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We describe some new exactly solvable models of the structure of
social networks, based on random graphs with arbitrary degree
distributions. We give models both for simple unipartite networks,
such as acquaintance networks, and bipartite networks, such as
affiliation networks. We compare the predictions of our models to
data for a number of real-world social networks and find that in
some cases, the models are in remarkable agreement with the data,
whereas in others the agreement is poorer, perhaps indicating the
presence of additional social structure in the network that is not
captured by the random graph.

A social network is a set of people or groups of people,
“actors” in the jargon of the field, with some pattern of
interactions or “ties” between them (1, 2). Friendships among a
group of individuals, business relationships between companies,
and intermarriages between families are all examples of net-
works that have been studied in the past. Network analysis has
a long history in sociology, the literature on the topic stretching
back at least half a century to the pioneering work of Rapoport,
Harary, and others in the 1940s and 1950s. Typically, network
studies in sociology have been data-oriented, involving empirical
investigation of real-world networks followed, usually, by graph
theoretical analysis often aimed at determining the centrality or
influence of the various actors.

Most recently, after a surge in interest in network structure
among mathematicians and physicists, partly as a result of
research on the Internet and the World Wide Web, another
body of research has investigated the statistical properties of
networks and methods for modeling networks either analyti-
cally or numerically (3, 4). One important and fundamental
result that has emerged from these studies concerns the
numbers of ties that actors have to other actors, their so-called
“degrees.” It has been found that in many networks, the
distribution of actors’ degrees is highly skewed, with a small
number of actors having an unusually large number of ties.
Simulations and analytic work have suggested that this skew-
ness could have an impact on the way in which communities
operate, including the way information travels through the
network and the robustness of networks to removal of actors
(5-7). In this article we describe some new models of social
networks that allow us to explore directly the effects of varying
degree distributions.

Empirical Data

Before discussing our models, we first describe briefly some of
the empirical results about real-world social networks that have
motivated our work.

Recent work on social networks within mathematics and
physics has focused on three distinctive features of network
structure. The first of these is the “small-world” effect, which
was highlighted in early work by Pool and Kochen (8) and by
Milgram (9). In his now-classic 1967 paper (9), Milgram
described an experiment he performed involving letters that
were passed from acquaintance to acquaintance, from which
he deduced that many pairs of apparently distant people are
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actually connected by a very short chain of intermediate
acquaintances. He found this chain to be of typical length of
only about six, a result which has passed into folklore by means
of John Guare’s 1990 play Six Degrees of Separation (10). It has
since been shown that many networks have a similar small-
world property (11-14).

It is worth noting that the phrase “small world” has been used
to mean a number of different things. Early on, sociologists used
the phrase both in the conversational sense of two strangers who
discover that they have a mutual friend—i.e., that they are
separated by a path of length two—and to refer to any short path
between individuals (8, 9). Milgram talked about the “‘small-
world problem,” meaning the question of how two people can
have a short connecting path of acquaintances in a network that
has other social structure such as insular communities or geo-
graphical and cultural barriers. In more recent work, D.J.W. and
S.H.S. (11) have used the phrase “small-world network” to mean
a network that exhibits this combination of short paths and social
structure, the latter being defined in their case in terms of
network clustering (see below). The reader may find it helpful to
bear these different definitions in mind when reading this and
other articles on this topic.

The second property of social networks that has been
emphasized in recent work is clustering. In an article in 1998,
D.J.W. and S.H.S. (11) showed that in many real-world
networks the probability of a tie between two actors is much
greater if the two actors in question have another mutual
acquaintance, or several. To put that another way, the prob-
ability that two of your friends know one another is much
greater than the probability that two people chosen randomly
from the population know one another. D.J.W. and S.H.S.
defined a “clustering coefficient,” usually denoted C, which is
the probability that two acquaintances of a randomly chosen
person are themselves acquainted. They showed for a variety
of networks that this clustering coefficient took values any-
where from a few percent to 40 or 50%, and other studies have
since shown similar results for other networks (14, 15). In many
cases, this clustering makes the probability of acquaintance
between people several orders of magnitude greater if they
have a common friend than if they do not.

The third of our three properties of networks is perhaps the
most important for the work described in this article, and was
mentioned in the introduction. It is the property of having a
skewed degree distribution, which has been particularly empha-
sized in the work of Albert, Barabasi, and coworkers (12, 16). In
Fig. 1, we show histograms of degree distributions, i.e., the
number of actors having a given degree, for three different types
of networks, all of them, arguably, social networks. The networks
shown are as follows.
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Fig. 1.

degree

Degree distributions for three different types of networks: (a) scientific collaboration networks of biologists (circles) and physicists (squares); (b) a

collaboration network of movie actors; (c) network of directors of Fortune 1000 companies. Note that ¢ has a linear horizontal axis, while all other axes are
logarithmic. Solid lines between points are merely a guide to the eye. a and b after Newman (14) and Amaral et al. (13), respectively. Data for c kindly provided

by G. Davis.

(a) Scientific collaboration networks (14, 17): Networks in
which the actors are scientists in various fields and the ties
between them are collaborations, defined as coauthorship
of one or more scientific articles during the period of the
study (degree = number of collaborators of a scientist).

(b) Movie actor collaborations (11, 13): A network in which
the actors are, well, actors—movie actors in this case—
and a tie between two of them represents appearance in
the same movie (degree = number of other actors with
whom an actor has costarred).

(¢) Company directors (18, 19): A network in which the actors
are directors of companies in the 1999 Fortune 1000 (the
one thousand US companies with the largest revenues in
1999). A tie between two directors indicates that they sat
on the same board together (degree = number of others
with whom a director sits on boards).

In the first two of these networks, the degree distribution has
a highly skewed form, approximately obeying a power law for a
part of its range (a straight line on the logarithmic scales used),
although having an apparently exponential cutoff for very high
values of the degree (13). In the third network, the distribution
is much less skewed, having a sharp peak around degree 10, and
a fast (approximately exponential) decay in the tail. One possible
explanation for the difference between the first two cases and the
third is that maintenance of ties in the third network, the network
of company directors, has a substantial cost associated with it. It
takes continual work to be a company director. Collaboration
between scientists or movie actors, on the other hand, carries
only a one-time cost, the time and effort put into writing an
article or making a movie, but the tie gained is (by the definition
used here) present indefinitely thereafter. This difference may
put a sharper limit on the number of directorships a person can
hold than on numbers of collaborators.

Recent research on networks has focused a lot of attention on
those networks with skewed degree distributions (3, 4, 12, 13,
20-22), and we will consider these in the present article also.
However, the methods and models we will describe are not
restricted to this case. As we will show, our models can be used
to mimic networks with any desired degree distribution.

Random Graphs with Arbitrary Degree Distributions

In 1959, Erdés and Rényi (23) published a seminal article in
which they introduced the concept of a random graph. A random
graph is simple to define. One takes some number N of nodes or
“vertices” and places connections or “edges” between them,
such that each pair of vertices i, j has a connecting edge with
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independent probability p. We show an example of such a
random graph in Fig. 2. This example is one of the simplest
models of a network there is, and is certainly the best studied; the
random graph has become a cornerstone of the discipline known
as discrete mathematics, and many hundreds of articles have
discussed its properties. However, as a model of a real-world
network, it has some serious shortcomings. Perhaps the most
serious is its degree distribution, which is quite unlike those seen
in most real-world networks.

Consider a vertex in a random graph. It is connected with
equal probability p with each of the N — 1 other vertices in the
graph, and hence the probability p, that it has degree exactly k
is given by the binomial distribution:

N-1
Pr =< k )pk(l -pN Tk (1]

Noting that the average degree of a vertex in the network is z =
(N — 1)p, we can also write this as

_(N—l) z kl z N X
Pe=\ & N-1-2z TN-1 Sk 2

where the last approximate equality becomes exact in the limit
of large N. We recognize this distribution as the Poisson
distribution. A large random graph has a Poisson degree
distribution. This degree distribution makes the random graph
a poor approximation to the real-world networks discussed in
the previous section, with their highly skewed degree distri-
butions. On the other hand, the random graph has many
desirable properties, particularly the fact that many features of
its behavior can be calculated exactly. This leads us to ask an
obvious question: Is it possible to create a model that matches
real-world networks better but is still exactly solvable? We
show now that it is.

Suppose that we want to make a model of a large network for
which we know the degree distribution but nothing else. That is,
we are given the (properly normalized) probabilities p, that a
randomly chosen vertex in the network has degree k. We can
make a model network with this same degree distribution by
using the following algorithm, which is due to Molloy and Reed
(24). We take a number N of vertices, and we assign to each a
number k£ of “stubs” or ends of edges, where k is a random
number drawn independently from the distribution p, for each
vertex. Now we choose those stubs randomly in pairs and join
them up to form edges between the vertices. This procedure will
produce a graph with exactly the desired degree distribution, but
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Fig.2. Anexample of a standard random graph of the type first discussed by
Erdés and Rényi (23). In this case, the number of vertices N is 16 and the
probability p of an edge is 1/7.

which is in all other respects random. To put it another way, we
have generated a graph that is drawn uniformly at random from
the set of graphs with the given degree distribution. Given that
the degree distribution was the only information we had about
the network in question, this is the appropriate thing to do.

(The algorithm above has one small problem: If the number
of stubs generated is odd, we cannot match them all up in pairs.
This problem is easily corrected, however; if the number is found
to be odd, we throw one vertex away and generate a new one
from the distribution py, repeating until the number of stubs is
even.)

This then is our simplest model for a social network.

Exact Results

It turns out that many properties of the network model described
above are exactly solvable in the limit of large network size. The
crucial trick for finding the solution is that instead of working
directly with the degree distribution p,, we work with a “gen-
erating function” Gy(x), which is defined as

Golx) = 2, p. [3]

k=0

This function encapsulates all of the information in pg, but does
so in a form which turns out to be easier to work with than py
itself. Notice for example that the average degree z of a vertex
in the network is given simply in terms of a derivative of Gy:

2= kpi = Gi(1). [4]

k

Notice also that the normalization condition on p, has a simple
expression in terms of the generating function: If py is properly
normalized then Gy(1) = 1.

Here we will not go into all the details of our derivations, but
give a summary of the important results. The reader in search of
mathematical nitty-gritty should consult ref. 15.

The most striking property of our model networks is that they
exist in two different regimes. Depending on the exact distribu-
tion py of the degrees of vertices, they may either be made up of
many small clusters of vertices connected together by edges, also
called “components,” or they may contain a “giant compo-
nent”—a group of connected vertices that fills a significant
portion of the whole network and whose size scales up with the
size of the whole network—in addition to a number of small
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Fig. 3. Size S of the giant component (Top) and average size (s) of clusters
excluding the giant component (Bottom) for graphs with the degree distri-
bution given in Eq. 9, as a function of the cutoff parameter «. The curves are
for, left to right, 7 = 0.6-3.2 in steps of 0.4.

components. The fraction S of the network that is filled by the
giant component is given by

S=1-Gyu), [5]
where u is the smallest non-negative real solution of
zu = Golu), [6]

with z given by Eq. 4. (This result is not new to our work. An
equivalent formula has been derived previously by different
methods; see ref. 25.) For some distributions py, Egs. 5 and 6 give
S = 0, which indicates that there is no giant component.

The average size of components in the network, excluding the
giant component if there is one, is

z%u?
s)=1+ "= "—"—7. 7
O Gyl - Gl 7l
To give a feeling for what these results mean, consider the
following degree distribution:

0 fork =0

Pr= {ck_fe_k/" fork = 1. 8]
This is a distribution of the form seen in Fig. 1 @ and b: a
power-law distribution characterized by the exponent 7, with an
exponential cutoff characterized by the cutoff length k. The
constant c is fixed by the requirement that the distribution be
normalized Zxp, = 1, which gives ¢ = [Li,(e~V¥)]"!, where
Li,(x) is the nth polylogarithm of x. Thus,

kfrefk/x
pk:m fork=1. [9]

Substituting into Eq. 3, we then get

G B Li,(xe %) 10
olx) = Li (e %) - [10]
We can now use this function in Eqs. 5-7 to find the size of the
giant component and the average component size for graphs of
this type. The results are shown in Fig. 3.

The figure shows S and (s) as a function of the cutoff
parameter « for a variety of different values of the exponent 7.

Newman et al.
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Fig. 4. Phase diagram for networks with the skewed degree distribution
defined in Eqg. 9. The solid line marks the boundary between the region in
which a giant component exists and the one in which it does not.

The transition at which the giant component appears is clearly
visible in Fig. 3 (Top) for each curve, and occurs at a value of k
which gets larger as 7 gets larger. The average cluster size (s)
diverges at this transition point, as seen in Fig. 3 (Bottom).

The existence, or not, of a giant component in the network has
important implications for social networks. If, for example,
information spreads on a network by person to person commu-
nication, it can only get from person A to person B if there is at
least one connected path of individuals from A to B through the
network. The components in a network are precisely those sets
of individuals who have such a path between them, and hence can
communicate with one another in this way. If there is no giant
component in a network, then all components are small and
communication can only take place within small groups of
people of typical size (s). If, on the other hand, there is a giant
component, then a large fraction of the vertices in the network
can all communicate with one another, and the number S is this
fraction.

Looking at Eq. 7 we see that the divergence in (s) occurs when
Go(u) = z. We also know that § = 0 at this point, and using Eq. 5
and the fact that Go(1) = 1 always, we conclude that the transition
point at which the giant component appears is given by

Gy(1) = z. [11]

As an example of this we show in Fig. 4 the resulting “phase
diagram” for the class of networks defined by Eq. 9. This plot shows
which regions of the 7« plane contain a giant component and
which do not. Two special points worthy of note in this figure are
the points at which the solid line marking the phase boundary
intersects the axes. At one end it intersects the line 7 = 0 at the point
k = [log3]7' = 0.9102. .., implying that when « is below this value
a giant component can never exist, regardless of the value of 7. At
the other end it intersects the line k = o0 at a value of 7, which is
the solution of {(7 — 2) = 2{(7 — 1), or around 7 = 34788 ...,
implying that for values of 7larger than this, a giant component can
never exist, regardless of the value of k. The second of these results
was derived by Aiello et al., using a different method (26).

Almost all networks found in society and nature seem to be
well inside the region in which the giant component exists;
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Fig. 5. Mean distance between vertices in 13 scientific collaboration net-
works, from the theoretical prediction, Eq. 14, and from direct measurements.
If theory and measurement agreed perfectly, all points would lie on the dotted
line [after Newman (17)].

networks with no obvious giant component are rare. This
statement may be a tautology, however; it is possible that it rarely
occurs to researchers to consider a network representation of a
system which is not heavily interconnected.

We can also show that our networks have short average path
lengths between vertices, path lengths that increase logarithmi-
cally with the size N of the network. We find that the average
number z,, of vertices a distance m steps away from a given vertex
is given recursively by

Gy(1)
Zm = ’ Zm — 15 12
Go(l) 1 [ ]
and hence that
z m—1
2 = [3] 21, [13]
21

where z; = z is synonymous with the average degree of a vertex
and z, is the average number of second neighbors of a vertex.
Thus, if we know these two numbers for a network, then we can
predict the average number of neighbors any distance away from
a given vertex.

To calculate typical path lengths in the network, we now
observe that when the number of vertices z, a distance ¢ away
from a given vertex is equal to the total number of vertices in the
whole network, then ¢ is roughly equal to the typical distance
among all pairs of vertices. Substituting m — ¢ and z;, — N in
Eq. 13 and rearranging, we then get

_ log(N/z))

= . 14
log(z,/z1) [14]

Thus, the typical distance between vertices is indeed increasing
only logarithmically with N.

As a demonstration of this result, consider Fig. 5, in which
we show the mean distance between vertices in 13 actual
networks of collaborations among scientists, as described in
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Empirical Data, plotted against the values of the same quan-
tities predicted by Eq. 14. If theoretical and empirical values
agreed perfectly, all the points in the figure would fall on the
dotted diagonal line. As the figure shows, agreement is not
perfect, but nonetheless sufficiently good to give us some
confidence in the theory.

Affiliation Networks and Bipartite Graphs

One of the biggest problems in studying social networks is the
presence of uncontrolled biases in the empirical data. Studies of
acquaintance networks and similar social networks are usually
carried out either by interviewing participants or by circulating
questionnaires, asking actors to identify others with whom they
have ties of one sort or another. Studies of this kind have taught
us much about the structure of society, but the experimental
method has some problems. First, the data derived are limited
in number, because it takes a lot of work to compile a data set
of any substantial size, and practical studies have been limited
mostly to a few tens or hundreds of actors. Second, there are
inevitably large subjective biases in the data obtained, deriving
from variations in the view of the respondents about what
constitutes a tie and how strong those ties are.

There is, however, one type of social network that in many
cases avoids both of these shortcomings—the so-called affilia-
tion network. An affiliation network is a network in which actors
are joined together by common membership of groups or clubs
of some kind. Examples that have been studied in the past
include networks of individuals joined together by common
participation in social events (27) and CEOs of companies joined
by common membership of social clubs (28). The collaboration
networks of scientists and movie actors and the network of
boards of directors introduced in Empirical Data are also affil-
iation networks, in which the groups to which actors belong are
the groups of authors of a scientific article, the groups of actors
appearing in a single movie, or the groups of directors on a single
board. Because membership of groups can frequently be estab-
lished from membership lists or other resources, studies of these
networks need not rely on interviews or questionnaires, and this
makes possible the construction of much larger and more
accurate networks than in traditional social network studies. In
the case of the networks of scientists, for example, scientists’
coauthorship of articles may be recorded in bibliographic data-
bases, and these databases can then be used to reconstruct the
collaboration network (14).

Often affiliation networks are represented simply as uni-
partite graphs of actors joined by undirected edges—two
company directors who sit on a common board, for example,
being connected by an edge. However, this representation
misses out on much of the interesting structure of affiliation
networks. Affiliation networks are, at heart, bipartite struc-
tures: the information they contain is most completely repre-
sented as a graph consisting of two kinds of vertices, one
representing the actors and the other representing the groups.
Edges then run only between vertices of unlike kinds, con-
necting actors to the groups to which they belong. The bipartite
and unipartite representations of a small example network are
illustrated in Fig. 6.

We can model affiliation networks using machinery very
similar to that introduced in Exact Results. For an affiliation
network, there are two different degree distributions. To be
concrete, we will describe the developments in terms of company
directors and boards, but our results are applicable to any
affiliation network. The two degree distributions then are the
distribution of the number of boards that directors sit on and the
number of directors who sit on boards.

As a model for bipartite networks, we consider a random
bipartite graph in which the two types of vertices have the correct
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Fig. 6. (Top) A bipartite network. One can imagine the vertices A to K as
being, for example, company directors, and vertices 1to 4 as being boards that
they sit on, with lines joining each director to the appropriate boards. (Bot-
tom) The unipartite projection of the same network, in which two directors
are connected by an edge if they sit on a board together.

degree distributions, but again vertices (of unlike kinds) are
paired up at random to create the model network. To treat such
networks mathematically, we define two generating functions,
one for each of the two degree distributions. If we denote the
probability that a director sits on j boards by p; and the
probability that a board has k directors on it by gx, then the two
functions are

folx) = EP/' x, golx) = 2 qix~. [15]
J k
From these we can then define a further function
Go(x) = folgolx)/go(1)), [16]

which is the generating function for the number of neighbors of
a director in the unipartite projection of the affiliation network
pictured in Fig. 6. This function plays exactly the same role as the
function with the same name in Exact Results, and essentially all
of the same results apply. The average number of codirectors of
a vertex in the network is z = Gg(1). The affiliation network
shows a phase transition at which a giant component appears at
a point given by Eq. 11. The size of the giant component is given
by Egs. 5 and 6, the average size of other components is given
by Eq. 7, and the typical vertex-vertex distance through the
network is given by Eq. 14. (In fact, we implicitly made use of this
last result in constructing Fig. 5, because the networks depicted
in that figure are really affiliation networks.)

However, there are other results that are peculiar to bipar-
tite networks. For example, the clustering coefficient C, which
was discussed in Empirical Data, is asymptotically zero for the
unipartite random graphs of Exact Results—specifically, C ~
N~ for all degree distributions and hence goes to zero as N —
. This is not true, however, for bipartite random graphs.
Consider the following expression for the clustering coeffi-
cient (which is one of a number of ways it can be written):

3 X number of triangles on the graph
" number of connected triples of vertices

[17]

Newman et al.



Table 1. Summary of results of the analysis of four affiliation
networks

Clustering C Average degree z
Network Theory Actual Theory Actual
Company directors 0.590 0.588 14.53 14.44
Movie actors 0.084 0.199 125.6 113.4
Physics 0.192 0.452 16.74 9.27
Biomedicine 0.042 0.088 18.02 16.93

Here, “triangles” are trios of vertices, each of which is connected
to both of the others, and “connected triples” are trios in which
at least one is connected to both the others. The factor of 3 in
the numerator accounts for the fact that each triangle contrib-
utes to 3 connected triples of vertices, one for each of its 3
vertices. With this factor of 3, the value of C lies strictly in the
range from 0 to 1. Looking again at Fig. 6 Botfom, we see that
there are many triangles in the network of directors, triangles
which arise whenever there are three or more directors on a
single board. Thus, as long as there is a significant density of such
boards in the network, the value of C will be non-zero in the limit
of large graph size. In fact, it turns out that the clustering
coefficient can be expressed simply in terms of the generating
functions gy and Gy, thus:

M gi(1)
"N Gy

(18]

where M is the total number of boards of directors in the network
and N the total number of directors.

In Table 1, we compare the predictions of our method, for C
and for average numbers of codirectors/collaborators z, against
actual measurements for the four affiliation networks of Fig. 1:
boards of directors for the 1999 Fortune 1000 (19); collabora-
tions of movie actors taken from the Internet Movie Database
(http://www.imdb.com/); and two networks of scientific collab-
orations between 1995 and 1999, one in biology and medicine,
and one in physics (14). In the calculations, the degree distri-
butions p; and g, used to define the generating functions were
taken directly from the actual networks; that is, we created
networks that had degree distributions identical to those of the
real-world networks they were supposed to mimic, but which
were in all other respects entirely random.

As the table shows, our theory is remarkably precise for the
network of boards of directors. Both C and z are predicted to
within 1%. For the other networks the results are not as good.
The average number of collaborators is predicted with moderate
accuracy, but the values for the clustering coefficient, although
they are of the right order of magnitude, appear to be under-
estimated by a factor of about 2 by the theory.

In fact, it may well be that the cases in which the theory does
not agree with empirical measurements are really the most
interesting. Consider again for a moment what our random
graph models actually do. We have created random networks
in which the degree distributions are the same as those for the
real-world networks, but connections between vertices are
otherwise random. If the real-world networks were also ef-
fectively random, then we would expect the predictions of our
models to agree well with real-world measurements. That in
some cases the agreement is not perfect indicates lack of
randomness, i.e., nontrivial structure, in these networks. In
fact, there are some obvious possibilities for what this structure
might be. We see for example that the clustering coefficient of
the scientific collaboration networks is uniformly higher in real
life than in the theory. This finding may indicate perhaps that
scientists tend to introduce pairs of their collaborators to one
another, encouraging new collaborations and hence producing
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higher clustering in the networks. There is some empirical
evidence that indeed this is the case (29). We see also that the
typical number of a scientist’s collaborators is lower than the
number predicted by theory, which might arise because sci-
entists are collaborating repeatedly with the same colleagues,
rather than writing each article with new and different coau-
thors. Thus, the discrepancy between theory and experiment
may be highlighting real sociological phenomena in the net-
works studied.

In a sense, our random graph models of social networks are
just providing a baseline against which real-world networks can
be compared. Agreement between model and reality indicates
that there is no statistical difference between the real-world
network and an equivalent random network. Disagreement
points to additional underlying processes, which may well be
deserving of further investigation.

Conclusions

In this article, we have described and analyzed a class of model
networks that are generalizations of the much-studied random
graph of Erdds and Rényi (23). We have applied these to the
modeling of social networks. Our models allow for the fact that
the degree distributions of real-world social networks are often
highly skewed and quite different from the Poisson distribution
of the Erdés—Rényi model. Many of the statistical properties of
our networks turn out to be exactly solvable, once the degree
distribution is specified. We have shown that there can be a phase
transition at which a giant component of connected vertices
forms, and have given a formula for the position of this transi-
tion, as well as results for the size of the giant component and the
average size of other smaller components. We can also calculate
the average number of vertices a certain distance from a
specified vertex in the network, and this result leads to a further
expression for the typical distance between vertices in the
network, which is found to increase only logarithmically with the
size of the network. In addition, we have generalized our theory
to the case of bipartite random graphs, which serve as models for
affiliation networks, and thus calculated such properties as clus-
tering coefficients and average degree for affiliation networks.

We have compared the predictions of our models to a variety
of real-world network data. Predictions for typical vertex—vertex
distances, clustering coefficients, and typical vertex degree agree
well with empirical data in some cases. In others, they give re-
sults of the correct order of magnitude but differing from the
empirical figures by a factor of 2 or more. We suggest that
discrepancies of this sort indicate nonrandom social phenomena
at work in the shaping of the network. Thus, our models may
provide a useful baseline for the study of real-world networks: if
a comparison between a network and the equivalent random
model reveals substantial disagreement, it strongly suggests that
there are significant social forces at work in the network.

Finally, we point out that, although we have applied our
models only to social networks in this article, there is no reason
why they should not be used in the study of other kinds of
networks. Communication networks, transportation networks,
distribution networks, metabolic networks, and food webs have
all been studied recently by using graph theoretic methods, and
it would certainly be possible to apply the types of approaches
outlined here to these systems. We have given one such appli-
cation, to the World Wide Web, in ref. 15, and we hope that
researchers studying other types of networks will find our
methods of use also.
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