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The majority of numerical models in climatology and geomagnetism
rely on deterministic finite-difference techniques and attempt to
include as many empirical constraints on the many processes and
boundary conditions applicable to their very complex systems. De-
spite their sophistication, many of these models are unable to repro-
duce basic aspects of climatic or geomagnetic dynamics. We show
that a simple stochastic model, which treats the flux of heat energy
in the atmosphere by convective instabilities with random advection
and diffusive mixing, does a remarkable job at matching the observed
power spectrum of historical and proxy records for atmospheric
temperatures from time scales of one day to one million years (Myr).
With this approach distinct changes in the power-spectral form can be
associated with characteristic time scales of ocean mixing and radi-
ative damping. Similarly, a simple model of the diffusion of magnetic
intensity in Earth’s core coupled with amplification and destruction of
the local intensity can reproduce the observed 1�f noise behavior of
Earth’s geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In
addition, the statistics of the fluctuations in the polarity reversal rate
from time scales of 1 Myr to 100 Myr are consistent with the
hypothesis that reversals are the result of variations in 1�f noise
geomagnetic intensity above a certain threshold, suggesting that
reversals may be associated with internal fluctuations rather than
changes in mantle thermal or magnetic boundary conditions.

In this paper we consider the power spectrum of temporal
variations in atmospheric temperature on time scales of 10�2 to

106 yr. The spectral behavior for time scales between 200 thousand
years (kyr) and 500 yr is obtained from deuterium concentrations
in the Vostok ice core. Historical temperature records are analyzed
to give the spectral behavior between time scales of 100 yr and 1 day.
The obvious daily and annual periodicities are removed, and we
focus on the stochastic content of the time series. We show that at
frequencies smaller than f � 1�(40 kyr), the power spectrum is flat
(white noise). At frequencies between f � 1�(40 kyr) and f � 1�(2
kyr), the power spectrum is proportional to f�2 (a Brownian walk).
At frequencies greater than f � 1�(2 kyr), the power spectrum is
proportional to f�1/2. At very high frequencies [above f � 1�(1
month)], the spectrum varies as f�3/2 for continental stations and
remains proportional to f�1/2 for maritime stations. Solutions to a
stochastic diffusion equation for a two-layer system representing
the coupled atmosphere–ocean reproduce the observed statistics.
This system was first studied in the context of semiconductor
physics. The observed power spectrum of atmospheric temperature
is identical to the power spectrum of variations caused by the
stochastic diffusion of heat in a metallic film that is in thermal
equilibrium with a substrate (1). Temperature variations in the film
and substrate occur as a result of fluctuations in the heat transport
by electrons undergoing Brownian motion. The top of the film
absorbs and emits blackbody radiation. In our analogy, we associate
the atmosphere with the metallic film and the oceans with the
substrate. Turbulent eddies in the atmosphere and oceans are

analogous to the electrons undergoing Brownian motion in a
metallic film in contact with a substrate.

In addition to considering climate variability, we also consider
variations in the intensity of Earth’s magnetic field. Earth’s mag-
netic field has exhibited significant variability over a wide range of
time scales. On time scales less than a couple of hundred years,
historical data are available for variations in the intensity and
orientation of the geomagnetic field. Archeomagnetic data can be
used to infer the intensity of the field from time scales of centuries
to millenia. Sediment cores provide the widest range of time scales
of variations in the geomagnetic field with internal origin: 1 kyr to
10 million years (Myr). Techniques of time series analysis can be
used to characterize this variability. The geomagnetic field also
exhibits reversals with a complex history including variations over
a wide range of time scales. The reversal history can be character-
ized by the polarity interval distribution and the reversal rate.
Polarity intervals vary from those short enough to be barely
resolved in the magnetic anomalies of the seafloor to the 35-Myr
Cretaceous superchron. Reversals are also clustered in time such
that short polarity intervals tend to be followed by short polarity
intervals and long intervals by long intervals. This clustering has
been quantified with the reversal rate, which gradually decreases
going back to 100 mega-annum (Ma) and then increases going back
further in time before the Cretaceous superchron.

We perform power-spectral analyses of time series data for the
intensity of Earth’s magnetic field inferred from sediment core and
archeomagnetic data. We find that the power spectrum of the
intensity of the geomagnetic field from time scales of 100 yr to 10
Myr is well approximated by a 1�f dependence, where f is the
frequency. Variations in the intensity of the geomagnetic field in
one polarity exhibit a normal distribution. When a fluctuation
crosses the zero intensity value a reversal occurs. We test the
hypothesis that reversals are the result of intensity variations with
a 1�f power spectrum, which occasionally are large enough to cross
the zero intensity value, driving the geodynamo into the opposite
polarity state. Synthetic time series with a 1�f power spectrum and
a binormal distribution are used to generate reversal statistics.
These are found to be in good agreement with those of the real
reversal history, suggesting that intensity variations and reversals of
the magnetic field are a natural consequence of the inherent
variability generated by dynamo action and magnetic diffusion in
the core. A model that generates the observed 1�f behavior is a
two-dimensional stochastic diffusion equation.
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Power-Spectral Analysis of Atmospheric Temperature
Variations
We first consider the spectral behavior of the deuterium concen-
trations in the Vostok (East Antarctica) ice core. A 220-kyr record
of temperature fluctuations is obtained by using the conversion 5.6
�D(%) � 1°K (2). Jouzel and Merlinvat (3) have concluded that the
Vostok deuterium record is a proxy for local atmospheric temper-
ature. Because the data are unevenly sampled we utilized the Lomb
periodogram (4) to estimate the power spectrum. The results are
given in Fig. 1. We associate the power spectrum with three regions
of different self-affine behavior. The first region, at frequencies less
than f � 1�(40 kyr), is a white noise [S(f) is constant]. The second
region, between f � 1�(40 kyr) and f � 1�(2 kyr), is a Brownian walk
[S(f) � f�2]. In the third region, with frequencies greater than f �
1�(2 kyr), there is a change to a lower absolute value the power-
spectral exponent [S(f) � f�1/2]. This change is associated with more
rapid variations in the Vostok core at short time scales. This is also
observed in ice cores from Greenland (5). Several authors have
reported the low-frequency behavior (a flat spectrum crossing over
to f�2 behavior) with other paleoclimatological data (6, 7). To
extend our analyses to higher frequencies we have carried out
power-spectral analyses on data for atmospheric temperature vari-
ations from weather stations. We have determined the average
power spectrum of the time series of monthly mean temperatures
from 94 stations worldwide with the yearly trend removed. We
obtained the power spectra S(f) of all complete temperature series
of length greater than or equal to 1,024 months from the climato-
logical data base compiled by Vose et al. (8). The yearly trend was
removed by subtracting from each monthly data point the average
temperature for that month in the 86-yr record for each station. All
of the power spectra were then averaged at equal frequency values.
The results are given in Fig. 2. The data yield a straight line on a
log–log plot with slope close to � 1

2
indicating that S(f) � f�1/2 in this

frequency range.
Finally, we consider the average power spectrum of time series

of daily mean temperature (estimated by taking the average of
the maximum and minimum temperature of each day) from 50
continental and 50 maritime stations over 4,096 days. Maritime
stations are sites on small islands far from any large land masses.
Continental stations are well inland on large continents, far from
any large bodies of water. We chose 50 stations at random from
the complete records (those with greater than 4,096 nearly
consecutive days of data) provided by the Global Daily Summary
database compiled by the National Climatic Data Center (9).
Once again, the yearly periodicities were removed. The results
are given in Figs. 3 and 4. Continental stations (Fig. 3) correlate
with an f�3/2 high-frequency region. Maritime stations (Fig. 4)
correlate with an f�1/2 scaling up to the highest frequency. The

crossover frequency for the continental spectra is f � 1�(1
month). The difference between continental and maritime sta-
tions results from the air mass above maritime stations exchang-
ing heat with both the atmosphere above and the oceans below,
whereas the air mass above continental stations exchanges heat
only with the atmosphere above it. The three spectra have been
combined in Fig. 5 to give a continuous spectral behavior of local
atmospheric temperature from frequencies of 10�6 to 102 yr�1.

We can interpret these results in terms of the vertical turbulent
transport of heat energy in the atmosphere in addition to its
radiation into space and its exchange with the ocean. The ocean
acts as a thermal reservoir, buffering changes in atmospheric
temperature. In our model, vertical turbulent transport is mod-
eled as a stochastic diffusion process. Convective instabilities
diffuse heat energy within the atmosphere by turbulent mixing.
Deterministic diffusion is not adequate to model atmospheric
heat transport, however, because the stochastic nature of tur-
bulent flow in the atmosphere gives rise to fluctuations in the
transport of heat through time. Therefore, it is appropriate to
model turbulent transport by the diffusion equation with a
random noise in the flux term:

�c
��T

�t
� �

�J
�x

[1]

J � ��
��T
�x

� ��x, t�, [2]

where J is the heat flux, �T is the fluctuation in temperature from
equilibrium, � is the density, c is the heat capacity per unit mass, �
is the thermal conductivity, and � is a Gaussian white noise in space
and time. Eq. 1 is conservation of energy. Eq. 2 is Fourier’s law of
heat transport with random advection of heat superimposed. The
noise term is chosen to be Gaussian white noise because velocity
fluctuations in atmospheric turbulence are observed to be Gaussian
and white above a time scale of minutes.

We now determine the behavior of the stochastic diffusion
model in terms of the power spectrum of temperature fluctua-
tions in a layer of width 2l. We consider an infinite space in which
1 and 2 are applicable. We focus our attention on a layer of width
2l in this space. The presentation we give is similar to that of Voss
and Clarke (10). The variations in total heat energy in the layer
of width 2l is determined by the heat flow across the boundaries.
A diffusion process has a frequency-dependent correlation
length � � (2	�f)1/2 (10), where 	 is the diffusion coefficient
	 � ��(�c). Two different situations arise as a consequence of
the length scale, 2l, of the geometry. For high frequencies � ��
2l the fluctuations in heat flow across the two boundaries are

Fig. 1. Power-spectral density estimated with the Lomb periodogram of the
temperature inferred from the deuterium concentrations in the Vostok (East
Antarctica) ice core. The power-spectral density S is given as a function of
frequency for time scales of 500 yr to 200 kyr.

Fig. 2. Average power-spectral density of 94 complete monthly temperature
time series from the data set of Vose et al. (8) plotted as a function of
frequency in yr�1. The power-spectral density S is given as a function of
frequency for time scales of 2 months to 100 yr.
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independent. For low frequencies � 		 2l and the fluctuations
in heat across the two boundaries are in phase.

First we consider high frequencies. Because the boundaries
fluctuate independently, we can consider the flow across one
boundary only. The flux of heat energy is given by Eq. 2. Its
Fourier transform is given by

J�k, 
� �
i
��k, 
�

	k2 � i

, [3]

where f � 2�
, and k is the wave number. The flux of heat
energy out of the layer at the boundary at x � l (the other
boundary is located at x � �l) is the rate of change of the total
energy in the layer E(t): dE(t)�dt � J(l, t). The Fourier
transform of this equation is

E�
� � �
i

�2��1/2
�
�





dk eikl J�k, 
�. [4]

Therefore, the power spectrum of variations in E(t), SE(
) �
��E(
)�2� is

SE�
� � �
�



 dk
	2k4 � 
2 � 
�3/2. [5]

In the above expression, the noise term � does not appear
because it is white noise in space and time; it’s average amplitude

is independent of 
 and k, i.e., it is just a constant. Because �T
� �E, the power spectrum of temperature has the same form as
SE and ST(
) � 
�3/2.

If we include the heat flux out of both boundaries, the rate of
change of energy in the layer will be given by the difference in
heat flux: dE(t)�dt � J(l, t) � J(�l, t). The Fourier transform
of E(t) is now

E�
� �
1

�2��1/2
�
�





dk sin�kl�J�k, 
�. [6]

Then,

ST�
� � SE�
� � �
�



 dk sin2�kl�
	2k4 � 
2

� 
�3/2�1 � e��sin  � cos ��, [7]

where  � (
�
o)1/2, and 
o � 	�2l2 is the frequency where the
correlation length is equal to the width of the layer. When � �� 2l,
the above expression reduces to ST(f) � f�3/2. When � 		 2l, ST(f)
� f�1/2 (10). In this limit the boundaries fluctuate in phase, and heat
that enters into the region from one boundary can diffuse out of the
other boundary. The result is a sequence of fluctuations that are less
persistent than the single boundary f�3/2 case.

In the introduction, we presented evidence that continental
stations exhibit an f�3/2 high-frequency region, and maritime sta-
tions exhibit f�1/2 scaling up to the highest frequency considered.
This observation can be interpreted in terms of the diffusion model
presented above. The power spectrum of temperature variations in
an air mass exchanging heat by one-dimensional stochastic diffusion
is proportional to f�1/2 if the air mass is bounded by two diffusing
regions and is proportional to f�3/2 if it interacts only with one. The
boundary conditions appropriate to maritime and continental
stations are a layer interacting with two (upper atmosphere and
ocean) and one (upper atmosphere only) thermal reservoirs, re-
spectively. The layer considered is taken to have an upper boundary
embedded in the atmosphere and a lower boundary at the earth’s
surface. For maritime stations, heat is transferred across this lower
boundary into the oceans so it is equivalent to the case ��l 	 1 and
therefore the power spectrum of temperature variations is S(f) �
f�1/2. For continental stations, the lower boundary is insulating so
it is equivalent to the case ��l � 1 and therefore S(f) � f�3/2. At low
frequencies, horizontal heat exchange between continental and
maritime air masses limits the variance of the continental stations.
This crossover occurs at the time scale when the air masses above
continents and oceans become mixed. The time scale for one
complete Hadley or Walker circulation which mixes the air masses

Fig. 3. Average power-spectral density of 50 continental daily temperature
time series from the data set of the National Climatic Data Center (9) as a
function of frequency in yr�1. The power-spectral density S is given as a
function of frequency for time scales of 2 days to 10 yr.

Fig. 4. Average power-spectral density of 50 maritime daily temperature
time series from the data set of the National Climatic Data Center (9) as a
function of frequency in yr�1. The power-spectral density S is given as a
function of frequency for time scales of 2 days to 10 yr.

Fig. 5. Power-spectral density of local atmospheric temperature from in-
strumental data and inferred from ice cores from time scales of 200 kyr to 2
days. The high frequency data are for continental stations. Piecewise power-
law trends are indicated.
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is approximately 1 month, the same time scale as the observed
crossover.

Next we consider the stochastic diffusion model in a geometry
appropriate for a coupled atmosphere–ocean model with an at-
mosphere of uniform density (equal to the density at sea level) in
thermal contact with oceans of uniform density. The height of our
model atmosphere is the scale height of the atmosphere (height at
which the pressure falls by a factor of e from its value at sea level).
Fig. 6 illustrates the geometry and constants chosen with � as the
vertical heat conductivity, � as the density, c as the specific heat per
unit mass, 	 as the vertical thermal diffusivity, and g as the thermal
conductance of heat out of the Earth by emission of radiation.
Primed constants denote values for the oceans. The physical
constants that enter the model are the density, specific heat, vertical
thermal diffusivity, depths of the oceans and atmosphere, and the
thermal conductance by emission of radiation. The density and
specific heat of air and water are well known constants. We chose
an ocean depth of 4 km and an atmospheric height equal to the scale
height of 8 km. The eddy diffusivity we use for the oceans is 6  10�5

m2�s. This value has been obtained from Tritium dispersion studies
(11). The vertical eddy diffusivity for the atmosphere we use is 1
m2�s, as quoted by Pleune (12) and Seinfeld (13) for stable air
conditions. This eddy diffusivity implies an equilibration time of the
tropospheric air column to be 2 years. This value is roughly
consistent with the 1-yr vertical mixing time of the Pinatubo and El
Chichon aerosols (14, 15).

The equation for temperature fluctuations in space and time
in the model is

��T�x, t�
�t

� 	�x�
�2�T�x, t�

�x2 � �
���x, t�

�x
. [8]

The mean value of � is zero and the flux of heat of proportional
to the temperature:

���x, t�� � 0 [9]

���x, t���x�, t��� � ��x��T�x��2��x � x����t � t��. [10]

The delta functions indicate that the white noise term � is
uncorrelated in space and time.

The boundary conditions are that no heat flows out of the
bottoms of the oceans and continuity of temperature and heat
flux at the atmosphere–ocean boundary:

��
�T
�x

�x � w2
� 0 [11]

�T�x � w1
� � � �T�x � w1

� � [12]

�
��T
�x

�x � w1
� � ��

��T
�x

�x � w1
� . [13]

At the top of the atmosphere we impose a blackbody radiation
boundary condition. Most (65%) of the energy incident on the
Earth is reradiated as long-wavelength blackbody radiation from
the H2O and CO2 in the atmosphere (16). This radiated energy
depends on the temperature of the atmosphere at the point of
emission according to the Stefan–Boltzmann law. It is common
practice to assume that temperature variations about equilibrium
are small. This is a good approximation because the global mean
temperature has fluctuated by only about 10 degrees K during the
last glaciation. With a linear approximation, the radiated energy is
proportional to the temperature difference from equilibrium (17).
The boundary condition at the scale height of the atmosphere
(which we take to be representative of the average elevation where
radiation is emitted from the atmosphere) is then

�
��T
�x

�x � 0 � g�T�x � 0�. [14]

We will use the value g � 1.7 W�m2�K as used by Ghil (17) and
Harvey and Schneider (18).

The existence of two layers of different diffusivity makes the
study of the two-layer model much more complex than for the
one-layer models applied to the atmosphere above the conti-
nents and the oceans. Van Vliet et al. (1) used Green’s functions
to solve this two-layer model. The Green’s function of the
Laplace-transformed diffusion equation is defined by

i
G�x, x�, i
� � 	�x�
�2G�x, x�, i
�

�x2 � ��x � x��, [15]

where G is governed by the same boundary conditions as �T.
This equation can be solved by separating G into two parts: Ga

and Gb with x � x� and x 	 x�, respectively. Ga and Gb satisfy
the homogeneous (unforced) diffusion equation with a jump
condition relating Ga and Gb:

�Ga

�x
�x � x� �

�Gb

�x
�x � x� �

1
	�x��

. [16]

The power spectrum of the average temperature in the
atmosphere in terms of G is given by Van Vliet et al. (1) as:

S�T�f� � Re��
0

w1�
0

w1

G1�x, x�, i
�dxdx�� [17]

� Re��
0

w1�
0

x

G1b�x, x�, i
�dxdx�

� �
0

w1�
x

w1

G1a�x, x�, i
�dxdx�� , [18]

where G1 stands for the solution to the differential equation for
G where the source point is located in the atmosphere, and Re
denotes the real part of the complex expression. Two forms of
G1a and G1b are necessary for x located above and below x�,
respectively, because of the discontinuity in the derivative of G1

created by the delta function. The solution of G1, which satisfies
the above differential equation and boundary conditions, is

Fig. 6. Geometry of the coupled atmosphere–ocean model and the con-
stants chosen.
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G1a �
L

	K���L
�L�

sinh�w1 � x�

L �sinh�w2

L�
�

� cosh�w1 � x�

L �cosh�w2

L�
���sinh� x

L� �
�

Lg
cosh� x

L��
[19]

and

G1b � G1a �
L
	

sinh�x� � x
L �, [20]

where

K � � sinh�w1

L � �
�

Lg
cosh�w1

L ����L
�L�

sinh�w2

L�
�

� �cosh�w1

L � �
�

Lg
sinh�w1

L ��cosh�w2

L�
� [21]

and L � (	�i
)1/2 and L� � (	��i
)1/2. Performing the
integration Van Vliet et al. (1) obtained

S�T�f� � Re�L2���L
�L�

tanh�w2

L ���gw1

�
� 1�

tanh�w1

L � �
2gL
�

cosh�w1�L� � 1
cosh�w1�L�

�
w2

L �
� �gw1

�
� �w1

L
�

gL
�

tanh�w1

L ����tanh�w1

L � �
�L
g �

��L
�L�

tanh�w2

L�
� � �1 �

�

Lg
tanh�w1

L ����1

. [22]

For very low frequencies several approximations can be made:

tanh�w1

L � �
w1

L
, tanh�w2

L�
� �

w2

L�
[23]

�cosh�w1�L� � 1
cosh�w1�L�

� �
1
2

w1
2

L2 . [24]

Reducing this equation,

S�T�f� �
1

1 � 
2�
0
2 �

1
f2 � f0

2 . [25]

This is the low-frequency Lorentzian spectrum observed in the
Vostok data. The crossover frequency as a function of the
constants chosen for the model is

f0 �
g

w1c� � w2c����1 � gw1���
. [26]

At high frequencies the following approximations hold

tanh�w1

L � �
w1

L
, tanh�w2

L�
� � 1 [27]

cosh�w1�L� � 1
cosh�w1�L�

�
1
2

w1
2

L2 , [28]

then

STav
�f� �

1
2�2gw1

�
� 1/2� c��

c�����
� 1/2� g

w1�cf�
1/2

� f�1/2.

[29]

This is the broad f�1/2 region observed in the power spectrum of
the temperature data and predicted based on the simpler
one-layer model exchanging heat with regions above and below.
The high- and low-frequency spectra meet at

f1 �
g

w1�c� �

2gw1
� 1/3�c�����

c��
� 1/3

41/3� c�w1

c���w2
� 4/3

[30]

� 1��10 kyr�. [31]

This value agrees within an order of magnitude to that observed
in the Vostok data [f � 1�(2 kyr)].

The three crossover time scales in the composite spectrum of
Fig. 5 are fundamental time scales of the climate system. The
1-month time scale for crossover between f�3/2 and f�1/2 behav-
ior in continental stations can be associated with the time scale
for horizontal mixing between air masses over the continents
with air masses over adjacent oceans.

For time scales greater than 1 month but less than 2 kyr,
fluctuations in out-going heat energy from the atmosphere by
radiative cooling causes temperature variations in the atmosphere
that can be damped by the oceans. At frequencies lower than 2 kyr,
the time scale of vertical ocean mixing, the atmosphere, and oceans
are in thermal equilibrium. The oceans can no longer absorb
thermal fluctuations in the atmosphere resulting from fluctuations
in radiative emission at this time scale. The variance in temperature
of the atmosphere and oceans is then determined solely by the
radiation boundary condition. The fluctuating temperature at the
top of the atmosphere will result in a white noise flux out of the
atmosphere–ocean system. The average temperature of the atmo-
sphere and oceans at these time scales will be given by the sum of
a white noise, a Brownian walk. This is observed in the Vostok data
between time scales 2–40 kyr.

The power spectrum of temperature variations flattens out at
frequencies lower than f � 1�(40 kyr) as a result of a negative
feedback mechanism: as the coupled atmosphere and oceans warm
up (cool down) because of nonstationary fluctuations resulting
from the random heat flux out into space, the system will radiate,
on average, more (less) radiation, limiting the variance at low
frequencies. This can be described by a linear damping equation for
the global temperature difference from equilibrium:

��T
�t

� �
1
�o

�T � ��t�, [32]

where �o � 1�fo and fo is given by (2.27). The temperature variations
�T from this equation have a spectrum that is a Lorentzian with a
crossover time scale of �o. This can be shown with Fourier trans-
forms. The Fourier transform of Eq. 32 is given by

�T�
� �
��
�

�o
�1 � i


. [33]

The power spectrum S�T(
) � ���T(
)�2� is then given by Eq.
25. Now we must consider whether the observed low-frequency
crossover time scale of 40 kyr is consistent with the model
prediction given by

�o �
w1c� � w2c����1 � gw1���

g
. [34]

If we neglect the heat capacity of the atmosphere relative to that
of the ocean, this reduces to

�o �
c���w2

g
�

w1w2c���

�
. [35]

The first term is the time scale for radiative damping of the heat
energy of the coupled atmosphere–ocean system into space. The
second term is the time scale for transport of the heat energy of the
ocean to the top of the atmosphere where it can be radiated from
clouds. If the time scale for one of these processes is much larger
than the time scale for the other, the crossover time scale will be
determined by that rate-limiting step. For the Earth’s climate
system, the transport of the oceans’ heat through the atmosphere
seems to be the rate-limiting step. This process takes a long time
because the atmosphere has a low heat capacity compared to the

2550 � www.pnas.org�cgi�doi�10.1073�pnas.022582599 Pelletier



oceans and is therefore a poor heat conductor. The time scale of
radiative damping is estimated to be 600 yr from the well known
constants listed in Fig. 6. The time scale for vertical transport of the
oceans’ heat through the atmosphere can be estimated to only
within an order of magnitude because this time scale linearly
depends on the average vertical diffusivity of the atmosphere. Only
rough estimates are available for this parameter. Estimates of 1
m2�s for this parameter have been given by Pleune (12) and Seinfeld
(13). For the time scale of vertical advection of the oceans’ heat
through the atmosphere to be 40 kyr, a vertical diffusivity of 0.1
m2�s is required, a factor of 10 lower but roughly in agreement with
the values quoted above.

Manabe and Stouffer (19) have completed power-spectral anal-
yses of variations in local atmospheric temperature in control runs
of a coupled atmosphere–ocean–land surface model. They com-
puted the power spectrum of temperature time series of each
surface grid point and then averaged the power spectra at equal
frequency values, as in our observational power-spectral analyses.
They found different spectra for continental and maritime grid-
points. Maritime gridpoints exhibited power-law power spectra
from time scales of 1 month to several hundred years with an
exponent of close to �0.25. Continental gridpoints, however,
showed flat spectra up to time scales of about 100 yr, in contrast to
observations.

Variability of Earth’s Magnetic Field
In this section we consider the time series of Earth’s magnetic field.
Paleomagnetic studies show clearly that the polarity of the magnetic
field has been subject to reversals. Kono (20) has compiled pa-
leointensity measurements of the magnetic field from volcanic lavas
for 0–10 Ma. He concluded that the distribution of paleointensity
is well approximated by a symmetric binormal distribution with
mean 8.9  1022 Am2 and standard deviation 3.4  1022 Am2. A
normal distribution is applicable to the field when it is in its normal
polarity and the other when it is in its reversed polarity.

We have utilized three data sets for computing the power
spectrum of the dipole moment of the earth’s magnetic field. They
are archeomagnetic data from time scales of 100 yr to 8 kyr from
Kovacheva (21), marine sediment data from the Somali basin from
time scales of 1 kyr to 140 kyr from Meynadier et al. (22), and
marine sediment data from the Pacific and Indian Oceans from 20
kyr to 4 Myr from Meynadier et al. (23). The data were published
in table form in Kovacheva and obtained from L. Meynadier
(personal communication) for the marine sediment data in Mey-
nadier et al. (22, 23). Marine sediment data are accurate measures
of relative paleointensity but give no information on absolute
intensity. To calibrate marine sediment data, the data must be
compared to absolute paleointensity measurements from volcanic
lavas sampled from the same time period as the sediment record.
Meynadier et al. (23) have done this for the composite Pacific and
Indian Oceans data set. They have calibrated the mean paleoin-
tensity in terms of the virtual axial dipole moment for 0–4 Ma as
9  1022 Am2 (24). This value is consistent with that obtained by
Kono (20) for the longer time interval up to 10 Ma. By using this
calibration, we calibrated the Somali data with the time interval
0–140 ka from the composite Pacific and Indian Oceans dataset.
The data from Meynadier et al. (23) are plotted in Fig. 7 as a
function of age in Ma. The last reversal at approximately 730
thousand years BP (Ka) is clearly shown. We computed the power
spectrum of each of the time series with the Lomb periodogram (4).
The compiled spectra are given in Fig. 8. The composite sediment
record from the Pacific and Indian Oceans are plotted up to the
frequency 1�(25 kyr). Above this time scale good synchroneity is
observed in the Pacific and Indian Oceans data sets by Meynadier
et al. (23). This suggests that nongeomagnetic effects such as
variable sedimentation rate are not significant in these cores above
this time scale. From frequencies of 1�(25 kyr) to 1�(1.6 kyr) we
plot the power spectrum of the Somali data. From time scales of 1.6

kyr to the highest frequency we plot the power spectrum of the data
of Kovacheva. A least-squares linear regression to the data yields a
slope of �1.09 over 4.5 orders of magnitude. This indicates that the
power spectrum is well approximated as 1�f on these time scales.

The power spectrum of secular geomagnetic intensity varia-
tions has been determined to have a 1�f2 power spectrum
between time scales of 1 and 100 years (25–27). This is consistent
with the analysis of McLeod (28) who found that the first
difference of the annual means of geomagnetic field intensity is
a white noise because the first difference of a random process
with power spectrum 1�f2 is a white noise. Our observation of 1�f
power-spectral behavior above time scales of approximately 100
yr together with the results of Currie (25) and Barton (26)
suggests that there is a crossover from 1�f to 1�f2 spectral
behavior at a time scale of approximately 100 years.

Analysis of the Polarity Reversal Record and Relationship to
Paleointensity Variations
We will now show that the statistics of the reversal record are
consistent with those of a binormal 1�f noise paleointensity record,
which reverses each time the intensity crosses the zero value. We
will compare the polarity length distribution and the clustering
of reversals between synthetic reversals produced with 1�f noise
intensity variations and the reversal history.

First we consider the polarity length distribution of the real
reversal history. The polarity length distribution calculated from the
chronology of Harland et al. (29) is given as the solid line in Fig. 9.
The polarity length distribution is the number of interval lengths
longer than the length plotted on the horizontal axis. A reassess-
ment of the magnetic anomaly data has been performed by Cande
and Kent (30, 31) to obtain an alternative magnetic time scale. The
polarity length distribution of their time scale normalized to the
same length as the Harland et al. time scale, is presented as the
dashed curve. The two distributions are nearly identical. These plots
suggest that the polarity length distribution is better fit by a power
law for large polarity lengths than by an exponential distribution, as
first suggested by Cox (32). The same conclusion has been reached
by Gaffin (33) and Seki and Ito (34).

The third curve, plotted with a dashed-dotted line, represents the
polarity length distribution estimated from the magnetic time scale
between C1 and C13 with ‘‘cryptochrons’’ included and scaled to
the length of the Harland et al. (29) time scale. Cryptochrons are
small variations recorded in the magnetic anomaly data that may
either represent variations in paleomagnetic intensity or short
reversals (35, 36). Cryptochons occur with a time scale at the limit
of temporal resolution of the reversal record from magnetic anom-
alies of the sea floor. The form of the polarity length distribution

Fig. 7. Paleointensity of the intensity of Earth’s magnetic field as inferred
from sediment cores for the past 4 Ma from Meynadier et al. (23). The data are
expressed as the virtual axial dipole moment (VADM) with reversed polarity
data given by negative values.
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estimated from the record between C1 and C13 including crypto-
chrons is not representative of the entire reversal history because of
the variable reversal rate that concentrates many short polarity
intervals in this time period. However, this distribution enables us
to estimate the temporal resolution of the reversal record history.
The distribution estimated from C1 to C13 has many more short
polarity intervals than those of the full reversal history starting at
a reversal length of 0.3 Myr. Above a time scale of 0.3 Myr the
magnetic time scale is nearly complete. Below it, many short
polarity intervals may be unrecorded.

To show that this distribution is consistent with binormal 1�f
noise intensity variations, we have generated synthetic Gaussian
noises with a power spectrum proportional to 1�f, a mean value of
8.9  1022 Am2, and an SD of 3.4  1022 Am2 as obtained by Kono
(20), representative of the field intensity in one polarity state. To
construct a binormal intensity distribution from the synthetic
normal distribution, we inverted every other polarity interval to the
opposite polarity starting from its minimum value below the zero
intensity axis and extending to its next minimum below the zero.
The result of this procedure on the Gaussian, 1�f noise of Fig. 10
is presented in Fig. 11. Its irregular polarity lengths are similar to
those in the marine sediment data of Fig. 7.

The operation of reversing the paleomagnetic intensity when
it crosses the zero intensity value is consistent with models of the
geodynamo as a system with two symmetric attracting states of
positive and negative polarity such as the Rikitake disk dynamo.
Between reversals, the geomagnetic field fluctuates until a
fluctuation large enough occurs to cross the energy barrier into
the other basin of attraction.

We have computed the distributions of lengths between succes-
sive reversals for 20 synthetic noises scaled to length 169 Ma, the
length of the reversal chronology, and averaged the results in terms
of the number of reversals. The results are plotted as the solid curve
along with the Harland et al. (29) time scale (dashed curve) in Fig.
11. The dots in Fig. 11 are the maximum and minimum values
obtained in the 20 synthetic reversal chronologies for each reversal
rank, thus representing 95% confidence intervals. The synthetic
polarity length distribution matches that of the Harland et al. time
scale within the 95% confidence interval over all time scales plotted
except for the Cretaceous superchron, which lies slightly outside of
the 95% confidence interval, and reversals separated by less than
about 0.3 Myr. The overprediction of very short reversals could be
a limitation of the model or a result of the incompleteness of the
reversal record for short polarity intervals. As mentioned, the
temporal resolution of the magnetic time scale inferred from
magnetic anomalies is approximately 0.3 Myr. We conclude that the
polarity length distribution produced from binormal 1�f intensity

variations is consistent with the observed polarity length distribu-
tion for all time scales for which the reversal record is complete.

We next consider whether the agreement illustrated in Fig. 11
is unique to 1�f noise. We have computed polarity length
distributions by using binormal intensity variations with power
spectra f�0.8 and f�1.2. These results along with the 1�f result
from Fig. 10 are given in Fig. 12. The shape of the polarity length
distribution is very sensitive to the exponent of the power
spectrum. A slight increase in the magnitude of the exponent
results in many more long polarity intervals than with 1�f noise.
We conclude that the agreement in Fig. 12 between the synthetic
reversal distribution and the true reversal history is unique to 1�f
noise and provides strong evidence that the dipole moment has
1�f behavior up to time scales of 170 Myr.

A binormal, 1�f noise geomagnetic field variation is consistent
with the qualitative results of Pal and Roberts (37) who found an
anticorrelation between reversal frequency and paleointensity.
This anticorrelation is evident in the synthetic 1�f noise of Fig.
11. During the time intervals of greatest average paleointensity
the reversal rate is lowest.

It is generally believed that secular geomagnetic variations are
the results of internal dynamics whereas longer time scale phenom-
ena such as variations in the reversal rate are controlled by
variations in boundary conditions at the core–mantle boundary
(CMB) (38). Variations in mantle activity have been proposed as

Fig. 8. Power spectrum of the geomagnetic field intensity variations estimated
with the use of the Lomb periodogram from sediment cores of Meynadier et al.
(22, 23) and archeomagnetic data from Kovacheva (21). The power spectrum S is
given as a function of frequency f for time scales of 100 years BP to 4 Ma.

Fig. 9. Cumulative frequency-length distribution of the lengths of polarity
intervals during the last 170 Ma from the time scale of Harland et al. (29) (solid
curve), Cande and Kent (30, 36) (dashed curve), and the Cande and Kent (30, 36)
time scale from C1 to C13 with cryptochrons included (dashed and dotted line).

Fig. 10. A binormal 1�f noise constructed from a 1�f noise with a mean of
8.9  1022 Am2 and an SD of 3.4  1022 Am2 representing the geomagnetic
field intensity (VADM) in one polarity state. The binormal noise was then
constructed by multiplying the intensity values of every second interval be-
tween zero crossings by �1 to create a binormal distribution.
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the driving force for reversals (39). However, our observation of
continuous 1�f spectral behavior from time scales of 100 yr to 170
Myr suggests that internal variability may control variations in
geomagnetic intensity over the entire range of time scales analyzed
here.

Conclusions
At frequencies below about 1�(40 kyr), the noise spectrum of
atmospheric temperature is f lat (white noise). Radiative transfer
from the atmosphere is balanced against the solar input. At
frequencies between about 1�(40 kyr) and 1�(2 kyr), the global
temperature drifts and is a Brownian walk. The oceans and
atmosphere act as a single thermal bath that is not buffered by
radiative losses to infinity. At frequencies between about 1�(2
kyr) and 1�(1 month), the atmospheric temperature is stationary
and is well approximated by a self-affine behavior with a
power-law power spectrum with exponent of � 1

2
. In this

frequency range, the atmospheric temperature is buffered by
heat exchange with the oceans, which act as a near-isothermal
bath. At frequencies between about 1�(1 month) and 1�(1 day),
the temperatures at continental stations again drift, and are well

approximated by a nonstationary self-affine behavior with an
exponent of � 3

2
, whereas maritime stations remain with

an exponent of � 1
2
. The maritime stations are buffered by the

oceanic heat sink, whereas the continental stations are not.
We also considered the temporal variability of Earth’s mag-

netic field. By combining a variety of paleointensity measure-
ments, we are able to obtain the power spectrum of the dipole
moment of the field over the frequency range 1�(4 Myr) to
1�(100 yr). Over this entire range, the power spectrum is well
approximated by a 1�f self-affine time series.

As a further test of this result we considered the field’s reversal
record. We produced synthetic 1�f time series with the observed
mean and variance of Earth’s magnetic field. Each time a
synthetic field reached zero field intensity, we assumed that the
polarity of the field was changed. We then compared the
statistics of the synthetic fields with the observed statistics. Good
agreement was found.

Even though the dynamo driving the earth’s magnetic field is
extremely complex, the statistical behavior of the resulting
magnetic-field time series is quite simple. This simplicity must be
one of the primary tests for the validity of new dynamo theories.
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Fig. 11. Cumulative frequency-length polarity interval distributions from
the Harland et al. (29) time scale and that of the binormal 1�f noise model of
intensity variations. The distribution from the Harland et al. time scale (dashed
curve) was also given in Fig. 9. The solid line represents the average cumulative
distribution from the 1�f noise model. The dotted lines represent the mini-
mum and maximum reversal length distributions for 20 numerical experi-
ments, thereby representing 95% confidence intervals.

Fig. 12. Cumulative frequency-length polarity interval distributions for the
1�f noise model of intensity variations (shown in the middle, also given in Fig.
5) and for intensity variations with power spectra proportional to f � 0.8 and
f � 1.2. This plot illustrates that the polarity length distribution is very sensitive
to the form of the power spectrum, allowing us to conclude that the agree-
ment between the model and the observed distribution is unique to 1�f noise
intensity variations.
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