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Threshold systems are known to be some of the most important
nonlinear self-organizing systems in nature, including networks of
earthquake faults, neural networks, superconductors and semi-
conductors, and the World Wide Web, as well as political, social,
and ecological systems. All of these systems have dynamics that are
strongly correlated in space and time, and all typically display a
multiplicity of spatial and temporal scales. Here we discuss the
physics of self-organization in earthquake threshold systems at
two distinct scales: (i) The ‘‘microscopic’’ laboratory scale, in which
consideration of results from simulations leads to dynamical equa-
tions that can be used to derive the results obtained from sliding
friction experiments, and (ii) the ‘‘macroscopic’’ earthquake fault-
system scale, in which the physics of strongly correlated earth-
quake fault systems can be understood by using time-dependent
state vectors defined in a Hilbert space of eigenstates, similar in
many respects to the mathematics of quantum mechanics. In all of
these systems, long-range interactions induce the existence of
locally ergodic dynamics. The existence of dissipative effects leads
to the appearance of a ‘‘leaky threshold’’ dynamics, equivalent to
a new scaling field that controls the size of nucleation events
relative to the size of background fluctuations. At the macroscopic
earthquake fault-system scale, these ideas show considerable
promise as a means of forecasting future earthquake activity.

Driven nonlinear threshold systems are composed of inter-
acting spatial networks of nonlinear ‘‘cells,’’ each having (i)

one or more inputs, (ii) an internal state variable �(t) that
evolves in time in response to inputs, and (iii) one or more
outputs. In general, the inputs and outputs of a cell are con-
nected to other cells by a network of interactions and to an
external source for �. Threshold dynamics arises when a cell is
subjected to a persistent external forcing that increases the value
of � through time until a predefined state threshold �F is
reached, at which the cell ‘‘fires’’ or ‘‘fails,’’ thereby reducing �
to a residual value �R (Fig. 1). Thresholds, residual stresses, and
internal states may be modified by the presence of quenched
disorder, and the dynamics also may be modified by the presence
of noise or annealed disorder. Interactions between cells, which
lead to dynamical self-organization in these systems, may be
excitatory (positive) in the sense that failure of connected
neighbors brings a cell closer to firing, or inhibiting (negative) in
the opposite case. Examples of such systems include earthquakes
(1–3), neural networks (4, 5), depinning transitions in charge
density waves and superconductors (6), magnetized domains in
ferromagnets (7), avalanches in sandpiles (8), and domain
rearrangements in flowing foams (9).

In recent years, earthquakes and frictional sliding have
emerged as the paradigm of self-organizing driven threshold
systems. Beginning with the Burridge–Knopoff (BK) slider block
model (10), simulation studies of driven threshold systems have
been carried out in which each threshold ‘‘cell’’ is represented by
a block sliding on a frictional surface. Physically, these blocks
represent the sticking points, or asperities, on the fault surface.
All blocks are connected to a loader plate by a spring having
spring constant KL. In addition, each block is connected to q
other blocks by coupling springs, each spring having constant
KC�q. Thus the network of coupling springs represents the
network of inputs and outputs. For these models, the state
variable � represents the shear stress that builds up until the
static friction stress reaches the failure threshold �F. Sliding of
each block commences at the threshold and continues until the
block stress is reduced to the kinetic friction stress �R. During the
sliding process, stress is transmitted from the sliding block(s) to
other blocks by coupling springs. Because the BK model repre-
sents a planar fault, all interblock interactions are exciting,
meaning that KC � 0 (inhibiting interactions would have KC �
0). Sliding of a given block then increases the stress on other
blocks to which it is coupled, and therefore an avalanche of
failing blocks may be initiated by a single unstable block. The
avalanche of failing blocks represents an earthquake in the
model. Whereas the original BK model specified massive blocks
with inertial dynamics, recent models are more commonly of the
stochastic cellular automaton type (11, 12), in which the sliding
block travels a distance (� � �R)�K � W, where K � KL � KC,
and W is a random number representing random overshoot or
undershoot during the sliding process (13).

We are particularly interested in the physics of self-organizing
processes in mean field threshold systems (13–16), which in the
case of the slider block model is described by the condition qKC
3 �. In the mean field regime, the range of interaction becomes
large, leading to damping of the fluctuations and the appearance
of a mean field spinodal, the classical limit of stability of a
spatially extended system (17, 18). Examined in this limit, driven
threshold systems appear to be locally ergodic and display
equilibrium behavior when driven at a uniform rate. After the
initial discovery in 1995 (13) that driven mean field slider block
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systems with microscopic noise display equilibrium properties,
other studies have confirmed local ergodicity and the existence
of Boltzmann fluctuations in these and other systems (14, 16,
19–23). Thus the origin of the physics of scaling, critical phe-
nomena, and nucleation appears to lie in the ergodic properties
of these mean field systems. Further studies have shown that
mean field and near-mean field systems are also associated with
the appearance of an energy landscape (16, 24), similar to other
equilibrium systems (25).

To summarize our results: The observable properties of self-
organizing, strongly correlated, near-mean field-driven thresh-
old systems arise from the underlying locally ergodic dynamics.
The corresponding appearance of a mean field spinodal leads to
a general coarse-grained equation for the dynamics of leaky
threshold systems that applies, for example, to both earthquake
fault systems and neural networks, with appropriate definitions
of the various terms. At the laboratory (‘‘microscopic’’) scale, we
can use these ideas to predict the form of the sliding friction
equations that have been empirically observed in a number of
laboratory studies. At the (‘‘macroscopic’’) field scale, we can
also use these ideas to formulate methods that show considerable
promise for earthquake forecasting and prediction. The self-
organizing dynamics on the energy landscapes in these systems
thus arises from the strong correlations and mean field nature of
the physics.

Spinodal Equations
Consider the d � 2 mean field slider block system described
above, in which each block is connected to q other blocks with
springs having constants KC�q. Each block is also connected to
a loader plate translating at an externally imposed load velocity
V by a spring with constant KL. The coarse-grained dynamical
equation is (16):

���x, t�
�t

� KLV � f 	��x, t�, V�t�
 � ��x, t�. [1]

As described in refs. 14–16, �(x, t) is the coarse-grained stress
within a volume of q blocks centered at x, and time is coarse-
grained over a temporal window centered at t whose duration is
roughly a few tenths of percent of the time interval between slips
for an average block. It can be seen that Eq. 1 expresses the

balance between the rate KLV at which stress is accumulated at
x by the loader plate motion and the rate f(�(x, t), V) at which
stress is dissipated by the sliding blocks. �(x, t) is a stochastic
noise term. Denoting the spatial average over the sliding surface
by � �, we define ��(x, t)� � �(t). Note that the sliding velocity
of blocks across the surface is u(x, t), with spatial average u(t) �
�u(x, t)� � � �s(x, t)���t � ds(t)�dt, where s(x, t) is the
coarse-grained slip on the surface at (x, t), and in general, u 

V. f(�(x, t), V) is a general functional of {�(x, t), V} that
depends also on �F, �R, as well as on a thermalizing noise
amplitude �. In view of the equations described in ref. 16, we
expect a rather weak dependence of f(�(x, t), V(t)) on V. Indeed,
laboratory experiments at both the atomic (26) and the labora-
tory scale (27–33) indicate a dependence of stress � � log V.

Mean Field and Thermodynamics
For the most part, we are interested here in modeling laboratory
experiments carried out on elastically stiff, strongly correlated
samples that are often viewed as lumped parameters. Thus we
take qKC 3 � (16) and in addition use an equation describing
the elasticity of the loader springs:

���t�
�t

� KL�V�t� � u�t��. [2]

In the mean field limit, the noise term is suppressed in Eq. 1,
which then becomes:

���t�
�t

� KLV � f 	��t�, V�t�
 [3]

Combining Eqs. 2 and 3, we obtain:

KLu � f 	�, V
. [4]

Eq. 4 can be viewed as a thermodynamic equation of state for the
contact zone. In the laboratory experiments on rate-and-state
friction discussed below, the contact zone is defined as the
volume of the sample that is spanned by the displacement gauges.

Fig. 2a is an illustration of generic example of f(�, V),
assuming steady-state conditions V � constant, and small noise
level ��1 (‘‘low temperature’’). The letters O, Q, S define the
intersection of KLV with the curve f(�, V). f(�, V) has the typical
Van der Waals loop structure, in which there are two extrema
(spinodals), indicated by the dots at P and R. In this particular
case, the Maxwell velocity VM is shown (dashed line), corre-
sponding to the rate of stress supply KLVM that defines the two
equal areas OPQ and QRS. The steady-state solution to Eq. 3
can be obtained graphically from Fig. 2a as the intersection of
the line labeled KLV with the curve f(�, V) (which in this case
is actually f(�, VM). It can be seen that there are three possible
solutions: (i) a low-stress region having positive slope from N to
P associated with either a stable or metastable phase; (ii) an
intermediate stress region having negative slope from P to R that
is always associated with an unstable phase; and (iii) a high-stress
region having positive slope from R to T that is associated with
either a stable or metastable phase. At low values of V � VM, the
branch NO would be stable, whereas the branch ST would be
metastable. At high values of V � VM, the branch NO would be
metastable, whereas the branch ST would be stable. Observing
the high-stress phase as the stable phase is difficult, but it can be
seen under the proper conditions (34).

Leaky Threshold Equation
The leaky threshold equation for a single sliding block is
obtained by expanding f(�(t), V(t)) as a power series in �(t),
setting V � constant, and parameterizing the threshold insta-
bility by a Dirac � function. Thus we have:

Fig. 1. Behavior of the state variable � of a generic threshold unit as a
function of time under a constant load rate. Both leaky (	 � 0) and nonleaky
(	 � 0) behavior is shown. (Upper) State � vs. time. (Lower) Rate of change of
state vs. time.
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u�t� �
f 	��t�, V


KL
� ���t� � �R

KL ��	 � �
k

��t � tF,k�� , [5]

where tF,k is any of the k times defined by the condition �(tF,k) �
�F. When 	 � 0, one has a pure, sharp threshold equation. The
presence of nonzero 	 means, in the case of friction, that there
exists stable aseismic slip preceding the instability at t � tF. Such
slip has often been observed in laboratory friction experiments
(Fig. 1), modifying the sawtooth form of the data for stress
plotted against slip, to produce a concave-down curvature (29).
An equation of this type was first proposed in ref. 35 to describe
the dynamics of an integrate-and-fire neuron. In that system,
electric current replaces the stress variable.

Under the action of the leaky dynamics in Eq. 5, we can show
that variations in stress in a slider block system are progressively
reduced (stress-smoothing) if 	 � 0, and progressively increased
(stress-roughening) if 	 � 0. Consider two slider blocks, con-
nected to each other by a coupling spring KC, and each con-
nected to the loader plate by means of a loader spring KL.
Denoting the slip and stress of block 1 by s1, �1, the equations
for block 1 are then:

u1 �
ds1

dt
�

� � �R

�KL � KC�
	 [6]

�1 � KL�VL t � s1� � KC�s2 � s1�. [7]

An analogous set of equations holds for block 2. If the difference
in stress at time t � 0 is given by ��(0) � �2(0) � �1(0), then
at a time t later:

���t� � ���0�e�
t, where 
 � 	�KL � 2KC

KL � KC
� [8]

From Eq. 5, it can be seen that 	 is a thermodynamic derivative:

	 '
�f
��
	

v
. [9]

The slope 	 of the f–� curve determines whether stress smooth-
ing or stress roughening occurs under the leaky dynamics. For
general three-dimensional fault network models, both stress
smoothing and stress roughening should occur, as well as the
possibility of smoothing-to-roughening transitions. Data from
laboratory experiments on sliding granite (29) indicate that 	 �
0.1�TR, where TR is the recurrence interval for unstable slip.

Rate-and-State Equations
Using the general form of the single block, mean field equation
KL u � f(�(t), V(t)) in Eq. 4, we can derive the general form of
rate-and-state (rate–state) friction equations observed in labo-
ratory experiments (27–33) and put a clear physical meaning to
the various terms in the equations. In these experiments, a very
stiff frictional apparatus drives sliding across a contact zone of
thickness H between two rough surfaces. The elastic stiffness of
the machine Kmach3 � allows us to assume that the load velocity
V can be exactly prescribed, and that the measured stress in the
elastic column �E is the same as the friction stress, thus � � �E.
The state of slip across the contact zone is monitored by a strain
gauge, which is connected to a servomechanism to ensure that
Kmach 3 �. In these experiments, the load velocity is suddenly
stepped from V1 to V, and the evolution of the friction stress �
is observed to change according to (28, 29):

� � �1 � A Log�V
V1
� � B� [10]

d�

dt
� �

V1

L1

� � Log�V

V1
��. [11]

The parameters A, B, and L1 are determined by empirical fits
to the laboratory data. L1 is the only parameter with a clear
physical interpretation; it is a length scale over which the stress
evolves from �1 to � after the velocity step. � is a ‘‘state variable,’’
whose physical meaning is controversial (27–33).

It is known that Eqs. 10 and 11 are strictly accurate only for
small velocity steps, �(V � V1)/V1� � 1, and that A is relatively
independent of velocity, but that B itself depends on velocity
(30), B � Log V. Data also indicate that with increase in stress,
(A–B), changes sign from negative to positive determined by a
characteristic load velocity V. In this context, negative (A–B)
means decreasing stress with increasing V, whereas positive
(A–B) means increasing stress with increasing V.

As described above, the rate-and-state laboratory experiments
are usually conducted by using a servomechanism that keeps the
sliding from becoming unstable during sliding, so that the block
will not ‘‘run away’’ during from the load apparatus. During
these experiments, stress decreases as velocity increases. Refer-
ring to Fig. 2a, this means that the laboratory experiments (Fig.
2b) are exploring the branch R to Q in Fig. 2a. As the experi-
ments continue to higher V, stress begins to increase dramatically
as V increases. These experiments must therefore correspond to
a jump from the branch RQ to the branch ST at the Maxwell
velocity VM described earlier.

Fig. 2. (a) Schematic plot of the stress dissipation function f(�, V) as a function
of �. Location of spinodals is indicated by filled circles. Maxwell velocity VM

(dashed horizontal line) corresponds to the stress supply rate KLVM at which
the Area(OPQ) � Area(QRS). (b) Plot of a–b vs. Log 10(V), where (a–b) �
(A–B)�(normal stress). Data (diamonds) is from figure 5 of ref. 30, an experi-
ment where the normal stress � 25 MPa. Dashed line labeled RQ is from Eq. 28
and corresponds to the path RQ in a. Dashed line labeled QS corresponds to
the jump QS to the stable branch ST of a.
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To derive the first of the rate-and-state Eq. 10, we use the
equation of state 4, KL u � f(�, V), and explicitly assume that
u � V � constant. The assumption u � V is almost always made
in analyzing laboratory experiments (27–33). By using this
assumption and considering two velocities V and V*, without
further loss of generality we may write:

Log� V
V*
� � Log� f 	�, V


f 	�*, V*
�. [12]

Now expand the right-hand side about (�*, V*):

Log� V
V*
� � Log�V*

V � �
1
f

�f
��	

V
*

�� � �*�. [13]

We define a length scale L*:

1
f

�f
��
	

V
*

'
1

KLL*
�

	*

f 	�*, V*

. [14]

The last equality follows from Eq. 9. In this form, it can be seen
that L* has the physical interpretation of being the shear offset
across the contact zone at velocity V* and stress �*, so that
u(t) � dL(t)�dt � ds(t)�dt. Similarly, KL is interpreted as the
shear stiffness across the contact zone. Then for V near V*:

� � �* � KLL* Log� V
V*
� . [15]

Eq. 15 can be generalized to any velocity V if we allow L* to
be an arbitrary function of V, L* 3 L � L(V):

� � �* � KLL�V� Log� V
V*
� . [16]

We have, for example:

�1 � �* � KLL1 Log�V1

V*
� , [17]

valid for V1 near V near V*, and L1 near L near L*. Combining
Eqs. 16 and 17 and neglecting second-order terms, we find:

� � �1 � A Log�V
V1
� � B�, [18]

as in Eq. 10, the first of the rate-and-state equations. Here,
A' KLL1, B' �KL L1 Log(V/V*), �' � �L/L1, and �L '
L � L1.

To recover the second of the rate-and-state equations (Eq.
11), we now allow small amplitude changes in u, thus u 
 V. Thus
the second rate–state equation represents a small-amplitude
‘‘correction’’ to the first equation. This latter result is well known
in the literature (28–33), and as a consequence most experi-
mentalists assume that a family of state variables �i is needed to
adequately parameterize the data over finite ranges in V.

Starting from the equation of state (Eq. 4), we have:

KL�u ' KL�u � u1� � KL�d�L � L1�

dt �
� f 	�, V
 � f 	�1, V1
' �f. [19]

Because f(�, V) is a thermodynamic state function, it has an
exact differential (36):

�f �
�f
��
	

V

�� �
�f
�V
	

�

�V. [20]

Eq. 2 implies that at constant load velocity V:

�� ' � � �1 � �KL�L � L1�. [21]

The partial derivatives in Eq. 20 are:

�f
��
	

V

'
V
L

;
�f
�V
	

�

� KL . [22]

The first of Eq. 22 follows from Eq. 14, with L* replaced by L,
and the fact that in steady state, V � u � constant. The second
of Eq. 22 follows from Eq. 3. Combining Eqs. 19–22, we find:

KL�d�L � L1�

dt � � ��V1

L1
�KL�L � L1� � KL�V. [23]

If conditions are such that:

��� � 	�L
L1
	��1 and �V � V1��V

V1
� � V1 Log�V

V1
� ,

[24]

then we can multiply Eq. 23 by �1�L1, use the definitions below
Eq. 18, and find:

d�

dt
� �

V1

L1

� � Log�V

V1
�� , [25]

which is the second of the rate-and-state equations and identical
to Eq. 11.

Because we now know the origin and identity of the empirical
parameters A, B, L1, �, we can put numerical values to the more
physically meaningful parameters KL, L, and VM (also V*) from
the laboratory data that have been collected (30, 33). The
quantity L1 � L � L* (see Eq. 24) is known to play the role of
a relaxation length scale for � and therefore �, as can be seen
from Eqs. 18 and 25. For experiments of granitic rock sliding on
granitic rock, data from figure 4 of ref. 30 indicate that L1 � 10
�m. Alternatively, data from other experiments (33) finds L1 �
30 �m. To determine the value of KL and V*, we use laboratory
data plotting (A–B) vs. Log V (Fig. 2b):

A � B � KLL1
1 � Log� V
V*
��. [26]

According to Eq. 26, the plot of (A–B) vs. Log V is found to be
a straight line, whose y intercept is KLL1(1 � Log V*), whose
slope is KL L1, and whose value for V* is determined by the
zero-crossing:

A � B � 0 when 1 � Log� V
V*
� � 0. [27]

Fig. 2b plots data from ref. 30, together with predictions from
Eq. 26, the dashed line RQ that corresponds to the branch RQ
of f(�, V) in Fig. 2a. In addition, the dashed line QS is shown in
Fig. 2b as well, corresponding to the jump from Q to S in Fig. 2a
as V increases from below V � VM to V � VM. Note that (a–b)
is plotted rather than (A–B), where (a–b) � (A–B)�(Normal
Stress � 25 MPa). The dashed lines represent the data reason-
ably well and indicate that KL � 0.0025 MPa��m for L1 � 10
�m. For comparison, the value for the machine stiffness Kmach �
0.048 MPa��m (30), thus Kmach �� KL. The transition from the
unstable branch RQ in Fig. 2a to the stable branch ST must occur
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at V � VM. From Eq. 27, VM � e�1 V*, so by using Fig. 2b, we
find VM � 1.26 mm�s and V* � 3.42 mm�s.

General Equations for Earthquakes and Neural Networks
Hopfield (35) proposed a model for a network of N integrate-
and-fire neurons. The dynamical equation for the kth neuron can
be written as:

dik

dt
� �

ik



� �
j

Skj f�ij� � Source Term. [28]

Here ik represents the electrical current entering the kth neuron;

 is a relaxation time; Skj are the strengths of the synaptic
connection weights for input from the jth neuron into the kth
neuron; f(ij) is the firing rate for spike-like action potentials from
the jth neuron; and the ‘‘Source Term’’ represents a sensory
driving term. Eq. 28 is based on the Hodgekin–Huxley model for
neurodynamics and represents the same kind of mean field limit
that has been examined here in connection with earthquakes.

In fact, the same equation (Eq. 28) is easily shown to describe
the coarse-grained near-mean field limit for earthquake dynam-
ics with appropriate redefinition of terms. Thus in place of
‘‘neurons,’’ we refer to ‘‘blocks’’ or ‘‘coarse-grained segments’’ of
a fault (refer to Eqs. 1–5 above). Then ik is replaced in Eq. 28
by the shear stress difference �� � �k � �R on the kth block or
fault segment; 
 � 1�	 is a relaxation time; Skj is replaced by the
elastic interaction matrix Tkj; f(ij) is replaced by either a series
of spike-like functions �(t � tF), or more generally by the stress
dissipation function f(�j, V) for the jth block or fault segment;
and the ‘‘Source Term’’ is the plate driving stress KLV. Because
both systems have long-range interactions and therefore ap-
proach mean field conditions, we are led to expect that earth-
quake dynamics and neurodynamics should have many similar
features and should be analyzed within similar mathematical
frameworks.

Phase Dynamics at Macroscopic Scales
Self-organization processes in threshold systems occur at the
macroscopic scale as well as at laboratory and atomic scales. The
strong space–time correlations that are responsible for the
cooperative behavior of these systems arise from the threshold
dynamics as well as from the mean field (long-range) nature of
the interactions. As we have described elsewhere (37–39), driven
threshold systems can be considered examples of pure phase
dynamical systems (40) when the rate of driving is constant, so
that the integrated stress dissipation or firing rate over all sites
is nearly constant, with the exception of small f luctuations:


f	��x, t�, V
 dx � constant � small random fluctuations. [29]

The ‘‘constant’’ in Eq. 29 is the integral of the driving stress KL
V over all active faults within the volume, so that on average, the
rate of stress dissipation is equal to the rate of stress supply. In
threshold systems such as earthquake faults, the stress is typically
supplied at a steady rate but is dissipated episodically by means
of the earthquakes. Because of the mean field nature of both the
simulated and real threshold systems, it is found that as the size
of the system is increased, the amplitude of the ‘‘small f luctua-
tions’’ decreases roughly as 1��N.

By using both simulations and observed earthquake data
(37–39), we showed elsewhere that the space–time patterns of
threshold firings or earthquakes can be represented by a time-
dependent system state vector in a Hilbert space. The length of
the state vector represents the temporal frequency of events
throughout the region and is closely related to the rate f(�, V)
at which stress is dissipated. In light of Eq. 29, it can be deduced

that the information about the system state is represented solely
by the phase angle of the state vector, hence the term ‘‘phase
dynamics.’’ Changes in the norm of the state vector therefore
represent only random Boltzmann-type fluctuations and can
essentially be removed by requiring the system state vector to
have a constant norm.

By using these ideas, we analyzed data from southern Cali-
fornia since 1932 (refs. 38, 41; http:��www.scecdc.scec.org�)
between 32° and 37° north latitude and 238° and 245° east
longitude. We tile the surface area with 3,162, d � two-
dimensional boxes of scale size LCG � 0.1� � 11 km, corre-
sponding roughly to the linear scale size of a magnitude m � 6
earthquake. Of the 3,162 boxes, about N �2,000 contain at least
one earthquake. We use the standard online data set available
through the web site maintained by the Southern California
Earthquake Center (http:��www.scecdc.scec.org�), which con-
sists of a record of all instrumentally recorded earthquakes
beginning in January 1932 extending to the present. For this
region, mc � 3 is typically used to ensure catalog completeness
since 1932. The idea is to use information on small events having
scale � � LCG to forecast the occurrence of large events having
scale � � LCG. For such a lattice of boxes (37, 39), a set of N
physically meaningful, complete, orthonormal basis vectors
�n(xi) can be constructed. Physically, the �n(xi) represent spatial
patterns of earthquake activity defined on the N spatial boxes.
The �n(xi) are eigenvectors (‘‘eigenpatterns’’) of an N � N
correlation operator. For example (37), define n(xi, t) to be the
activity rate (number of earthquakes�time) within the box
centered at xi at time t. From n(xi, t), compute the mean-zero
univariant time series z(xi, t). The correlation operator K(xi, xj)
is obtained by crosscorrelating z(xi, t) with z(xj, t). Diagonalizing
K(xi, xj) produces the eigenfunctions �n(xi).

From the time series of earthquake activity n(xi, t), we
compute (38, 41) the mean change �s(xi, t1, t2) in system state
vector s(xi, t) between two times, t1 and t2. Note that both �s(xi,
t1, t2) and s(xi, t) are defined in a coordinate system of a function
space in which the �n(xi) represent the coordinate axes. The
physical picture is that Ŝ(xi, tb, t) is a unit vector in a Hilbert
space that records present activity, so �s(xi, t1, t2) is proportional
to a mean drift angle, or vector difference, that ‘‘points’’ in the
‘‘direction’’ of future patterns of activity. This picture is quali-
tatively similar to that for a scalar function f(t), in which �f �
{df(t)�dt} �t is used to project future changes in f during a time
interval �t. The ‘‘direction’’ in which �s(xi, t1, t2) ‘‘points’’ has
physical meaning because the �n(xi) have physical meaning, in
terms of spatial eigenpatterns of earthquake activity.

In a Hilbert space, sums or differences of state vectors
represent probability amplitudes, allowing us to compute the
probability for present and future activity. Because we are
interested in the increase of probability above the time-
dependent background probability �B(t1, t2), we first compute:

�B'
1
A


A

	�s�xi, t1, t2�
2dx [30]

The change in probability �P(xi, t1, t2) for activity above the
background is then:

�P�xi, t1, t2�' 	�s�xi, t1, t2�
2 � �B�t1, t2�. [31]

We note that there are no free parameters in the computation
of �P(xi, t1, t2) to be determined by fits to data (no free ‘‘model
parameters’’).

The intensity of seismic activity over the years 1932–1991 is
shown in Fig. 3a. Fig. 3b is a shaded contour plot of Log10 �P(xi,
t1, t2), �P(xi, t1, t2) � 0, where t1 � 01�01�1978, and t2 �
12�31�1991. Shaded anomalies are associated with ‘‘large’’
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(m � 5.0) events for ‘‘current’’ (inverted triangles, t1 � t � t2)
and future (circles, t2 � t) time periods. No data were used in
the shaded anomalies of Fig. 3b from the time after December
31, 1991, 6 months prior to the June 27, 1992 (moment magni-
tude) m � 7.3 Landers (14) earthquake (34° 13� N Lat., 116° 26�
W Long.).

Visual inspection of Fig. 3b shows that the method has forecast
skill, but rigorous statistical testing is needed. We used two types
of null hypotheses to test the forecast in Fig. 3b. (i) We
constructed thousands of random earthquake catalogs from the
observed catalog by using the same total number of events, but
assigning occurrence times from a uniform probability distribu-
tion over the years 1932–1991, and distributing them uniformly
over the original locations. This procedure produces a Poisson
distribution of events in space with an exponential distribution
of inter-event times. Randomizing the catalog in this way de-
stroys whatever coherent space–time structure may have existed
in the data. These random catalogs are used to construct a set
of null hypotheses, because any forecast method using such a
catalog cannot, by definition, produce useful information. (ii)
For the second null hypothesis, we used the seismic intensity
data in Fig. 3a directly as a probability density at xi, as has
been proposed in the literature (43) for the ‘‘standard null
hypothesis.’’

We carried out a Maximum Likelihood test (41, 42, 45) to
evaluate the accuracy with which our probability measure �P(xi,
t1, t2) can forecast ‘‘future’’ (t � t2) ‘‘large’’ (m � 5.0) events,
relative to forecasts from the null hypotheses. Define P(x) to be
the union of a set of N Gaussian density functions �G(�x � xi�)
(46) centered at each location xi. Each elementary Gaussian
density �G(�x � xi�) has a peak value �P(xi, t1, t2) � �B(t1, t2),
the probability change including the background, if �P(xi, t1,
t2) � 0; a peak value �B(t1, t2) if �P(xi, t1, t2) � 0; as well as
a standard deviation � � L � 11 km. P(x(ej)) is then a
probability measure that a future large event ej occurs at location
x(ej). If there are J future large events, the likelihood � that all
J events are forecast is: �' �j�P	x�ej�
��1 P	xi
�. In Fig. 3c, we
show computations of (i) Log 10(�) for 500 random catalogs of
the first type (histogram); (ii) Log 10(�) for the seismic intensity
map in Fig. 1a (vertical dash–dot line); and (iii) Log 10(�) for
our forecast of Fig. 3b (dashed line). Because larger values of
Log 10(�) indicate a more successful hypothesis, we conclude
that our method has forecast skill.

Implications
The diffusive mean field nature of the dynamics leads to several
important predictions. First, forecasts such as those shown in Fig.
3b that are computed from changes over a time interval �t � t2 �
t1 should convey information for times t approximately in the
range: t2 � t � t2 � �t. That is, the time interval �t during which
the changes occur should be roughly the time interval �t after t2
for which the forecast is valid. Second, anomalies of elevated
probability having area � should persist for a characteristic time

 � ��, where � � 1 (41). Finally, the dynamics implies that we
can compute probabilities using path integral methods (41), an
approach that we are currently formulating.

Earthquake Forecasts
The most unbiased test possible is to use our method to forecast
future activity into the 21st century, because we do not have
knowledge of the future. Fig. 4 shows such a forecast for future
large events following roughly the period �2000–2010, based on
changes during the years 1989–1999. As seen from Fig. 3, the
shaded anomalies appear to be sensitive to locations of events as
small as m � 5, even though the horizontal resolution of the
boxes was chosen to correspond to events with magnitudes m �
6. Although at this stage of the research subjective judgments

Fig. 3. (a) Relative seismic intensity in southern California for the period
1932–December 31, 1991, plotted with linear shading scale. (b) Shaded-
contour plot of Log10 �P(xi, t1, t2), for locations at which �P(xi, t1, t2) � 0. Times
t1 � January 1, 1978, and t2 � December 31, 1991. Values are scaled by the
maximum and shading scale is linear. Inverted triangles are events that
occurred from 1978 to 1991 with 5 � m � 6 (smallest triangles); 6 � m �

7 (intermediate triangles); 7 � m (largest triangles). Circles are events that
occurred from 1992 to the present, with 5 � m � 6 (smallest circles); 6 �

m � 7 (intermediate circles); 7 � m (largest circles). (c) Log10(L) plots for 500
random catalogs (histogram), for the seismic intensity map of a (dash–dot
line), and for the forecast in b (dashed line). All three methods were scored by
the Likelihood test according to how well they forecast the events of magni-
tude m � 6 that occurred on or after January 1, 1992 (circles).
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must still be made in the interpretation of the information in Fig.
4, we feel that a few broad statements can be made.

Specifically, on the basis of the area and intensity of the
anomalies and the absence of events during 1989–1999 falling on
the peak of the anomaly, Fig. 4 calls attention to areas that seem
to be at risk for larger earthquakes having m � 5 during
2000–2010. The areas seemingly most at risk in central and
southern California include the region north of Bishop [37.6°
latitude (Lat.), 241.5° longitude (Long.)]; the Coso–Ridgecrest
area (36.0° Lat., 242.1° Long. and 35.7° Lat., 242.1° Long.); the
Coalinga area (36.1° Lat., 239.6° Long.); the Barstow area (34.9°
Lat., 243° Long.); the area north of the 1992 Landers earthquake
(34.5° Lat., 243.3° Long.); the area northwest of Palm Springs
(34.0° Lat., 243.3° Long.); the Oceanside area (33.0° Lat., 117.9°
242.1 Long.); the Superstition Hills area (33.0° Lat., 1244.1°
Long.); and the Imperial Valley (33.0° Lat., 244.4° Long.). On
the basis of previous history and the intensity and area of the

anomalies, some of these locations may be at risk for earthquakes
with magnitudes approaching m � 7, for example in the Imperial
Valley, near Coalinga, and north of Landers.

Summary—Self-Organization Across Many Scales of Space
and Time
Driven mean field threshold systems can develop strong corre-
lations as a result of interactions. When both mean field inter-
actions and a source of microscopic noise or chaos are present
to act as a thermalizing influence, these systems demonstrate
locally ergodic behavior. They can be analyzed by using the
methods of statistical mechanics. In frictional systems and
earthquakes, the most physically meaningful object is the stress
dissipation function f(�, V). As we have discussed, KL u � f(�,
V) behaves as an equation of state for a frictional contact zone,
and it also provides the physical basis for computing the system
state vector for earthquake activity. On the ‘‘microscopic’’ scale

Fig. 4. Shaded contour plot of Log10 �P(xi, t1, t2) for locations at which �P(xi, t1, t2) � 0. Times t1 � January 1, 1989, and t2 � December 31, 1999. Inverted
triangles are events during 1989–1999.
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of laboratory experiments, the form of f(�, V), together with the
scaling properties of these systems, is the signature of the
self-organizing processes that are observed in the data. These
processes lead to distinct scaling exponents, the rate-and-state
frictional equations, and other data. On the ‘‘macroscopic’’ scale
of regional earthquake fault systems, self-organization leads to
the appearance of phase dynamics and a state vector whose
rotations characterize the evolution of earthquake activity in the
system. The origin of the phase-dynamical behavior of the system
is a result of the balance between the average rate at which stress
is supplied and the average rate at which it is dissipated, which
is characterized by f(�, V). Further understanding of the physics
embodied in the stress dissipation function f(�, V) would
therefore seem to be critical to understanding the self-
organization and related processes across the many scales of
space and time that characterize the dynamics of earthquakes
and other similar driven mean field threshold systems. In par-

ticular, because of the considerable similarities in the equations
for earthquakes and neural networks, we expect the same
conclusions to hold for neurodynamics as well.
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