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Humans are on the verge of losing their status as the sole economic
species on the planet. In private laboratories and in the Internet
laboratory, researchers and developers are creating a variety of
autonomous economically motivated software agents endowed
with algorithms for maximizing profit or utility. Many economic
software agents will function as miniature businesses, purchasing
information inputs from other agents, combining and refining
them into information goods and services, and selling them to
humans or other agents. Their mutual interactions will form the
information economy: a complex economic web of information
goods and services that will adapt to the ever-changing needs of
people and agents. The information economy will be the largest
multiagent system ever conceived and an integral part of the
world’s economy. I discuss a possible route toward this vision,
beginning with present-day Internet trends suggesting that agents
will charge one another for information goods and services. Then,
to establish that agents can be competent price setters, I describe
some laboratory experiments pitting software bidding agents
against human bidders. The agents’ superior performance suggests
they will be used on a broad scale, which in turn suggests that
interactions among agents will become frequent and significant.
How will this affect macroscopic economic behavior? I describe
some interesting phenomena that my colleagues and I have ob-
served in simulations of large populations of automated buyers
and sellers, such as price war cycles. I conclude by discussing
fundamental scientific challenges that remain to be addressed as
we journey toward the information economy.

My colleagues† and I believe that, over the course of the next
decade or two, the world economy and the Internet will

merge into an information economy bustling with billions of
autonomous software agents that exchange information goods
and services with humans and other agents. Software agents will
represent—and be—consumers, producers, and intermediaries.
They will facilitate all facets of electronic commerce, including
shopping, advertising, negotiation, payment, delivery, and mar-
keting and sales analysis.

In the information economy, the plenitude and low cost of
up-to-date information will enable consumers (both human and
agent) to be better informed about products and prices. Like-
wise, producers will be better informed about and more respon-
sive to their customers’ needs. Low communication costs will
greatly diminish the importance of physical distance between
trading partners. These and other reductions in economic fric-
tion will be exploited and contributed to by software agents that
will respond to new opportunities orders of magnitude faster
than humans could.

The agents that we envision will not be mere adjuncts to
business processes. They will be economic software agents:
independent self-motivated economic players, endowed with
algorithms for maximizing utility and profit on behalf of their
human owners. From other agents, they will purchase inputs,
such as network bandwidth, processing power, or database
access rights, as well as more refined information products and

services. They will further refine and add value to these inputs
by synthesizing, filtering, translating, mining, or otherwise pro-
cessing them and will sell the resultant product or service to
other agents. In essence, these agents will function as automated
businesses that create and sell value to other agents and busi-
nesses and in so doing will form complex efficient economic webs
of information goods and services that adapt responsively to the
ever-changing needs of humans for physical and information-
based products and services. With the emergence of the infor-
mation economy will come previously undreamt-of synergies and
business opportunities, such as the growth of entirely new types
of information goods and services that cater exclusively to
agents. Ultimately, the information economy will be an integral
and perhaps dominant portion of the world’s economy.

How might this vision of the future be realized? In this paper,
I discuss a plausible route toward such a future, using a chro-
nological series of examples that begin with present-day Internet
trends and leading successively toward a full-f ledged informa-
tion economy. I begin with the example of two Internet startups
that revolve around eBay as a basis for discussing some techno-
logical, business, and legal trends that hint at a future in which
economic software agents will become important. Then, I use
the results of recent laboratory experiments in which we pitted
automated bidding agents against human bidders to illustrate
how and why economic software agents are likely to supplant
human economic decision makers. This demonstration forms the
basis for a further extrapolation, in which economic software
agents will be so numerous that interactions among them will
have a significant effect on the economy. I illustrate some of the
generic modes of collective behavior that one might observe in
markets dominated by economic software agents, using a sim-
ulation study of a market in which the vendors all use automated
price-setting algorithms. I conclude with a discussion of some
significant scientific challenges that lie ahead.

Trends
As a basis for discussing various technological, business, and
legal trends that point toward an eventual information economy,
I shall focus on examples involving two Internet startups that
revolve around eBay, the Internet’s dominant business-to-
consumer auction site.
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eSnipe is an Internet business that automates a common
bidding strategy on eBay called sniping. Sniping is the practice
of waiting until a few seconds before the close of an auction
before submitting one’s bid to prevent others from countering.
In a fascinating empirical and theoretical study (available at
http:��www.economics.harvard.edu��aroth�papers�ebay-
revisedOriginal.pdf), Roth and Ockenfels have found that snip-
ing is surprisingly common and successful (1). Rather than
submitting their bids directly to eBay, eSnipe subscribers indicate
a bid amount and a buffer time t, and eSnipe automatically places
the bid at a time t before the auction’s close. Currently, eSnipe
reports 50,000 subscribers, 10,000 bids submitted per day, and a
total of $200 million dollars in bids placed through it per year.
eSnipe plans to extend its service to cover auction sites other
than eBay in the near future.

Originally, eSnipe’s automated bidding service was offered to
bidders for free, and the site was supported by revenue from
online advertisements. However, under new ownership,‡ eSnipe
has begun to charge for winning bids at a rate of 1% of the bid
amount for winning bids over $25, up to a maximum fee of $10.

eSnipe exemplifies two distinct aspects of economic software
agents that will be important in the information economy. First,
it hints at the coming importance of agent-mediated electronic
commerce, in which software agents will automate or assist in
making and acting on economic decisions. Although eSnipe
merely carries out the direct explicit instructions supplied to it by
human owners, it clearly points the way toward more sophisti-
cated bidding agents endowed with adaptive strategies that will
participate in a variety of different auctions, both in the business-
to-consumer and business-to-business realms. Buy.com is an
early sign of related developments in automated posted pricing:
it uses software that implements ‘‘we will not be undersold’’ by
scanning competitors’ prices and undercutting them by a small
margin. Revenue management systems in use by the airline
industry for years clearly demonstrate the level of sophistication
that can be attained and the value that can be gained by using
automated posted pricing. It is easy to imagine that such
techniques could be applied much more generally to a wide
variety of industries.

Second, eSnipe is an early example of an information service
that charges for what it provides, rather than using the typical
ad-based Internet business model. I believe that charging for
information services is an essential development, and that the
successful emergence of the information economy depends on
the widespread adoption of this practice.

To understand why this is so, consider the following entry in
eSnipe’s Frequently Asked Questions:

‘‘Q. You should show the current price of the item on eBay so
I can know whether I need to increase my bidding amount.’’

‘‘A. Including the current price in the My Bids section sounds
good, but it poses some surprising problems. The most important
is that our servers would have to check eBay’s servers hundreds
of thousands of times a day, with no benefit to eBay.’’

‘‘eSnipe prefers that you use eBay as much as possible, so we
include the link to each item, allowing you to check the current
price quickly and easily. It’s better for eBay (you’re likely to see
their ads and announcements that way), [and] better for eSnipe
(we don’t anger them too much by polling their servers
constantly).’’

eSnipe is clearly concerned about how eBay would react if
eSnipe were to poll its site too frequently, and with good reason.
In 1999, eBay barred several auction aggregator sites (which
function like search engines for auctions), including Auction-
Watch, RubyLane, and BiddersEdge, from searching its site. All
had been guilty of a breach of ordinary ‘‘netiquette:’’ they had

ignored the ‘‘robot exclusion headers’’ (2) that eBay had inserted
into their web pages to warn away web crawlers. BiddersEdge
ignored eBay’s warning, and in December 1999, eBay sued
BiddersEdge for unlawful trespass, charging that they were
automatically polling eBay about 100,000 times per day in
response to queries from their customers.

In May 2000, Judge Ronald M. Whyte (3) issued an injunction
preventing BiddersEdge from scanning eBay’s pages directly.
Judge Whyte stated that, in his opinion, whereas the extra load
placed on eBay by BiddersEdge was not significantly harmful in
itself,

‘‘If BE’s (BiddersEdge) activity is allowed to continue un-
checked, it would encourage other auction aggregators to engage
in similar recursive searching of the eBay system, such that eBay
would suffer irreparable harm from reduced system perfor-
mance, system unavailability, or data losses.’’

Eugene Volokh (3), a law professor at University of Califor-
nia, Los Angeles, commented that

‘‘One direct consequence of this opinion is that it shows that
commercial sites will be able to block this kind of intelligent
agent access, spider access, by comparison services. That means
that some of these comparison sites will go out of business, or
they may have to pay money to get permission to use spiders and
abide by various restrictions.’’

The last clause of Volokh’s comment supports my contention
that information services (like eBay) should charge other infor-
mation services (like BiddersEdge) for the information they
provide. Although information resources might be provided to
people for free in hopes that the investment will be repaid by the
selling of banner ads, this business model fails with agents, which
tend not to read ads! If agents representing information services
pay one another for the information services that they use, then
the right incentives will be in place, and our envisioned economic
web of information goods and services can flourish (4). Infor-
mation and network resources will not be abused, or made
unavailable, as was the case with eBay and BiddersEdge.§
Furthermore, human owners of information services would
undoubtedly welcome increased agent-based demand for their
resources, rather than trying to ward it off with exclusion headers
or lawsuits.

Thus we anticipate that, regardless of whether its core business
is an e-commerce function (like eSnipe’s bidding service), a
search engine, an application service provider, or anything else,
an information service provider will charge for the service it
provides and pay for the services it uses. Automated businesses
of all sorts will automatically buy and sell information services,
and therefore they will be economic agents. Will we be able to
endow them with a sufficient amount of economic intelligence to
do the job? The next section suggests that we have every reason
to be optimistic.

The First Economic Software Agents
For the information economy vision to be realized, agents must
attain a level of economic performance that rivals or exceeds that
of typical humans; otherwise, people would not entrust agents
with making economic decisions on their behalf. In this section,
I describe a series of experiments that demonstrate the superi-
ority of software agents to humans in a commonplace price-
setting domain: the continuous double auction (CDA).

The CDA is an interesting choice for several reasons. First, it
is used extensively in the real world, particularly in financial
markets such as NASDAQ and the New York Stock Exchange.

‡Fittingly, the new owner bought eSnipe on eBay, using eSnipe to submit the winning bid!

§Ultimately, the breakdown in cooperation ended up being even more severe. BiddersEdge
and eBay settled out of court in March 2001, whereupon BiddersEdge promptly left the
auction aggregation business altogether, depriving many customers of a worthwhile
service and depriving eBay of the extra business that was brought to them via BiddersEdge.
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Second, there is an extensive literature on both all-human
experiments [dating back to Vernon Smith’s original work in
1962 (5)] and all-agent experiments [dating back at least as far
as the Santa Fe Institute Double Auction Tournament in the
early 1990s (6)], and ranging up to the present-day Trading
Agent Competition conducted by Michael Wellman and his team
at the University of Michigan (7, 8).

The CDA is a double-sided market: buyers place bids indi-
cating the amount they are willing to pay for an item, and sellers
place ‘‘asks’’ indicating the amount for which they would be
willing to sell an item. When a bid and an ‘‘ask’’ match or overlap,
a trade is executed immediately, hence the ‘‘continuous’’ in the
term CDA.

Experimental Setup. Our experiments took place at the Watson
Experimental Economics Laboratory at IBM Research in York-
town Heights. The lab is specially designed for a variety of
economics experiments involving human subjects. We modified
the existing software to accommodate a set of software bidding
agents that we had designed. Each experiment involved six
humans and six agents participating in a multiunit CDA, with
half of each type playing as buyers and the other half playing as
sellers. Some of the human subjects were students from local
community colleges; others were IBM researchers. Following
standard experimental economics practice, human participants
were paid in proportion to their surplus, i.e., their gains from
trade. This experimental protocol motivates human subjects to
play as if the limit prices assigned by the experimenter really
reflected their underlying value (if a buyer) or cost (if a seller).

A typical experiment consisted of 9–16 3-min periods. At the
beginning of each period, each participant was assigned a set of
limit prices, one for each of several identical units that one might
buy (or sell). A seller’s limit prices typically increased for each
successive unit sold, reflecting increasing production costs. A
buyer’s limit prices typically decreased with each successive unit
bought, reflecting demand saturation. Each human buyer or
seller had a unique set of limit prices that was fixed for the
duration of a period but was changed randomly every few
periods. To enable fair comparison between agent and human
performance, each human’s set of limit prices was mirrored by
one of the agents throughout the experiment. The figure of merit
for each participant was the total surplus they earned.

Each human buyer or seller was provided with a graphical user
interface (GUI) that supplied information about limit prices, the
current state of the market (the bid�ask queue), and historical
price trends in the market. The GUI also provided means for
entering bids or ‘‘asks.’’ Agent buyers and sellers were provided
with exactly the same set of information that was used to
generate the GUI for human participants; this information was
fed directly to the agents, who assimilated it and acted on it
asynchronously, in real time.

Agent Strategies. Agent strategies were based on two CDA
strategies that had been published previously: the Zero Intelli-
gence Plus (ZIP) strategy introduced by Cliff and Bruten (9) and
the GD strategy introduced by Gjerstad and Dickhaut (10). We
made numerous changes and enhancements to both strategies to
take into account different market conditions (11).

For example, ZIP was originally developed for a call market,
in which trades are executed only at the end of the period rather
than continuously. Therefore, the time at which a bid was made
was not an issue—only the price was important. In a continu-
ously clearing market like the CDA, bid timing is very important,
and it can be tricky. We introduced ‘‘fast’’ and ‘‘slow’’ variants of
both ZIP and GD. The fast variants considered placing bids as
soon as they were informed of new market activity. Interestingly,
fast bid timing had the potential to create avalanches of bidding,
as agents responded to one anothers’ responses. The slow

variants reconsidered their options at a rate based on an internal
timer—typically every 5 sec.

Another significant set of modifications dealt with the fact that
both ZIP and GD were originally designed for markets without
a persistent order queue. In other words, either an order traded,
or it was supplanted by a better one. However, for our experi-
ments, we used a more realistic version of the CDA with a
persistent order queue: it retains orders that either are or used
to be the best bid or ‘‘ask.’’ Use of the different variant of the
CDA necessitated several modifications to both ZIP and GD.
For example, GD maintains statistics of prices at which bids have
been accepted or rejected. Unmatched bids in an order queue
are in an ambiguous state—neither accepted nor rejected—
introducing subtleties and pathologies into the GD method that
required modifications (11).

Experimental Results. To establish a baseline, we first ran all-agent
experiments with homogeneous populations of ZIP or GD
agents. We found robust approximate convergence to the the-
oretical equilibrium prices, with the agents obtaining efficiencies
of between 0.98 and 1.00. (The efficiency is the ratio of the total
surplus to that which would have been attained had all trades
been executed at the theoretical equilibrium price.) This value
can be compared with prior measurements of the efficiency of
all-human populations, which tend to be slightly lower, in the
range of 0.95–0.98.

Then we ran six experiments as described above, with various
selections of agent types. Fig. 1 shows a typical example of the
time series of trade prices obtained from one experiment with six
fast-GD agents and six humans.

Our main observations about the six experiments are as
follows:

Y The average surplus earned by agents was 3–38% higher than
that obtained by humans, with the difference averaging about
20%.

Y In the latter phases of the experiments, this discrepancy was
reduced to about 5–7%. However, further experiments with
experienced humans failed to show any additional improvement.

Y Agents tend to fare considerably better than their human
counterparts on an individual basis as well. In a few experi-
ments, one of the six humans was able to just edge out his or
her agent counterpart, but typically the agents beat their
human counterparts substantially.

Y The proportion of trades occurring between agents and hu-
mans was substantial, typically in the range of 35–45% of all
trades, as compared with the 50% that would be obtained if
there were no bias. This finding demonstrates that agent and
human markets are strongly coupled, despite the fact that
agents can respond much more quickly to market events.

Y Trades that are far removed from the theoretical equilibrium
price are mostly agent traders taking advantage of poor
decisions by human traders, although the magnitude of these
blunders tends to decrease as humans learn over the course of
the experiment.

Y The greater the proportion of agents, the closer the market
comes to perfect efficiency, resulting (ironically) in better
performance by humans. This effect was first observed in an
experiment in which only three humans participated and
achieved an overall efficiency of just 3% less than the agents.
Subsequent informal experiments have borne out this effect.

Y An algorithm that fares well against other reasonably strong
agent opponents will not necessarily do well against humans.
In the slow-ZIP experiments, highly nonoptimal human strat-
egies fooled the ZIP algorithm into behaving even more poorly
than humans on the sell side of the market. We were able to
diagnose the problem and modify ZIP to avoid such pitfalls,
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but the point remains valid: in testing agent algorithms, there
is no substitute for doing real experiments with humans.

Prognosis. The agents we have developed are certainly not the
best we can envision. We have already begun to develop a
stronger bidding algorithm, called GDX, that resoundingly beats
GD and ZIP. Informal tests indicate that GDX fares even better
against humans than GD. Over time, we and the community as
a whole will develop stronger bidding strategies for the CDA and
a variety of other auction institutions. Thus human performance
can be expected to lag even further behind that of agents!
Consequently, we believe that agents will, to a large extent,
supplant humans in CDA and other auctions. Extending these
conclusions one step further, there is every reason to believe that
economic software agents will ultimately prove superior to
humans in other economic domains as well, including posted
pricing and negotiation.

This is not to say that humans will have no role in economic
decision making. We believe humans and agents will combine
their strengths. Market participants will really be human–agent
hybrids, with agents executing low-level strategies at a fast time
scale and humans executing higher-level metastrategies that
involve setting the parameters of agent bidding strategies or
selecting new agent bidding strategies. Perhaps agent–human
hybrid strategies will continue to coevolve against one another
in a perpetual arms race.

Emergent Behavior of Economic Software Agents
As economic software agents continue to grow in sophistication,
variety, and number, interactions among them will start to
become significant. These interactions will be both direct and
indirect. Direct interactions among agents will be supported by
a number of efforts that are already under way, including
standardization of agent communication languages, protocols,
and infrastructures by organizations such as the Foundation for
Physical Agents (FIPA) (http:��www.fipa.org) and Object Man-
agement Group (OMG) (http:��www.omg.org), myriad at-
tempts to establish standard ontologies for numerous products
and markets (CommerceNet being one prominent player in this
arena; see http:��www.commerce.net), and the development of
various micropayment schemes such as IBM MicroPayments
(12). Indirect interactions among agents will occur through the
medium of the economy itself. For example, two sellers com-
peting for market share may find that their actions are strongly

coupled, even if they do not communicate with one another
directly.

When interactions among agents become sufficiently rich,
some crucial qualitative changes will occur. One effect is that
new classes of agents will be designed specifically to serve the
needs of other agents. Among these will be ‘‘middle agents’’ (13)
that supply brokering and matchmaking services to other agents
for a fee.

Another effect, to which the rest of this section is devoted, is
the appearance of interesting collective modes of economic
behavior that arise from direct or indirect interactions among
economic software agents. Economic software agents will differ
in significant respects from their human counterparts, particu-
larly in the speed with which they can sense and respond to
changes and new opportunities. These differences are likely to
translate into new forms of collective economic behavior that are
not typically observed in today’s human-dominated economy.

To help anticipate emergent phenomena that may be com-
monplace in markets dominated by software agents, we have
analyzed and simulated several different market models. Several
phenomena appear to be quite generic: not only are they
observed in many different scenarios, but their root causes
appear to be very basic and general. The remainder of this
section summarizes two such phenomena that are particularly
interesting and ubiquitous: price war cycles, and an effect that we
call ‘‘the prisoner’s metadilemma.’’

Price War Cycles. We have studied several market models in which
many buyers purchase commodities or multiattribute goods from
two or more sellers. In these models, buyers are assisted by
automated purchasing algorithms that continually monitor
prices and product attributes and purchase an item from the
vendor that best satisfies the individual buyer’s utility function.
Several distinct variants of this model have been explored: a
market for a simple commodity (in which some buyers perform
only a limited search among the set of sellers) (14, 15); a
vertically differentiated market (in which the good may be
offered at different levels of quality by different sellers) (16); and
information filtering (17, 18) and information bundling models
(19) (in which the seller sets both the price and the parameters
that determine the product’s configuration).

We have experimented with several different pricing algo-
rithms in each of these models. One generic pricing algorithm
that applies in all of these scenarios is the ‘‘myoptimal’’ or myopic

Fig. 1. Trade price vs. time for experiment of October 25 with
six GD fast agents and six humans. The vertical dashed lines
indicate the start of a new trading period. The 16 trading
periods were divided into four phases, each with its own set
of limit prices. In each phase, p* is shown by the horizontal
dashed lines. Trades between two agents are shown with open
circles, between two humans with open squares, and between
an agent and a human with solid circles. The labels AB, AS, HB,
and HS refer to the average efficiency of Agent Buyers, Agent
Sellers, Human Buyers, and Human Sellers, respectively. The
overall market efficiency was 0.946:1.052 for the agents and
0.840 for the humans.
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best-response algorithm (MY). The MY algorithm assumes
perfect knowledge of the aggregate buyer demand, from which
it computes the profit landscape. The profit landscape is the
profit as a function of the price vector consisting of all of
the sellers’ prices (or the price and product parameter vector, if
the good is multiattribute and configurable). The MY algorithm
is conceptually simple: it selects the price (or price�product
parameter set) that yields the highest profit, given the current
offerings of the other sellers.

If all sellers use MY, then the same basic pattern emerges in
all of the models that we have explored. In markets in which the
sellers set the price only, the sellers’ prices cycle indefinitely in
a sawtooth pattern. Initially, all sellers charge the price that
would be set by a monopolist; this is followed by a phase in which
the price drops linearly as the sellers undercut one another in an
effort to grab most of the market share. Finally, at a price
somewhat above the marginal production cost for the good, the
sellers stop undercutting one another and suddenly raise their
price back to the monopolist level, whereon the cycle begins
anew. This sudden jump in price occurs at the point where the
margin is so low that grabbing most of the market share is no
longer the best policy; instead, it is best to make a large profit on
the relatively small market segment consisting of a portion of
buyers who do not diligently search for the best deal.

In models in which sellers can set product configuration
parameters (such as the subject matter of news or journal articles
in either the information filtering or information bundling
models), we observe an analog of this cyclical pattern that occurs
in the higher-dimensional space of price and product parame-
ters. Typically, price is finely quantized, and product parameters
are discrete-valued. In such a case, a typical price trajectory
consists of linear drops punctuated by sharp discontinuities up or
down. These discontinuities coincide with quick shifts by all
sellers to a new set of product parameters. This discontinuous
pattern will eventually repeat, although the number of discon-
tinuous phases within one cycle may be quite large. The conse-
quences for buyers in such markets could be dire: rather than
covering a broad range of niches, the sellers are, at any given
moment, focused on one particular product configuration, leav-
ing many buyers unsatisfied.

Although the intuitive explanations for the sudden price or
price�product discontinuities differ considerably across the var-
ious models, there is a generic mathematical principle that
explains why this behavior is so ubiquitous and provides insight
into how broadly it might occur in real agent markets of the
future. Mathematically, the phenomenon occurs in situations
where the underlying profit landscape contains multiple peaks.
Competition among sellers collectively drives the price vector in
such a way that each seller is forced down a peak in its profit
landscape, although its individual motion carries it up the peak.
At some point, a seller will find it best to abandon its current
peak and make a discontinuous jump to another peak in its
landscape. This discontinuous shift in the price vector suddenly
places all other sellers at a different point in their own profit
landscapes. If the next seller to move finds itself near a new peak
in its landscape, it will make an incremental shift in its price and
hence in the price vector; otherwise, it will respond with yet
another radical shift.

Although the models we have explored are highly idealized,
we believe that price or price�product cycles have the potential
to occur in approximate form in real agent markets of the future.
The insights we have obtained from our theoretical studies
suggest that markets are susceptible to cyclical price�product
wars when the following conditions are all met:

Y A profit landscape exists, i.e., there is a predictable relation-
ship between the price vector and each sellers’ profit. For this
condition to be satisfied, buyers must be extremely responsive

to changes in the price vector, i.e., there must be no inertia.
The existence of automated buying agents may move the
economy much closer to this ideal than it is at present.

Y The profit landscape contains multiple peaks. This condition is
virtually assured in any realistic situation, because such peaks
tend to be generated easily. Consider for example the common
preference for goods that are cheaper and suppose there are two
sellers. Then Seller 1’s profit landscape has a huge discontinuity
at p1 � p2: profits are much higher on the p1 � p2 side of the
p1 � p2 line than they are on the p1 � p2 side.

Y The sellers’ pricing algorithm permits a global search. One
option is for sellers to either know or learn the profit landscape
well enough to perform at least an approximate global opti-
mization of it. This option gives them the capability of jumping
discontinuously to a (temporarily) better solution. Another
option demands less knowledge and ability on the part of the
sellers. Even if they have little understanding of the global
features of the landscape, all they really need is an adventurous
spirit that causes them to at least occasionally experiment with
radically different prices or price�product parameters. When
they ‘‘get lucky,’’ this will cause the same dramatic shifts,
although the classic sawtooth pattern will be replaced by an
irregular pattern of jump discontinuities with random jitters
(representing exploration) superimposed on it.

Prisoner’s Metadilemma. Another general principle that emerges
from our studies is that a strategy (say for pricing) that is superior
when used in isolation may fare poorly if that strategy becomes
widely adopted, possibly leading to an overall decline in social
welfare.

A specific scenario in which we have observed this phenom-
enon is in the commodity market model mentioned in the
previous subsection. As was stated, universal adoption of the MY
strategy leads to cyclical price wars. We have also studied a
different strategy, called ‘‘derivative follower,’’ or DF, that
makes less stringent assumptions about the knowledge available
to the agent. DF does not rely on information about buyer
demand or even other sellers’ prices. It simply continues to move
the price in one direction as long as the profit increases, reversing
direction when the profit decreases. When all sellers use DF, the
resulting emergent behavior is quite interesting, with lots of
randomized upward and downward trends in price. On average,
however, the prices (and therefore the profits) are sustained at
a higher level than is achieved by a population consisting entirely
of MY sellers.

Suppose that a single MY seller is introduced into a previously
all-DF market. Then MY tends to just undercut the lowest DF
seller. Because the DF sellers tend to maintain fairly high prices,
the MY seller’s average profit is much higher than that of the DF
sellers. This profit differential creates an incentive for a DF seller
to shift to the MY strategy. If all sellers are free to choose their
pricing strategies, they will opt for MY, even if others have
already chosen MY. This incentive to shift strategies would drive
the market to a state in which all sellers use MY, hence earning
lower profits than they would have obtained had they all made
a pact to use DF.¶

This phenomenon is strongly reminiscent of the prisoner’s
dilemma, a well known non-zero-sum game in which rational
players end up with a lower payoff than would be obtained by a
pair of irrational players (31). Interestingly, however, it occurs at
the metalevel: choosing a pricing strategy rather than a specific
price. For this reason, we refer to it as the ‘‘prisoner’s metadi-
lemma.’’

The prisoner’s metadilemma has been observed in other

¶Note that such a pact would not be collusive in the usual sense, as the sellers are agreeing
only on their pricing strategies, not on the prices themselves.
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situations as well. Suppose that the MY strategy is not feasible
because buyer demand cannot be known or discovered explicitly.
Then one can use a machine learning method called ‘‘no internal
regret’’ (NIR) that learns a probabilistic pricing strategy (20). An
interesting form of emergent behavior actually makes NIR a
better individual player against DF than MY. DF responds to
NIR by setting its prices at the monopolist level, permitting NIR
to choose a price probability distribution with a preponderance
of mass just below the monopolist price. Thus there is a strong
incentive for DF sellers to switch to NIR. Even when this is done
asynchronously, regardless of the mix of NIR and DF players in
the market, there is at every step of the way an incentive for a
player to switch from DF to NIR, until ultimately all sellers play
NIR. At this point, the average profit sinks to a level significantly
lower than when all sellers use the DF (or the MY) strategy.

A similar phenomenon has been observed in an auction
scenario in which automated bidders use a variety of strategies.
Sophisticated strategies can fare well when used by only a few
agents but can lead to lower social welfare when overused (21,
22). It has also been observed in a multiagent resource allocation
scenario (23).

New Vistas and Scientific Challenges
The information economy will be by far the largest multiagent
system ever envisioned, with numbers of agents running into the
billions. Economic software agents will differ from economic
human agents in significant ways, and their collective behavior
may not closely resemble that of humans. It would be imprudent
to use the world’s economy as an experimental testbed for
software agents. Analysis and simulation are valuable tools that
can be used to anticipate some of the opportunities and problems
that lie ahead and to gain insights that can be incorporated into
the design of economic agents and mechanisms.

Our various attempts to model the future information econ-
omy suggest some fundamental scientific challenges that need to
be addressed. Several of these have to do with understanding and
harnessing collective effects that will become important after
economic software agents become sufficiently abundant that
their mutual interactions will affect markets and, ultimately, the
entire world economy. I shall conclude this paper by mentioning
a few of these challenges, which can also be viewed in a more
positive light as new vistas for scientific exploration.

The ability to create a new nonhuman breed of economic
player may engender a whole new engineering discipline within
economics. Rather than regarding mathematical models of
economic agents as approximate descriptions of human behav-
ior, they can be taken more seriously as precise prescriptions of
economic software agent behavior. It is likely that many existing
economic models and theories will be dusted off and extended
in new directions that are dictated by the new demands that will
be placed on them. They will be taken as blueprints, not
approximations. An example that we have pursued in our work
is the theory of price dispersion, which has traditionally been an
academic exercise aimed at explaining how prices in a compet-
itive market can remain unequal and above the marginal pro-
duction cost. Traditionally, it was natural to assume that search
costs were fixed and determined exogenously. In contrast, we
have used price dispersion theory as a launching point for
exploring how an information agent could strategically set search
costs to maximize its profits, a line of inquiry that has led to the
discovery of several interesting nonlinear dynamical effects (24).

Another serious set of challenges and new opportunities for
fundamental scientific developments arises in the realms of
machine learning and optimization. Economic software agents
will need to use a broad range of machine learning and optimi-
zation techniques to be successful. They will need to learn, adapt
to, and anticipate changes in their environment. Many of these
environmental changes will result directly or indirectly from

adaptation by other agents that are similarly using machine
learning and optimization. Yet much of the work on machine
learning and optimization (and practically all of the theorems)
assumes a fixed environment or opponent.

One example of economic machine learning and optimization
that we have explored pits two adaptive price setters against one
another (25, 26). Rather than using the MY strategy, which
chooses a price that optimizes immediate profits, the agents use
a reinforcement learning technique called ‘‘Q-learning’’ to max-
imize anticipated future discounted profits (32). Ordinary single-
agent Q-learning is guaranteed to converge to optimality. Very
little is known about the behavior of Q-learning in a multiagent
context. We observed that two competing Q-learning agents
converged to a fixed pricing strategy in some restricted situations
(the prices themselves followed a price war cycle of greatly
reduced amplitude). However, the agents were much more likely
to exhibit cycling in the pricing strategies (not the prices them-
selves); that is, they altered the way they responded to one
another’s prices episodically in an approximately cyclical pattern.
Interestingly, the two agents settled into different patterns,
despite the absence of any inherent asymmetry, and the time-
averaged profits of the agents were improved by the Q-learning
technique despite the lack of convergence. In general, under-
standing the dynamic interactions among a society of learners is
of fundamental theoretical and practical interest, and only a few
beginning efforts have been made in this area (25, 27–29).

A second example of the complex interplay between learn-
ing, optimization, and dynamics that can occur among inter-
acting economic software agents was explored in an informa-
tion bundling context (30). An agent representing an
information bundling service expressed its pricing policy as a
set of parameters that dictated a nonlinear dependency on the
type and number of articles offered in each category. The
agent’s objective was to maximize profits. To do so, it exper-
imented with various settings of price parameters, observed
the resulting profit, and used the well-known amoeba nonlin-
ear optimization technique to try to learn and climb the profit
landscape. Simultaneously, the buyers attempted to learn their
utility functions for the offered product by sampling it. Sta-
tistical f luctuations would sometimes lead buyers to falsely
conclude that the prices were too high to justify a purchase.
Once the buyers stopped purchasing articles, they had no
further source of information and would not reenter the
market unless the prices were lowered. In effect, the profit
landscape was changing continually, and the amoeba algo-
rithm’s implicit assumption that it was optimizing a static
function caused it to perform extremely poorly. Although the
buyers’ actual valuations were in fact static, their own learning
and experimentation created a dynamic that f lummoxed the
optimization algorithm, resulting in pricing behavior that
exacerbated the problem rather than correcting it. Although
we were able to correct this specific problem by making the
amoeba algorithm periodically reevaluate its old samples, it
seems likely that entirely new approaches involving a unified
understanding and treatment of learning, optimization, and
dynamics will have to be invented.

Fundamental scientific work in these and other areas will have
enormous implications for the future of electronic commerce
and the entire world economy.
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