. 4.] The
issue is to determine 	n.

Fig. 4. The turbulence spectrum measured in many different flows. As the
Reynolds number increases, the width of the spectrum increases, as the large
scales are separated further from the small scales. At high Reynolds number,
Kolmogorov (10) predicts a slope of �5�3, which is seen in these measure-
ments. [Reproduced with permission from ref. 11 (Copyright 1994, Cambridge
University Press).]

Fig. 5. Time series of the longitudinal velocity fluctuations, u(t), and their
derivative, �u(t)��t. Also shown is the time series of scalar fluctuations, 
(t), and
their derivative, �
(t)��t, in the same flow. Notice the higher intermittency in the
scalar (bottom trace). R� � 582. Measurements by L. Mydlarski and Z.W.
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Virtually all theories are based on the cascade model. Simple
fractal models (10) provided starting points for later developments.
Here at each stage of the cascade the number of ‘‘daughters’’ of a
given ‘‘mother’’ eddy is chosen such that the fraction of volume
occupied is decreased by a factor �(0 � � � 1). This scheme, known
as the � model, allows for the intermittency to occur. There is one
adjustable parameter, D, the fractal dimension, and for D � 3, K41
is retrieved. Although insightful, the model incorrectly predicts a
linear dependence of 	n on n. More advanced models (10) describe
the inertial subrange cascade as a random multiplicative process
and use a multifractal approach. Some of these models produce
scaling exponents that are close to the data of Fig. 7. Yet there is
something unsatisfying, in a similar way that attempts to fit curves
through the black body radiation curve were unsatisfying before
Planck’s momentous insight.

Is the Postulate of Local Isotropy Correct?
The cascade concept and the postulate of local isotropy are
tightly bound. If local isotropy did not hold, the implication
would be that the small scales are not universal and that there
is direct interaction between the large and the small scales.

It has been known for over 30 years (14–16) that fluctuating
passive scalars, such as low concentrations of dye in water, or
humidity or temperature in air, are anisotropic at the small
scales. If, for example, a large-scale mean scalar gradient is
imposed on a turbulent velocity field, say by gently heating one
side of the flow (Fig. 8a), the resultant small-scale temperature
fluctuations reflect the large-scale gradient. This is manifest in
the probability density function (pdf) of the scalar derivative
(measured along the gradient) having asymmetric tails. The pdf
is skewed (Fig. 9a). If the sign of the gradient is f lipped, the sign
of the skewness is reversed (the tail would be broader on the left
side rather than the right side of Fig. 9a). An examination of the
time series of the temperature fluctuations along the mean
gradient shows ramp-cliff structures (Fig. 10).

Insightful numerical simulations of Holzer and Siggia (19)
have shown that along with the anisotropy comes intermittency.
They generate a strictly Gaussian velocity field, i.e., one with no
internal intermittency or structure at all, and impose on this a
passive scalar gradient. They find skewed pdfs similar to those of
Fig. 9a, and an intermittent time series for the derivative of the
temperature fluctuations, similar to that of Fig. 5 (bottom trace).
The turbulent mixing by the large eddies expels the large-scale
gradient and forms patches of approximately constant scalar
concentration. They observe cliffs and show they are sharp fronts
produced by the large-scale overturning of the velocity field: the
interface of a large downward (warm) eddy and an upward (cool)
eddy. The width of those fronts is small, and so large and small
scales are directly coupled. The fronts not only cause the pdf to
be skewed, but they affect the higher moments, causing non-
Gaussian even ones that we associate with intermittency. The
fact that a purely Gaussian field could produce scalar intermit-
tency was realized early by Kraichnan (20). What is new here is
that the intermittency and anisotropy are intimately connected.

What about the velocity field itself? Here, too, we can impose
large-scale anisotropy on the flow by forming a shear. In a wind
tunnel we can contrive a flow with constant shear (shown
schematically in Fig. 8b) by means of a series of screens set up
to differentially block the flow. When one does this type of
experiment a similar effect to that observed for the scalar is
found, but it is more subtle. The pdf of the velocity is also skewed,
but the skewness is manifest in the fifth rather than the third
moment (21) (Fig. 9d). Thus for the velocity field, the events
(sharp fronts) reaching the small scales directly from the large
scales are more rare and more intense. The weaker ones do not
penetrate.

The results concerning the anisotropy of the velocity field are
new and require careful evaluation by other laboratories. One
prerequisite is that the Reynolds number must be very high so

Fig. 6. Numerical simulation of vortex filaments in a turbulent fluid. [Re-
produced with permission from ref. 13 (Copyright 1991, The Royal Society of
London).]

Fig. 7. Inertial subrange scaling exponents for velocity and scalar structure
function, 	n. Longitudinal velocity component measured along the mean
velocity gradient (E) and transverse to it (�). The scalar structure function
exponent ({). Both the velocity and scalar depart from the K41 prediction (Eq.
4) for higher orders, with the scalar showing a greater departure. This is
consistent with its greater intermittency, Fig. 5. [Reproduced with permission
from ref. 15 (Copyright 2000, Annual Reviews).]

Fig. 8. A simple way to impose large-scale anisotropy on a flow is to impose
a linear variation of the mean quantity. (a) A mean scalar gradient [temper-
ature, T(y)] is applied to an isotropic turbulent field. (b) The velocity field is
sheared, providing the variation in its mean, U(y). To investigate the small-
scale structure, difference, and derivative measurements are made along the
gradient [�
(y) and �u(y) for the scalar (temperature) and velocity, respec-
tively]. If local isotropy were to hold, then the odd moments should be zero for
small displacements.
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that there is enough separation between the large and small
scales, otherwise we would expect the large scales to directly
affect the small ones. How high must the Reynolds number be?
Again we do not know the answer to this question. The Reynolds
number (defined in Eq. 1) of the experiments in ref. 21 was close
to 105. The highest Reynolds numbers are in the atmosphere and
oceans, where they can be 2 or 3 orders of magnitude greater.
However, checking this delicate measurement in geophysical
f lows is difficult because of statistically nonstationary effects.

The new results show that the large-scale organization of the
flow is reflected at the small scale. They provide a way of
understanding intermittency that is different to the cascade
notion. What if the shear is turned off and the large scales are
isotropic? Clearly the small scales should be isotropic for this
condition, and this is observed in laboratory flows. But here, too,
there will be clashes of large eddies, and at their interface there
will be sharp jumps in the velocity. The large eddies will be
randomly oriented (in the shear flow they are aligned by the
shear) and so there will be no preferred direction, and no
asymmetry in the pdf, but still there will be intermittency. Here,
too, then, intermittency will be the result of the direct interaction
of large and small scales. Here, too, extremely intense and rare
events will be directly communicated to the small scales.

The above discussion of the pdfs (Fig. 9) pertains to the very
smallest scales—the dissipation range. There is also very good
evidence for the connection between intermittency and anisot-
ropy in the inertial subrange. If we determine a structure
function in shear flow by moving one velocity probe in the shear
direction relative to another fixed one, we can determine the
transverse structure function of u (Fig. 8b). The odd order
transverse functions exist solely because of the anisotropy of the
flow. Remarkably, the experiments show that their magnitude is
of the same order as the even ones, and their scaling exponents
are such that they increase (with increasing order) in a similar
way to the even ones (21). This implies that the anomalous
scaling (i.e., the departure from K41) can be accounted for solely
in terms of the anisotropy, because the odd moments (which
isotropy requires to be zero) capture the full anomaly. The
transverse scaling exponents are also shown on Fig. 7.

These recent results not only suggest that the postulate of local
isotropy is incorrect, but they also give a strong indication that
intermittency and anisotropy result from the same cause: rare
intense events at the integral scale that directly couple to the
small scales. Although the early experimental evidence is com-
pelling, much work will be required to base a sound theory on
those observations.

The State of the Subject
It may seem remarkable that such a basic question as to whether
the small scales are isotropic or not has not been definitively
answered. After all, the subject is over 100 years old and the only
medium required for its study is air or water. Part of the problem
is analogous to that encountered by high-energy physicists. To
understand the ultimate structure of matter higher and higher
energies are needed, and hence the need for expensive acceler-
ators. In turbulence, higher and higher Reynolds numbers are
needed to separate the large scales from the inertial ones, where
some kind of order may be found. One of the advances in the past
decade has been in the development of new devices to produce
controlled high Reynolds number turbulence in the laboratory
(21–24). Nevertheless the Reynolds numbers achieved so far still
fall short of those required.

But turbulence is not only a basic scientific problem but also
one of great practical importance. So I return to the large scales
and engineering considerations. I have mentioned that it is the
largest scales that provide the flow with its particular character;
they determine rate at which a smoke plume spreads, the stress
on the surface of a pipe, and the depth of the atmospheric
boundary layer. How do we calculate these characteristics? One
obvious approach is to solve the Navier Stokes equation by direct
numerical simulation. This approach requires very large com-
puters: the ratio of the largest (�) to the smallest () scales varies

Fig. 9. pdfs of the scalar (a) and velocity (c) derivatives measured along their
respective mean gradients. The pdfs are not symmetrical: asymmetry is ob-
served at the third moment for the scalar (b), and at the fifth moment for the
velocity (d). The anisotropy appears to be independent of Reynolds number
(17, 21). In a and b, x � �
��y��(�
��y)2�1/2, and in c and d, z � �u��y��(�u�
�y)2�1/2. [a and b, Reproduced with permission from ref. 17 (Copyright 1994,
American Institute of Physics).] [c and d, Reproduced with permission from ref.
21 (Copyright 2000, American Institute of Physics).]

Fig. 10. Time series of a passive scalar (temperature) from a heated jet
showing ramp-cliff structures. [Reproduced with permission from ref. 18
(Copyright 1979, Cambridge University Press).]

Fig. 11. A numerical simulation of particles in a turbulent field (23). Initially,
(a) the particles are evenly distributed but after a time they concentrate in
regions of high strain (b). [Reproduced with permission from ref. 27 (Copy-
right 1998, American Meteorological Society).]
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as ���(Re)3/4. [Because the smallest scale in the cascade, , can
only be a function of ��� and � (the former driving the cascade
to the smaller scales, the latter inhibiting the cascade at the
smallest scales) dimensional analysis yields �(�3����)1/4. Using
this as well as Eqs. 1 and 3 the result ���(Re)3/4 is obtained.]
For a cloud, Re�108, so ���106. The number of grid points
required to completely compute the flow in three dimensions is
the cube of this, 1018 grid points. To follow the evolution of all
of the details of a cloud for one characteristic eddy evolution
time (��u�10 min for a typical cumulous cloud) would take
many thousands of years in today’s largest computers (25). For
this reason direct numerical simulation is confined to flows of
relatively small Reynolds numbers, and with relatively simple
geometry (flow in a duct rather than flow over a rotating turbine
blade, for example).

The fact that there appears to be some level of universality, at
least to second order (Fig. 4), suggests that the small scales could
be parameterized, leaving only the large scales to be directly
computed. This approach, known as large eddy simulation
(LES), is considered by many to be extremely promising (26)
because in direct numerical simulation most of the time is spent
computing the small scales. In LES, by foregoing the small scales,
relatively high Reynolds numbers can be obtained, and many of
the real characteristics of the turbulence can be captured. It has
been successfully applied to homogeneous turbulence, jets,
wakes, and transitional f lows (26). Although still in its infancy,
the level of research activity suggests it may become a major tool,
possibly replacing single point closures (6–8) (which only pro-
vide information on averaged quantities such as variances and
stresses) as the major work horse.

Yet in this brief review I have stressed that the behavior of the
small scales may be directly determined by the large scales.
Although this may not matter for some practical applications
(because it pertains mainly to the higher-order moments) it
would seem that to understand such major problems as mixing,
reactions, and combustion, as well as nucleation in clouds, both
the small and large scales will have to be studied together. Fig.
11 (27) shows how particles concentrate along regions of high
strain (cliffs) in turbulent flows. These sharp (small scale)
regions are formed by the interaction of large eddies, and they
are likely to be sharper (thinner), with higher concentrations of
nucleating particles, in real clouds. Thus intermittency probably
plays a major role in nucleation in clouds. In reactions and
combustion, the various species meet and react in similar
high-strain (low vorticity) regions formed by large-scale eddy
interactions. Thus in many applied problems the large and small
scales are equally relevant and a holistic approach will be
required. There are grounds for optimism. More than at any
time, engineers, physicists, and mathematicians are working
closely together. In the past 2 years, for example, there have been
two 6-month workshops on the subject [one at Cambridge (28)
and the other at Santa Barbara (http:��online.itp.ucsb.edu�
online�hydrot00�si-index.html)] where the three groups came
together. In a subject that has so many facets, the depths will not
be plumbed by any one group, be they the universalists (mainly
physicists) or the particularists (mainly engineers). The truth is
doubtless more subtle than either group supposes.

I thank John Lumley and Stephen Pope for comments on the manuscript.
I also thank John Lumley for bringing ref. 5 to my attention. This work
was funded by the National Science Foundation.
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