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Thirty years ago, E. N. Lorenz provided some approximate limits to
atmospheric predictability. The details—in space and time—of
atmospheric flow fields are lost after about 10 days. Certain gross
flow features recur, however, after times of the order of 10–50
days, giving hope for their prediction. Over the last two decades,
numerous attempts have been made to predict these recurrent
features. The attempts have involved, on the one hand, systematic
improvements in numerical weather prediction by increasing the
spatial resolution and physical faithfulness in the detailed models
used for this prediction. On the other hand, theoretical attempts
motivated by the same goal have involved the study of the
large-scale atmospheric motions’ phase space and the inhomoge-
neities therein. These ‘‘coarse-graining’’ studies have addressed
observed as well as simulated atmospheric data sets. Two distinct
approaches have been used in these studies: the episodic or
intermittent and the oscillatory or periodic. The intermittency
approach describes multiple-flow (or weather) regimes, their per-
sistence and recurrence, and the Markov chain of transitions
among them. The periodicity approach studies intraseasonal oscil-
lations, with periods of 15–70 days, and their predictability. We
review these two approaches, ‘‘particles’’ vs. ‘‘waves,’’ in the
quantum physics analogy alluded to in the title of this article,
discuss their complementarity, and outline unsolved problems.

The atmosphere is one of the most complex physical systems
known to humanity. In fact, we have about 105 observations

of the atmosphere every day, which makes it probably the
best-observed macroscopic physical system there is (1). De-
spite—or because of?—this detailed knowledge, our ability to
predict even large-scale atmospheric motions, as seen on a global
weather map or a hemispheric satellite picture, is limited to a few
days (2–4). The purpose of studying low-frequency, or intrasea-
sonal, atmospheric variability is to find out which features of this
variability are predictable for longer time spans, of weeks to
months.

Intraseasonal time scales range from the deterministic limit of
atmospheric predictability, of about 10 days, up to a season, say
100 days. These time scales occupy a window of overlap between
low-frequency variability intrinsic to the atmosphere and short
climatic time scales that also involve the upper ocean and
land-surface features. These time scales are of particular impor-
tance to extended-range weather prediction. There are two
complementary ways of describing low-frequency atmospheric
variability: (i) episodic, by means of multiple weather (5) or flow
(6) regimes, and (ii) oscillatory, by means of broad-peak slowly
modulated oscillations (ref. 7 and references therein).

The overall features of atmospheric low-frequency variability
(LFV) are described in Observational Characteristics of LFV.
Planetary flow regimes are characterized by their persistence,
recurrence, and the geographically fixed character of the flow
features. The duration of a flow pattern’s persistence and the
intervals from one occurrence of that pattern to another are
fairly irregular. The regimes’ observed characteristics and some
theories that attempt to explain them are reviewed in Planetary

Flow Regimes. In the very loose analogy of the title, these regimes
are the ‘‘particles’’ in the large-scale atmosphere’s phase space.
Extended-range prediction can benefit from a description and
explanation of the regimes by using the Markov chain of
transitions between them.

Intraseasonal oscillations refer to changes in the large-scale
flow that have a more or less repetitive, nearly periodic char-
acter. Such cyclic changes were reported first in the intensity and
the latitudinal position of the mid-latitude westerly (i.e., east-
ward) jet (8, 9). More recently, Madden and Julian (10, 11)
reported changes in tropical winds and cloudiness with a period
of 40–50 days. The efforts spent over the last two decades in
describing the latter tropical oscillations are reviewed in ref. 12,
and a brief review of theories to explain them is provided in ref.
13. We concentrate here on the mid-latitude oscillations that
exhibit shorter periods, of 15–30 days (14), and longer ones, of
60–70 days (15), as well as of 40–50 days.

The observed characteristics of these extratropical oscillations,
some theories that attempt to explain them, and the results of
simulating them by using general circulation models (GCMs) are
reviewed in Intraseasonal Oscillations: Their Theory and Simulation.
In the very loose analogy of the title, these are the ‘‘waves’’ that
share the atmosphere’s phase space with the ‘‘particles,’’ i.e., with
the regimes. The total fraction of large-scale atmospheric variance
that is captured by the relatively regular oscillations is fairly small,
of the order of 20–30%. Still, this fraction is rather predictable and
can thus help extended-range forecasting.

How can these two apparently contradictory descriptions of
LFV be reconciled? The regimes are points in phase space, i.e.,
multiple equilibria (16, 17) or, more precisely, relatively small
‘‘blotches’’ in phase space where the probability density function
(pdf) of finding an atmospheric map is fairly high. The oscilla-
tions are closed trajectories in phase space, i.e., limit cycles or,
more precisely, doubly or multiply connected strips in hy-
perspace where the pdf is comparatively high. Are the regimes
merely slow phases of the intraseasonal oscillations or do the
oscillations arise as instabilities of certain regimes? We discuss these
still wide-open questions and their implications for practi-
cal predictability computations (e.g., refs. 15 and 18) in Comple-
mentarity of the Two Approaches and Implications for Predictability.

Observational Characteristics of LFV
Atmospheric variability is highly irregular, as anybody who
follows the daily weather in mid-latitudes cannot fail to notice.
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Nonetheless, on time scales between a week and a season there
are certain large-scale flow patterns that appear repeatedly at
fixed geographical locations and persist beyond the lifetimes of
individual weather disturbances, i.e., beyond about a week.

It is central to long-range forecasting to understand these time
scales of variability, because 10–15 days also coincide with the
theoretical limit of atmospheric deterministic predictability.
Furthermore, the large horizontal scales of many thousands of
kilometers that characterize LFV exert an organizing influence
on weather-bringing disturbances. The underlying circulation
regimes play, therefore, a fundamental role in the study of
climate variability and predictability on interannual and even
longer time scales. Climatic variability may thus be closely
connected with changes in the prevalence of the atmosphere’s
intrinsic circulation regimes (see section 6.5 of ref. 4; ref. 19).

LFV represents, in fact, a very substantial fraction of the entire
atmospheric variability, as seen from Fig. 6, which is published
as supporting information on the PNAS web site, www.pnas.org.
Fig. 6a shows the total Northern Hemisphere (NH) rms variance
during the winter season; Fig. 6b shows LFV, obtained here by
low-pass filtering the record with a mid-power point at 10 days;
and Fig. 6c shows the synoptic-scale rms variance that captures
the major weather phenomena, concentrated in the 2.5–6-day
band. It is clear that the band-pass SD, which is plotted in Fig.
6c, is smaller by a factor of roughly 3 than the one associated with
the LFV (as plotted in Fig. 6b), and hence the weather variance
is smaller by an order of magnitude than the LFV variance.

There are three NH maxima in LFV (Fig. 6b); they are almost
equal in amplitude to those in total variance (Fig. 6a) and almost
precisely collocated with them. Two of these winter maxima
occur over the northeastern part of the two NH ocean basins,
Pacific and Atlantic, the third over the Siberian Arctic. The
maxima in the ‘‘weather band’’ occur slightly upstream of the
LFV maxima, mainly over the storm tracks off the east coasts of
North America and Asia.

By using increasingly extensive surface- and upper-air data sets,
the temporal and spatial characteristics of extratropical LFV have
been described in further detail. To do so, correlation and regres-
sion analysis of atmospheric fields has concentrated on sea-level
pressures and on the field that best describes upper-air behavior, the
geopotential height of the 500-hPa (same as 500-mb) pressure
surface. Wallace and Gutzler (20) have thus identified coherent
variations between widely separated regions of the globe. Following
Bjerknes (21), these are called ‘‘teleconnection patterns’’ and are

most easily described in terms of anomalies, i.e., differences be-
tween the instantaneous or mean-monthly map and the climato-
logical value of the field at a given location.

Some of these teleconnections, such as the Pacific–North-
American (PNA) pattern or the North-Atlantic Oscillation
(NAO) are now well known as dominant modes of LFV. Their
horizontal structures resemble wave trains with alternating high
and low values of height anomalies (e.g., the PNA) or are
characterized by north-south seesaws in sea-level pressure (e.g.,
the NAO). Their vertical structure tends to be ‘‘equivalent
barotropic’’ throughout the troposphere, with the same horizon-
tal pattern on all pressure surfaces, and amplitude that increases
with height to a maximum near the tropopause.

The three centers of high-amplitude LFV (Fig. 6b) have been
known since the 1950s to be regions of frequent ‘‘blocking’’ of the
zonal f low (22), characterized by strong and long-lived anticy-
clones near the surface. In the upper troposphere, a strong ridge
accompanies blocking, with the westerly jet displaced far toward
the pole. The intensity of NH LFV is much weaker in the
summertime (23). In the Southern Hemisphere (SH), which is
largely covered by oceans, there are much smaller geographical
and seasonal variations in LFV.

Persistent anomalies of LFV, in which the flow patterns differ
significantly from the normal climatological circulation and
remain stationary for more than a week, have been objectively
identified over the North Pacific and North Atlantic in the 1980s
(24, 25). Their onsets and breaks, on the other hand, are rather
abrupt. Within the last decade it has been demonstrated that
these persistent anomalies or ‘‘Grosswetterlagen’’ of synoptic
experience can be identified by examining the pdf distribution in
the atmosphere’s phase space (26–29). The resulting patterns
resemble those found previously by using correlation analysis.

In the following section, we present these planetary flow regimes
as they have been derived from atmospheric data. We discuss them
in terms of previous observational results, and interpret them by
using basic theoretical concepts of geophysical fluid dynamics.

Planetary Flow Regimes
Classification of Weather Maps. Data sets. Long upper-air data sets
with daily resolution are required to obtain statistically significant
results on the coarse-graining of the atmosphere’s phase space in
LFV. Until recently, many studies have used the NH 700-hPa
observations compiled at the National Oceanic and Atmospheric
Administration (NOAA) Climate Analysis Center, for the time

Table 1. Classification methods for weather maps

Approach Method Data sets Refs. Comments

Classification into regimes by position
Cluster analysis Categorical NH 25 Fuzzy

NH � sectorial 33 Hard (K � means)
Hierarchical NH � sectorial 26 3 NH clusters

PDF estimation Univariate NH 48 and 49 Bimodality
Multivariate NH 27 and 31 3 modes

NH � sectorial 28 Multimodal
29 3 NH clusters

Classification into regimes by persistence
Pattern correlations NH 81

SH 82 3 regimes
Minima of tendencies Models

Atl.–Eur. sector
6, 34, and 83
35 4 regimes

Transition probabilities
Counts Model & NH 25 Elementary
Monte Carlo NH & SH 54 Advanced

NH � sectorial 28 Advanced
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interval since 1949. The ‘‘reanalysis’’ projects at the U.S. National
Centers for Environmental Prediction (NCEP; ref. 30) and the
European Center for Medium-range Weather Forecasts
(ECMWF) have now produced global data sets that are 40-years-
long or longer, available at a large number of vertical levels, and
have higher horizontal resolutions. They use the numerical forecast
models’ dynamical consistency to supply any missing data and thus
provide objectively smoothed fields. To isolate LFV, the seasonal
cycle is usually removed by constructing a filtered data set that is
averaged over many decades. The anomalies so obtained are usually
low-pass filtered (as in Fig. 6) to remove variability with time scales
that are shorter than 10 days.

Methodology. A variety of methods that have been used to
classify weather maps are summarized in Table 1. In such a
classification, an individual atmospheric map is thought of as a
point in phase space. To achieve a reliable, statistically signifi-
cant classification, it is necessary to consider a low-dimensional
subspace of this phase space that still captures most of the
variance. The usual choice is to compute the analyzed record’s
empirical orthogonal functions, i.e., the eigenvectors of the
covariance (or correlation) matrix. The subspace chosen is
spanned by a few leading eigenvectors (25–29).

Many of the classification methods define the regimes as
classes of distinct atmospheric states that have a high probability
of occurrence—the blotches discussed in the introduction—and
are separated by regions of lower probability. Some of these
methods seek maxima of the pdf by using kernel density esti-
mation (19, 28) or more ad hoc methods (31). Each regime is
then formed by the points, or maps, that exceed a given
probability threshold in the neighborhood of a pdf maximum.
The number of pdf peaks depends on the kernel smoothing
parameter used, which can be determined objectively by using a
least-squares crossvalidation procedure (32).

Smyth et al. (29) have used a mixture model that approximates
the pdf by the sum of a small number of multivariate Gaussians.
In this case, the regimes are ‘‘fuzzy’’ in the sense that they
overlap, and that each particular daily weather map can be
assigned a probability of belonging to one or another regime.

Cluster analysis is a less ambitious approach that localizes high
concentrations of points, called clusters, but does not pretend to
estimate the pdf. There are two main types of clustering algo-
rithm: hierarchical and partitioning. In hierarchical algorithms,
one builds a classification tree iteratively, starting from single
data points and merging them into clusters according to a
similarity criterion. Cheng and Wallace (26) used Ward’s method
to do this. In partitioning algorithms, a prescribed number of
clusters is chosen, and data points are agglomerated around
kernels initially chosen from random seeds. The kernels are
iteratively modified so as to globally minimize the data scatter
about the kernels (33).

Some measure of persistence is usually built into the above
methods, which are based on frequency of occurrence, by using
low-pass filtered data. A second broad class of methods uses
quasi-stationarity explicitly. Here, the regimes are defined as
comprising states for which large-scale motion is slow in the
statistical sense. More precisely, one seeks the large-scale pat-
terns that have, on average over many realizations, a small time
derivative (6). This phase-space speed can be computed for maps
that do include synoptic-scale motions by a nonlinear equilibra-
tion technique (33–35).

The large number of different methods that have been used to
identify LFV regimes makes it possible to assess whether a
consensus has been reached on the existence, robustness, and
characteristics of these regimes. It is still somewhat controversial
to discuss LFV in terms of multiple regimes, but the studies cited
above over the past decade or so do provide a tentative
consensus.

To discuss the regimes themselves, it is important to make the

distinction between hemispheric and regional classifications.
The former assume that circulation patterns with hemispheric
coherence do exist or that regionally confined ones can be
identified from hemispheric data. The regional classifications
are motivated by evidence that the strongest patterns of NH LFV
are confined to either the Pacific–North-American or the
Atlantic-Eurasian sectors.

Hemispheric regimes. The most striking agreement between
the numerous classifications obtained so far is that between the
three hemispheric regimes of Cheng and Wallace (26), using
hierarchical clustering, and of Smyth et al. (29), based on their
Gaussian mixture model. Fig. 1 shows the centroids of the three
NH wintertime circulation regimes derived by using the latter
method: they are the PNA, an approximate inverse of this often
called the reverse PNA or RNA, and the blocked phase of the
NAO. This set seems therewith to be the minimal set of NH
regimes that is unequivocally supported by the data, such as
they are. The 500-hPa maps associated with the centroids of
the classification in (26) (not shown) are very similar to those in
Fig. 1.

All three circulation patterns in Fig. 1 are hemispheric in
extent, with features over both the Pacific and Atlantic sectors.
A zonally symmetric component is visible in Fig. 1 b and c; in
atmospheric and oceanic dynamics, one refers to axial symmetry
as zonal. This component has height anomalies of one sign in
high latitudes and predominantly of the opposite sign in mid-
latitudes. It is not clear at present whether this zonal symmetry
reflects a fundamental dynamical mode of the atmosphere—the
so-called ‘‘Arctic Oscillation’’ (refs. 36 and 37; see also the
North-South seesaw of ref. 25)—or a mere coincidence of two
separate sectorial patterns. One of these patterns involves,
largely but not exclusively, a seesaw between the Aleutian Low
and the ridge over western North America, the other between the
Icelandic Low and the Azores High (see also the discussion in
GCM Simulations and Their Validation about lack of synchro-
neity between the blocked and zonal phases of the 40-day
oscillation for the two NH ocean basins).

Fig. 1. Hemispheric regimes: anomaly maps of 700-hPa heights for the three
cluster centroids identified by a Gaussian mixture model. (a) PNA. (b) Reverse
PNA (RNA). (c) Blocked-NAO. Contour interval: 15 m. [Reproduced with per-
mission from ref. 29 (Copyright 1999, American Meteorological Society).]
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In the SH, the zonally symmetric component of flow variability
is much stronger, because of the absence of large landmasses and
major mountain ranges. The two main regimes identified in all
seasons consist of an amplification and reduction, respectively,
of the strength of the westerly winds in mid-latitudes. This
change in intensity is also associated with a meridional displace-
ment of the jet (18, 38).

Regional classifications. Many of the circulation features typified
by Fig. 1 have a strongly regional nature. This fact has lead several
investigators to focus on the Pacific–North-American and North-
Atlantic–European sectors separately. When applying the Gaussian
mixture model of Smyth et al. (29), as well as the hierarchical
clustering of Cheng and Wallace (26), to each sector in turn two
regimes are found: they consist of opposing polarities of the PNA
and NAO patterns, respectively (cf. Fig. 1 a and c).

These sectorial analyses reinforce the notion of a single
dominant mode of variability in each sector. The Gaussian
mixture model, however, is probably overly conservative in this
respect. Studies based on detecting inhomogeneities in the pdf
have identified up to six or seven regimes in each sector (28, 33).
This finer structure in the atmosphere’s phase space has been
identified only at the cost of lower statistical confidence. None-
theless, it may be crucial to understanding climate anomalies on
longer time scales. El Niño events in the Tropical Pacific tend to
be associated with a circulation pattern that bears some simi-
larity with the PNA, but is quite distinct from it—the so-called
Tropical Northern-Hemisphere pattern (TNH; ref. 23). La Niña
events, however, tend to be accompanied by an increased
frequency of occurrence of patterns that are quite different from
the opposite polarity of the TNH (39). This lack of mirror
symmetry in the mid-latitude response to tropical heating indi-
cates the presence of substantial nonlinearities in LFV.

Interpretation of the Regimes. Rossby wave propagation and inter-
ference. The slowly traveling, large-scale wave patterns that were
first associated with weather phenomena in the 1930s are
solutions of the partial differential equation for the conservation
of potential vorticity q along a particle trajectory (40, 41). For the
purposes of this expository review, q can be defined as the
vorticity � of a column of fluid divided by its height h, i.e., q �
��h. Conservation of q thus means, for instance, that a column
of fluid’s anti-clockwise rotation (defined as � � 0) will slow
down (i.e., � decreases to smaller positive values) as the column
moves over a mountain range (i.e., h � 0 decreases). This type
of vorticity balance leads to slow Rossby waves (8, 42) that
propagate westward with respect to the mean westerly jet.

One view of persistent anomalies in mid-latitude atmospheric
flows is that they result simply from the coincidental slowing
down or linear interference of such Rossby waves (43, 44).
Another view is that a standing wave induced by topography can
lead to a resonant interaction with two separate Rossby waves of
distinct wavenumbers and thus produce a long-lived resonant
wave triad (section 6.2 of ref. 4; ref. 45). Neither one of these
views provides an explanation of the observed clustering of
persistent anomalies into distinct f low regimes. But the second
one does suggest the more radically nonlinear theory described
in the next subsection.

Multiple equilibria. It was Rossby (16) who first mentioned
multiple equilibria as a possible explanation of preferred plan-
etary flow patterns in the atmosphere. Rossby (46) then drew an
analogy between such equilibria and hydraulic jumps and for-
mulated some simple models in which similar transitions be-
tween faster and slower atmospheric flows could occur.

Charney and colleagues (17, 47) took a major step in formu-
lating a self-consistent atmospheric model for multiple equilibria
and connecting it to observations of blocked and zonal f low.
They used a highly idealized barotropic, i.e., single-layer, model
to study the interaction between a zonal f low and simple

topography with zonal wavenumber 2. Their model exhibits two
stable equilibria for the same strength of the prescribed zonal
forcing, which represents the strength of the pole to equator
temperature contrast.

Fig. 2a shows the model’s bifurcation diagram, with the
strength �A of the zonal jet in the model’s steady-state solutions
plotted against the corresponding strength �A* of the forcing.
The two stable equilibria—marked Z and R�—are associated
with ‘‘zonal’’ and ‘‘blocked’’ f low, respectively, as illustrated in
Fig. 2b. The near-zonal solution is close in amplitude and spatial
pattern to the forcing jet and is influenced very little by the
topography, whereas the blocked solution is strongly affected by

Fig. 2. Multiple equilibria of a three-mode quasi-geostrophic model with
simplified forcing and topography. (a) Bifurcation diagram showing model
response to changes in forcing; see text for the explanation of abscissa and
ordinate. The ‘‘S’’-shaped bifurcation curve is typical of two back to back
saddle-node bifurcations that give rise to two stable solution branches (solid)
separated by an unstable one (dashed). (b) Flow patterns of the zonal (Upper)
and blocked (Lower) equilibria, corresponding to the two stable equilibria Z
and R� (after Charney and DeVore, 1979). [Reproduced with permission from
ref. 4 (Copyright 1987, Springer, New York).]
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it. In the blocked-flow solution, a high-amplitude ridge is located
upstream of the ‘‘mountains,’’ similar to the situation during
typical observed blocks over the North Pacific and the western
U.S. This configuration, with a negative zonal pressure gradient
on the windward slope of the mountains, corresponds to a
negative mountain torque on the atmosphere.

Benzi et al. (48) and Hansen and Sutera (49) found evidence
of bimodality in a composite index of wave amplitude in the NH
mid-latitude flow. Although the statistical significance and
robustness of their findings have been subject to criticism (50),
direct confrontation of theoretical bimodality with observations
has clearly stimulated LFV research during the 1980s.

Multiple regimes and ‘‘ghost equilibria.’’ The main contribution
of Charney and associates (17, 47) to explaining the existence
and persistence of blocked flows was to move away from dynamic
meteorology’s prevailing paradigm throughout the 1950s and
1960s. In this paradigm, all atmospheric motions were explained
as linear perturbations of purely zonal f low, seen as the unique
equilibrium of the governing equations. The observations, as
summarized in Observational Characteristics of LFV and the
present section, show, however, that the atmosphere does not
reside in two equilibria, zonal and blocked, any more than in just
one (see also section 6.3 of ref. 4).

The next step on the road to a satisfactory explanation of the
three or more NH regimes and several sectorial regimes is to
show how fuzzy clusters might arise from the equations of
motion, along with the transitions between them. Such a step was
taken, independently, in the Ph.D. theses of B. Legras at the
Univ. of Paris VI and B. Reinhold at the Massachusetts Institute
of Technology (Cambridge, MA). By using a two-layer atmo-
spheric model with Cartesian channel geometry, Reinhold and
Pierrehumbert (5) showed that two weather regimes with per-
sistent anomalies of varying duration did arise.

Legras and Ghil (6) used a single-layer model on the sphere
in which they connected two zonal and one blocked regime to the
model’s bifurcation diagram. They showed that the flow simu-
lations obtained for realistic parameter values were quite irreg-
ular but exhibited persistent sequences. The flow patterns of
these sequences resembled those of the model equilibria, al-
though these three equilibria were no longer stable at the
parameter values of interest. Because of their role in generating
such regime-like persistent flow patterns, these unstable fixed
points were called ‘‘ghost’’ equilibria: they are dimly visible
through the observed, irregular flow (section 6.4 of ref. 4).

Among the instabilities that lead in this model from stable
equilibria to irregular flow, the oscillatory instability of the
blocked equilibrium plays a special role. We shall return to it in
Extratropical Oscillations: Observations and Theory.

Markov Chains. Transition matrices. A reasonable classification of
low-pass filtered flow maps into discrete regimes provides only
a static view of LFV. The next step is to study the transitions
between these regimes over time. A matrix of probabilities for
transitions from regime i to regime j is constructed by simply
counting the transitions occurring in the data set. This yields an
estimated set of conditional probabilities, in line with long-range
forecasting experience (51, 52) and the physical intuition that
certain pathways of transition are more probable than others.

One kinematic approach to LFV is based on the Markov chain
of these transitions. In this approach, knowledge of the system’s
present state is put to use to make a forecast, rather than using only
unconditional probabilities. The Markov-chain view of LFV and,
hence, long-range forecasting, is based on the existence of multiple
regimes, the expected time of residence in each regime, and the
probabilities of transition from one regime to another (Fig. 3).

Statistical significance. Once a transition matrix has been
constructed, it is crucial to properly assess the statistical signif-
icance of its entries. Asymptotic methods to do so, based on

parameter-dependent probability models, have been known for
some time (53). To be applied reliably, however, these methods
require a much larger number of data points than those available
in observed data sets. To circumvent this difficulty, Vautard et
al. (54) designed a nonparametric method based on Monte Carlo
simulation. In it, the integer-valued time series of regime occur-
rences is tested against a large number of surrogate series with
random transitions. To account approximately for the number of
events in each regime and their average duration, the sequence
of observed events is paired with their succeeding transition
intervals and shuffled 1,000 times. The 95th percentile is then
easily computed from this shuffle (see again Table 1).

Kimoto and Ghil (28) used this method to identify a chain of
highly significant regime transitions over the Pacific. This chain
involves a vacillation between zonal and strongly meandering
configurations of the Pacific westerly jet.

Starting with the Markov chain for NH hemispheric regimes
by Mo and Ghil (25), it was consistently found that transitions
between regimes tend to avoid, rather than favor, passages
through the climatological mean (see Fig. 3). This ‘‘kinematic’’
result is more consistent with nonlinear explanations of the
regimes (see Multiple Equilibria) than with the simple phase
reversal suggested by linear theories (see Rossby Wave Propaga-
tion and Interference). The connection between the Markov-
chain kinematics of LFV and the oscillatory view will be
discussed in Complementarity of the Two Approaches and Impli-
cations for Predictability.

Intraseasonal Oscillations: Their Theory and Simulation
Extratropical Oscillations: Observations and Theory. Oscillations in
atmospheric angular momentum (AAM). Variations in global
AAM and in the length of day are highly correlated with each
other on intraseasonal time scales. Both quantities exhibit spec-

Fig. 3. Schematic Markov chain with three regimes, B, C, and Z. (a) Some
preferential paths between pairs of regimes are shown, along with the
corresponding transition probabilities, for instance pZB. (b and c) The distri-
bution of residence times in log–linear coordinates differs from the straight
line associated with a red-noise process; the mean residence time for each
regime is denoted by � (after Ghil, ref. 75).
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tral peaks with periods near 40 and 50 days (55), among others.
Essentially, the Earth-atmosphere system is closed with respect
to angular momentum exchanges on this time scale, except for
the well known tidal effects of the Sun and Moon, which can be
easily computed and eliminated. Once this is done, what remains
is the following: when the mid-latitude westerly winds pick up or
the tropical trade winds slow down, the solid earth slows down
in its rotation, and the length of day increases; hence, the high
positive correlation between the latter and AAM.

Power spectra of observed AAM variance are shown in Fig. 7,
split into three latitude bands [(i) NH extratropics (26°N–90°N);
(ii) Tropics (20°S–20°N); and (iii) SH extratropics (90°S–26°N)],
which is published as supporting information on the PNAS web
site. It is clear from the figure that the 50-day peak is largely
associated with AAM fluctuations in the tropics, which domi-
nate the global AAM. The 40-day peak, however, seems to be
associated primarily with variations in the strength of the mid-
latitude westerlies, particularly in the NH. Indeed, the amplitude
of the 40-day oscillation in zonal winds is known to be largest
during boreal winter, when the winds are strongest in the NH
(56–59), and we shall thus concentrate here on the longer data
sets and more detailed modeling studies for the NH.

The extent to which the tropical and NH oscillations are inde-
pendent phenomena or influence each other is still the subject of
active debate. Madden and Julian (10, 11) discovered the tropical
oscillation in zonal winds and tropical convection over the equa-
torial Pacific, although its origins are still not well understood (13).
Extratropical oscillations have been found in observed NH plane-
tary-scale circulation anomalies with periods of 20–70 days (15, 57,
60, 61). There is some evidence that the mid-latitude circulation
over the North Pacific is correlated to convective anomalies asso-
ciated with the tropical oscillation (56, 62, 63). On the other hand,
Dickey et al. (55) and Ghil and Mo (57) found the extratropical
mode to be often independent of, and sometimes to lead, the
tropical one. Upper-level potential vorticity anomalies are known to
propagate from the mid-latitudes into the tropics; this propagation
is associated with NW–SE tilting troughs (64). They are accompa-
nied by cold surges and can cause episodes of intense tropical
convection that seem to be related to the intraseasonal oscillation
in the tropics (65, 66).

Basic theoretical results. We outline here how a hierarchy of
models can be used to formulate and test the hypothesis that the
40-day oscillation is an intrinsic mode of the NH extratropics,
associated with the interaction between the jet stream and mid-
latitude mountain ranges. The rudiments of this hypothesis origi-
nate in the highly idealized barotropic model of Charney and
DeVore (17), which we discussed in Interpretation of the Regimes.

More complex models—both barotropic (i.e., single-layer) and
baroclinic (i.e., multilayer), with more spatial degrees of freedom
than the Charney and DeVore (17) model—exhibit multiple flow
patterns that are similar to those found in Fig. 2b above, for realistic
values of the forcing. The crucial difference is that the equilibria
found in the more complex models are no longer stable, and the
system oscillates around the blocked solution or fluctuates between
the zonal and blocked solutions in an irregular way (4, 6).

A sample bifurcation diagram from such a model is shown in
Fig. 8, which is published as supporting information on the PNAS
web site (see also the discussion in sections 6.4 and 6.5 of ref. 4).
In this diagram, the branch of blocked equilibria is destabilized
by a Hopf bifurcation as the intensity of the forcing jet increases.
The limit cycle that arises from this bifurcation has a period of
roughly 40 days.

Jin and Ghil (67) showed that, when a sufficiently realistic
meridional structure of the solutions’ zonal jet is allowed, the back
to back saddle-node bifurcations of Fig. 2a are indeed replaced by
a Hopf bifurcation and thus transition to finite-amplitude periodic
solutions can occur. Eigenanalyses of the unstable equilibria in a
barotropic model with higher horizontal resolution, as well as its

time-dependent solutions, indicate oscillatory instabilities with in-
traseasonal (35–50 days) and biweekly (10–15 days) time scales
(58). Floquet analysis of this model’s limit cycles (59) confirms that
the 40-day oscillations that arise in it by oscillatory topographic
instability are stronger in winter than in summer, like the NH
observed oscillations (57, 68).

GCM Simulations and Their Validation. Atmospheric GCMs provide
a powerful tool for testing the theory of NH extratropical
oscillations developed in simpler models. Marcus et al. (69, 70)
made a 3-year perpetual-January simulation with a version of the
Univ. of California, Los Angeles, GCM that produces no
self-sustained Madden–Julian oscillation in the tropics. A robust
40-day oscillation in AAM is found to arise in the model’s NH
extratropics when standard topography is present. Three shorter
runs with no topography produced no intraseasonal oscillation;
this result is consistent with a topographic origin for the NH
extratropical oscillation in the standard model. The spatial
structure of the circulation anomalies associated with the mod-
el’s extratropical oscillation is shown in Fig. 4, in terms of 500-mb
geopotential height composites during the peak (a) and quadra-
ture (b) phase of the AAM cycle.

The oscillation is dominated by a standing wavenumber-2
pattern, which undergoes tilted-trough vacillation. High values of
AAM are associated with low 500-mb heights over the northeast
Pacific and the North Atlantic oceans (Fig. 4a), and vice versa.
These flow patterns resemble the configurations seen in the
Charney and DeVore (17) simple model (see Fig. 2b here). The
NE–SW tilting phase in Fig. 4a and NW–SE tilting phase in Fig.
4b of the GCM are strongly reminiscent of the extremes and
intermediate phases of the 40-day oscillation that arises by Hopf
bifurcation from the blocked equilibrium in the Legras and Ghil

Fig. 4. Intraseasonal oscillations in a GCM: composite 500-mb maps from the
perpetual-January GCM experiment of Marcus et al. (70). (a) For days on which
the 36–60 day NH extratropical AAM exceeded 1.5 times its rms value; maps for
days with a negative (positive) anomaly were added with a positive (negative)
sign. (b) Constructed from maps taken 12 days earlier than those included in a.
Contour interval is 20 m, and negative contours are dashed. [Reproduced with
permission from ref. 70 (Copyright 1996, American Meteorological Society).]

2498 � www.pnas.org�cgi�doi�10.1073�pnas.012580899 Ghil and Robertson



(6) model (see Fig. 8 here for the bifurcation; spatio-temporal
patterns of the limit cycle in that model were analyzed by M.
Kimoto, personal communication).

The successive phases of the 28–72-day band-passed fluctu-
ations in 250-mb streamfunction anomalies analyzed by Weick-
mann et al. (ref. 56; see figures 7 and 9 a–d there) also exhibit
good agreement with the evolution of the 40-day oscillation in
the work of Marcus and colleagues (71) with the Univ. of
California, Los Angeles, atmospheric GCM [see ref. 71 for a
video clip of the evolution of 500-mb heights, 250-mb stream-
function fields, and sea-level pressures during the atmospheric
40-day oscillation of the GCM (available also from M.G. upon
request)]. The height pattern in Fig. 4a is very similar, further-
more, to the extreme-phase patterns obtained from observed
data by correlating the 10-day low-pass filtered wintertime
500-mb height fields with the sum of the mountain torques
computed over the Rockies, Himalayas, and Greenland (14).

In the GCM, the two centers of action, over the North Pacific and
North Atlantic oceans, have slightly different frequencies; this gives
rise to a long-period modulation (of about 300 days) in the
amplitude of the intraseasonal oscillation, similar to that observed
by Penland et al. (72) in globally averaged AAM time series. Global
correlations with the leading empirical orthogonal functions of the
NH extratropical 500-mb height field show NE–SW teleconnection
patterns extending into the tropics, in particular into the Indian
Ocean, similar to those found in observational studies (56, 73).

The model’s zonally averaged latent heating in the tropics
exhibits no intraseasonal periodicity, but a nearly 40-day oscil-
lation is found in cumulus precipitation over the western Indian
Ocean, which suggests an extratropical trigger of the 50-day
oscillation in the tropics. Madden and Speth (see figure 10 of ref.
74) find that (mostly extratropical) mountain torques do lead
(mostly tropical) friction torques and eastward-moving convec-
tive systems during the 1987–1988 winter singled out already by
Dickey et al. (see figure 16 of ref. 55) for the striking intensity
of its episodes of intraseasonal variability.

The careful analysis of perpetual-January runs with an atmo-
spheric GCM thus confirms, on the one hand, the topographic
origin of the NH 40-day oscillation, originally suggested by
simple- and intermediate-model studies (6, 58, 59, 67, 75). On the
other, it provides greater realism and spatio-temporal detail,
permitting therewith a much better confrontation of the theory
with the existing observations (55, 57).

Complementarity of the Two Approaches and Implications for
Predictability
We have seen that there is considerable progress in describing
and explaining the coarse-grained structure of the large-scale
atmosphere’s phase space. The existence of multiple flow, or
weather, regimes is observationally well established (see Classi-
fication of Weather Maps). The preferential paths between these
regimes are less firmly documented, but are also starting to gain
credence and detail (see Markov Chains). The explanation of the
regimes (see Interpretation of the Regimes) and of the Markov
chains between them requires further study across a hierarchy of
models and confrontation with the observations.

Among the various intraseasonal oscillations, the 40-day os-
cillation in mid-latitude NH flows has been used in Intraseasonal
Oscillations: Their Theory and Simulation here for illustration
purposes. A fairly complete set of observational studies, as well
as research across a hierarchy of models—from the simplest
analytical models (67), through intermediate models of increas-
ing resolution (6, 58, 59, 75, 76), all of the way to GCMs (69,
70)—has produced a consistent view of the decisive role of
topography in this oscillation.

Still, we have not reached a convincing answer to the question
asked at the end of the introduction: Are the regimes merely slow
phases of the intraseasonal oscillations or do the oscillations

arise as instabilities of certain regimes? There is theoretical
evidence that points to the 40-day oscillation as arising from a
Hopf bifurcation off the blocking flow (6, 75). On the other
hand, observational studies have produced closed paths within a
Markov chain whose states resemble well known phases of
certain intraseasonal oscillations (28). Multiple regimes and
intraseasonal oscillations can coexist in a two-layer model on the
sphere within the scenario of ‘‘chaotic itinerancy’’ (77, 78).

There is, in fact, mounting evidence that the time evolution of
intraseasonal oscillations is related to regime occurrence. Plaut
and Vautard (15) showed that the occurrence of an Atlantic
blocked-flow regime is strongly favored, although not systemat-
ically caused, by particular phases of the 30–35-day oscillation
they described over the Atlantic. Koo (18) found analogous
results for the zonal-f low regimes of the SH.

These relationships imply potential predictability of the weather
regimes by taking the current phase of the corresponding oscillation
as a predictor. This idea is illustrated in Fig. 5 for the SH 70-day
oscillation as a predictor of the low-latitude regime, in which the SH
westerly jet is displaced equatorward. Given that the current phase
of the 70-day oscillation is in phase-category 3 (of 8), the figure
shows that the probability of occurrence of the low-latitude regime
70 days later is more than 50% higher than the unconditional
climatological forecast. Similar curves can be constructed for each
initial-phase category in turn (see also ref. 15).

We conclude that an in-depth answer to the basic question
about waves and particles in the atmosphere’s phase space can
greatly help increase the accuracy and reliability of extended-
range forecasts. Studies aimed at answering this question can
thus usefully complement the approach of improving numerical
weather prediction models by increasing their accuracy and the
details of the physical processes they include (79, 80).

We thank numerous colleagues with whom we have discussed the ideas
presented here, as well as the organizers of the Sackler Colloquium on
‘‘Self-Organized Complexity in the Physical, Biological, and Social
Sciences.’’ The stimulating atmosphere of the colloquium and the
patience and insistence of Don Turcotte, in particular, are largely to
blame for the write-up of this somewhat provocative piece. S. T.
Hernandez has greatly helped with the text and references and J. E.
Meyerson with the figures. Our research was supported by National
Science Foundation Grant ATM00-82131 (to M.G.) and Department of
Energy Grant DE-FG03-98ER62515 (to A.W.R.).

Fig. 5. Enhanced regime predictability: conditional probability of occur-
rence of the SH low-latitude regime events, taking the phase category of the
SH 70-day oscillation as a predictor (thin solid curve with filled circles), as a
function of lead time. The heavy horizontal dashed line indicates climatolog-
ical probability, and the heavy solid curve denotes the persistence forecast.
[Reproduced with permission from ref. 18 (Copyright 2001).]
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