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Recent work on adaptive systems for modeling financial markets is
discussed. Financial markets are viewed as evolutionary systems
between different, competing trading strategies. Agents are
boundedly rational in the sense that they tend to follow strategies
that have performed well, according to realized profits or accu-
mulated wealth, in the recent past. Simple technical trading rules
may survive evolutionary competition in a heterogeneous world
where prices and beliefs co-evolve over time. Evolutionary models
can explain important stylized facts, such as fat tails, clustered
volatility, and long memory, of real financial series.

In the past two decades economics has witnessed an important
paradigmatic change: a shift from a rational representative

agent analytically tractable model of the economy to a boundedly
rational, heterogeneous agents computationally oriented evolu-
tionary framework. This change has at least three closely related
aspects: (i) from representative agent to heterogeneous agent
systems; (ii) from full rationality to bounded rationality; and (iii)
from a mainly analytical to a more computational approach.
Kirman (1) has vividly described the limitations of the repre-
sentative agent framework and made forceful arguments for
modeling an economy as an interacting multi-agent system. Ref.
2 contains an extensive discussion of the importance of bounded
rationality in recent economic modeling.

Full rationality implies that all agents are rational and the
Rational Expectations Hypothesis (REH) thus fits nicely within
a representative agent framework. In contrast, in a heteroge-
neous world full rationality seems impossible, because it requires
perfect knowledge about the beliefs of all other agents. Obvi-
ously, heterogeneity complicates the modeling framework and
may lead easily to analytical intractability. A computational
approach thus seems to be better suited for investigating a
heterogeneous agent world. One might describe these observed
changes in economics as a shift in paradigm and research
methodology from a rather abstract Arrow-Debreu general
equilibrium representative agent model to a bounded rationality,
multi-agent based, computational approach to economics.

In finance in the last decade a similar paradigmatic shift seems
to occur, from a perfectly rational world where asset allocations
and prices are completely determined by economic fundamen-
tals (e.g., ref. 3), to a boundedly rational world where hetero-
geneous agents employ competing trading strategies and prices
may, at least partly, be driven by ‘‘market psychology’’ (e.g., ref.
4). An important goal of agent-based modeling of financial
markets is to explain important observed stylized facts such as:
(i) asset prices are persistent and have, or are close to having, a
unit root and are thus (close to) nonstationary; (ii) asset returns
are fairly unpredictable, and typically have little or no autocor-
relations; (iii) asset returns have fat tails and exhibit volatility
clustering and long memory. Autocorrelations of squared re-
turns and absolute returns are significantly positive, even at
high-order lags, and decay slowly; (iv) Trading volume is per-

sistent and there is positive cross-correlation between volatility
and volume.

A rapidly increasing number of structural heterogeneous
agent models have been introduced in the finance literature
recently [see for example refs. 5–25, as well as many more
references in these papers; see also the web sites on Agent
Based Computational Economics of Tesfatsion (http:��www.
econ.iastate.edu�tesfatsi�ace.htm) and on Agent Based Com-
putational Finance of LeBaron (http:��www.unet.brandeis.edu�
�blebaron�index.htm), for information and recent working
papers on interacting agent systems in economics and finance].
Some authors even talk about an Interacting Agents Hypothesis,
as a new alternative to the Efficient Market Hypothesis (EMH).
In all these heterogeneous interacting agent models different
groups of traders, having different beliefs or expectations,
coexist. Two typical trader types can be distinguished. The first
are rational, ‘‘smart money’’ traders or fundamentalists, believ-
ing that the price of an asset is determined completely by
economic fundamentals. The second typical trader type are
called chartists or technical analysts, believing that asset prices
are not determined by fundamentals, but that they can be
predicted by simple technical trading rules based upon patterns
in past prices, such as trends or cycles.

Most of the heterogeneous agent literature is computationally
oriented. Although a computational approach provides useful
insight and intuition, a disadvantage of computer simulations is
that it is not always clear what exactly causes an observed
simulation outcome. Fortunately, another paradigmatic shift in
the last three decades in mathematics, namely the study of
nonlinear possibly chaotic dynamical systems, opens the possi-
bility to approximate complicated computer models by simple,
stylized nonlinear systems. In particular, the fact that simple
deterministic nonlinear systems exhibit bifurcation routes to
chaos and strange attractors, with ‘random looking’ dynamical
behavior, has received much attention. For example, there are
two important phenomena in simple nonlinear systems which
may play an important role in generating some of the stylized
facts in finance. Volatility clustering may be explained by
so-called intermittent chaotic motion or by simultaneous coex-
istence of different attractors (e.g., coexistence of a stable steady
state and a stable limit cycle) leading to irregular switching
between low- and high-volatility phases.

Brock and Hommes (8–10) propose simple Adaptive Belief
Systems (ABS) to model economic and financial markets. The
simple ABS try to capture the essential features of the more
complicated artificial computer stock markets. An ABS is an
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evolutionary competition between trading strategies. Different
groups of traders have different expectations about future prices
and future dividends. For example, one group might be funda-
mentalists, believing that asset prices return to their fundamen-
tal equilibrium price, whereas another group might be chartists,
extrapolating patterns in past prices. Traders choose their trad-
ing strategy according to an evolutionary ‘‘fitness measure,’’ such
as accumulated past profits. Agents are boundedly rational, in
the sense that most traders choose strategies with higher fitness.
A convenient feature of an ABS is that the model can be
formulated in terms of deviations from a benchmark fundamen-
tal. In fact, the perfectly rational EMH benchmark is nested
within an ABS as a special case. An ABS may thus be used for
experimental and empirical testing to determine whether devi-
ations from a suitable RE benchmark are significant. In partic-
ular, the ABS exhibits coexistence of a stable steady state and a
stable limit cycle. When buffeted with dynamic noise, irregular
switching occurs between close to the fundamental steady-state
fluctuations when the market is dominated by fundamentalists,
and periodic fluctuations when the market is dominated by
chartists.

New classical economists have viewed ‘‘market psychology’’
and ‘‘investors sentiment’’ as being irrational however, and
therefore inconsistent with the REH. For example, Friedman
(26) argued that irrational speculative traders would be driven
out of the market by rational traders, who would trade against
them by taking long opposite positions, thus driving prices back
to fundamentals. Brock and Hommes (10) show that this need
not be the case and that simple, technical trading strategies may
survive evolutionary competition, even in the long run.

This paper reviews simple ABS and discusses some recent
extensions.

Adaptive Belief Systems
This section reviews the notion of an ABS, as introduced in refs.
8–10. An ABS is in fact a standard discounted value asset pricing
model derived from mean-variance maximization, extended to
the case of heterogeneous beliefs. Agents can either invest in a
risk-free asset or in a risky asset. The risk-free asset is perfectly
elastically supplied and pays a fixed rate of return r; the risky
asset, for example a large stock or a market index, pays an
uncertain dividend. Let pt be the price per share (ex-dividend)
of the risky asset at time t, and let yt be the stochastic dividend
process of the risky asset. Wealth dynamics is given by

Wt�1 � �1 � r�Wt � �pt�1 � yt�1 � �1 � r�pt�zt , [1]

where boldface variables denote random variables at date t � 1
and zt denotes the number of shares of the risky asset purchased
at date t. Let Et and Vt denote the conditional expectation and
conditional variance based on a publicly available information
set such as past prices and past dividends. Let Eht and Vht denote
the ‘‘beliefs’’ or forecasts of trader type h about conditional
expectation and conditional variance. Agents are assumed to be
myopic mean-variance maximizers so that the demand zht of type
h for the risky asset solves

max
zt

�Eht�Wt�1� �
a
2

Vht�Wt�1��, [2]

where a is the risk aversion parameter. The demand zht for risky
assets by trader type h is then

zht �
Eht�pt�1 � yt�1 � �1 � r�pt�

aVht�pt�1 � yt�1 � �1 � r�pt�

�
Eht�pt�1 � yt�1 � �1 � r�pt�

a�t
2 , [3]

where the conditional variance Vht � �t
2 is assumed to be equal

for all types. Let zs denote the supply of outside risky shares per
investor, assumed to be constant, and let nht denote the fraction
of type h at date t. Equilibrium of demand and supply yields

�
h�1

H

nht

Eht�pt�1 � yt�1 � �1 � r�pt�

a�t
2 � zs, [4]

where H is the number of different trader types. Brock and
Hommes focus on the special case of zero supply of outside
shares—i.e., zs � 0—for which the market equilibrium equation
can be rewritten as†

�1 � r�pt � �
h�1

H

nhtEht�pt�1 � yt�1�. [5]

Let us first discuss the EMH-benchmark with rational expec-
tations. In a world where all traders are identical and expecta-
tions are homogeneous the arbitrage market equilibrium Eq. 5
reduces to

�1 � r�pt � Et�pt�1 � yt�1�, [6]

where Et denotes the common conditional expectation of all
traders at the beginning of period t, based on a publicly available
information set It such as past prices and observed dividends—
i.e., It � {pt�1, pt�2, . . .; yt, yt�1, . . .}. It is well known that, using
the arbitrage Eq. 6 repeatedly and assuming that the transver-
sality condition

lim
k3 	

Et�pt�k�

�1 � r�k � 0 [7]

holds, the price of the risky asset is uniquely determined by
Eq. 8

p*t � �
k�1

	 Et�yt�k�

�1 � r�k . [8]

The price p*t in Eq. 8 is called the EMH fundamental rational
expectations (RE) price, or the fundamental price for short. The
fundamental price is completely determined by economic fun-
damentals and given by the discounted sum of expected future
dividends. In general, the properties of the fundamental price p*t
depend on the stochastic dividend process yt. A Stationary
Example focuses on a stationary example with an IID dividend
process yt, whereas A Nonstationary Example discusses a non-
stationary example with a geometric random walk for dividends.

It should be noted that in addition to the fundamental solution
(Eq. 8), so-called bubble solutions of the form

pt � p*t � �1 � r�t�p0 � p*0� [9]

also satisfy the arbitrage Eq. 6. It is important to note that along
the bubble solutions (Eq. 9), traders have rational expectations.
These rational bubble solutions are explosive and do not satisfy
the transversality condition. In a perfectly rational world, traders
realize that speculative bubbles cannot last forever and therefore
they will never get started, and the finite fundamental price p*t
is uniquely determined. In a perfectly rational world, all traders
thus believe that the value of a risky asset equals its fundamental
price forever. Changes in asset prices are solely driven by

†In the examples of ABS in A Stationary Example, we will add a noise term �t to the right-hand
side of the market equilibrium Eq. 5; representing a model approximation error.
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unexpected changes in dividends and random ‘‘news’’ about
economic fundamentals. In a heterogeneous evolutionary world
however, the situation will be quite different, and we will see that
evolutionary forces may lead to endogenous switching between
the fundamental price and the rational self-fulfilling bubble
solutions.

Heterogeneous Beliefs. We shall now be more precise about
traders’ expectations (forecasts) about future prices and divi-
dends. It will be convenient to work with

xt � pt � p*t , [10]

the deviation from the fundamental price. We make the follow-
ing assumptions about the beliefs of trader type h, for all h, t:

B1 Vht�pt�1 � yt�1 � �1 � r�pt�

� Vt�pt�1 � yt�1 � �1 � r�pt� � �t
2 .

B2 Eht�yt�1� � Et�yt�1�.

B3 All beliefs Eht�pt�1� are of the form Eht�pt�1�

� Et�p*t�1� � fh�xt � 1 , . . . , xt � L�.

[11]

According to assumption B1, beliefs about conditional variance
are equal for all types, as discussed above. Assumption B2 states
that expectations about future dividends yt�1 are the same for all
trader types and equal to the conditional expectation. All traders
are thus able to derive the fundamental price p*t in Eq. 8 that
would prevail in a perfectly rational world. According to as-
sumption B3, traders nevertheless believe that in a heteroge-
neous world prices may deviate from their fundamental value p*t
by some function fh depending on past deviations from the
fundamental. Each forecasting rule fh represents the model of
the market according to which type h believes that prices will
deviate from the commonly shared fundamental price. For
example, a forecasting strategy fh may correspond to a technical
trading rule, based on short-run or long-run moving averages, of
the type used in real markets. We will use the shorthand notation

fht � fh�xt � 1 , . . . , xt � L� [12]

for the forecasting strategy employed by trader type h.
An important and convenient consequence of the assumptions

B1–B3 concerning traders’ beliefs is that the heterogeneous
agent market equilibrium equation (Eq. 5) can be reformulated
in deviations from the benchmark fundamental. In particular,
substituting the price forecast (Eq. 11) in the market equilibrium
equation (Eq. 5) and using the facts that the fundamental price
p*t satisfies (1 � r)p*t � Et[p*t�1 � yt�1] and the price pt � xt �
p*t yields the equilibrium equation in deviations from the
fundamental:

�1 � r�xt � �
h�1

H

nhtEht�xt�1� � �
h�1

H

nht fht . [13]

An important reason for our model formulation in terms of
deviations from a benchmark fundamental is that in this general
setup, the benchmark rational expectations asset pricing model
is nested as a special case, with all forecasting strategies fht 
 0.
In this way, the adaptive belief systems can be used in empirical
and experimental testing to determine whether asset prices
deviate significantly from anyone’s favorite benchmark
fundamental.

Evolutionary Dynamics. The evolutionary part of the model de-
scribes how beliefs are updated over time, that is, how the

fractions nht of trader types in the market equilibrium equation
(Eq. 13) evolve over time. Fractions are updated according to an
evolutionary fitness or performance measure. The fitness mea-
sures of all trading strategies are publicly available, but subject
to noise. Fitness is derived from a random utility model and
given by

Ũht � Uht � �ht , [14]

where Uht is the deterministic part of the fitness measure and �ht
represents noise. Assuming that the noise �ht is IID across h �
1, . . . H, drawn from a double exponential distribution, in the
limit as the number of agents goes to infinity, the probability that
an agent chooses strategy h is given by the well known discrete
choice model or ‘‘Gibbs’’ probabilities‡

nht �
exp��Uh,t�1�

Zt�1
, Zt�1 � �

h�1

H

exp��Uh,t�1�, [15]

where Zt�1 is a normalization factor in order for the fractions nht
to add up to 1. The crucial feature of Eq. 15 is that the higher
the fitness of trading strategy h, the more traders will select
strategy h. The parameter � in Eq. 15 is called the intensity of
choice, measuring how sensitive the mass of traders is to selecting
the optimal prediction strategy. The intensity of choice � is
inversely related to the variance of the noise terms �ht. The
extreme case � � 0 corresponds to the case of infinite variance
noise, so that differences in fitness cannot be observed and all
fractions of Eq. 15 will be fixed over time and equal to 1�H. The
other extreme case � � �	 corresponds to the case without
noise, so that the deterministic part of the fitness can be observed
perfectly and in each period all traders choose the optimal
forecast. An increase in the intensity of choice � represents an
increase in the degree of rationality w.r.t. evolutionary selection
of trading strategies. The timing of the coupling between the
market equilibrium Eqs. 5 or 13 and the evolutionary selection
of strategies in Eq. 15 is crucial. The market equilibrium price pt
in Eq. 5 depends on the fractions nht. The notation in Eq. 15
stresses the fact that these fractions nht depend on past fitnesses
Uh,t�1, which in turn depend on past prices pt�1 and dividends
yt�1 in periods t � 1 and further in the past, as will be seen below.
After the equilibrium price pt has been revealed by the market,
it will be used in evolutionary updating of beliefs and determin-
ing the new fractions nh,t�1. These new fractions nh,t�1 will then
determine a new equilibrium price pt�1, etc. In the ABS, market
equilibrium prices and fractions of different trading strategies
thus coevolve over time.

A natural candidate for evolutionary fitness is accumulated
realized profits, as given by

Uht � �pt � yt � Rpt�1�
Eh,t � 1�pt � yt � Rpt�1�

a�2 � �Uh,t � 1 ,

[16]

where R � 1 � r is the gross risk free rate of return and 0 	 � 	
1 is a memory parameter measuring how fast past realized fitness
is discounted for strategy selection. The first term in Eq. 16
represents last period’s realized profit of type h given by the
realized excess return of the risky asset over the risk-free asset
times the demand for the risky asset by traders of type h. In the
extreme case with no memory—i.e., � � 0—fitness Uht equals
net realized profit in the previous period, whereas in the other
extreme case with infinite memory—i.e., � � 1—fitness Uht

‡See Manski and McFadden (27) and Anderson, de Palma, and Thisse (28) for extensive
discussion of discrete choice models and their applications in economics.
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equals total wealth as given by accumulated realized profits over
the entire past. In the intermediate case, the weight given to past
realized profits decreases exponentially with time.

A Stationary Example
This section presents a stationary example of Gaunersdorfer and
Hommes (29). The random dividend process is IID and given by

yt � y� � �t , [17]

with constant mean E[yt] � y�. In this case, the fundamental price
(Eq. 8) reduces to a constant given by

p* � �
k�1

	 y�

�1 � r�k �
y�

r
. [18]

Let there be two types of traders, with forecasting rules

p1,t�1
e � f1t � p* � v�pt�1 � p*�, 0 	 v 	 1, [19]

p2,t�1
e � f2t � pt�1 � g�pt�1 � pt�2�, g 
 0. [20]

Trader type 1 are fundamentalists, believing that tomorrow’s
price will move in the direction of the fundamental price p* by
a factor v. A special case occurs for v � 1, so that

f1t � pt�1 , [21]

and we will refer to this type as an EMH believer because the
naive forecast is consistent with a random walk for prices. Trader
type 2 are simple trend extrapolators, extrapolating the latest
observed price change, so that the forecasting rule now includes
two time lags. In the stationary example, we assume that beliefs
on the conditional variance are the same and constant for both
types—i.e.,

Vht�pt�1 � yt�1 � �1 � r�pt� � �2. [22]

Market equilibrium (Eq. 5) in a world with fundamentalists and
chartists as in Eqs. 19 and 20, with common expectations on IID
dividends Et[yt�1] � y�, becomes

�1 � r�pt � n1t�p* � v�pt�1 � p*��

� n2t�pt�1 � g�pt�1 � pt�2�� � y� � �t , [23]

where n1t and n2t represent the fractions of fundamentalists and
chartists, respectively, and �t is an IID random variable repre-
senting model approximation error.

Beliefs will be updated by conditionally evolutionary forces.
The basic idea is that fractions are updated according to past
fitness, conditioned on the deviation of actual prices from the
fundamental price. The evolutionary competitive part of the
updating scheme follows the framework with profits as the
fitness measure; the additional conditioning on deviations from
the fundamental is motivated by the approach taken in the Santa
Fe artificial stock market in refs. 5 and 21. The evolutionary
part of the updating of fractions yields the discrete choice
probabilities

ñht � exp��Uh,t�1��Zt�1 ; h � 1, 2 [24]

as in Eq. 15 with the fitness measure Uh,t�1 given by past realized
profits as in Eq. 16. In the second step of updating of fractions,
the conditioning on deviations from the fundamental by the
technical traders is modeled as

n2t � ñ2t exp����pt�1 � p*�2�; � � 0 [25]

n1t � 1 � n2t . [26]

According to Eq. 25 the fraction of technical traders decreases
more, the further prices deviate from their fundamental value
p*. As long as prices are close to the fundamental, updating of
fractions will almost completely be determined by evolutionary
fitness (Eq. 24), but when prices move far away from the
fundamental, the correction term exp[��(pt�1 � p*)2] in Eq. 25
becomes small. The majority of technical analysts thus believes
that temporary speculative bubbles may arise but that these
bubbles cannot last forever and that at some point a price
correction towards the fundamental price will occur. The con-
dition in Eq. 25 may be seen as a weakening of the transversality
condition in a perfectly rational world, allowing for temporary
speculative bubbles.

The noisy conditional evolutionary ABS with fundamentalists
versus chartists is given by Eqs. 19, 20, and 23–26. By substituting
all equations into Eq. 23 a fourth-order nonlinear stochastic
difference equation in prices pt is obtained. It turns out that this
nonlinear evolutionary system exhibits periodic as well as chaotic
f luctuations of asset prices and returns; a detailed mathematical
analysis of the bifurcation routes to strange attractors and
coexisting attractors is given in ref. 30. Here we focus on one
simple, but typical example with EMH believers—i.e., v �
1—versus trend followers.

Fig. 1 compares 10,000 time series observations of the stationary
example buffeted with dynamic noise with 40 years of daily S&P 500
data.§ It should come as no surprise that for our stationary model
the price series in the top panels are quite different, because S&P
500 is nonstationary and strongly increasing. Prices in our evolu-
tionary model are highly persistent however and close to having a
unit root. The model price series clearly exhibits sudden large
movements, which are triggered by random shocks and amplified by
technical trading. When prices move too far away from the funda-
mental p* � 1,000, technical traders condition their rule on the
fundamental and switch to the EMH belief. With many EMH
believers in the market, prices have a (weak) tendency to return to
the fundamental value. As prices get closer to the fundamental,
trend following behavior may become dominating again and trigger
another fast price movement.

We next turn to the time series patterns of returns fluctuations
and the phenomenon of volatility clustering. Returns are com-
puted as relative price changes. Fig. 1 Bottom shows that the
autocorrelations of the returns, squared returns, and absolute
returns of the ABS-model series are similar to those of S&P 500,
with (almost) no significant autocorrelations of returns and
slowly decaying autocorrelations of squared and absolute re-
turns. Returns are (linearly) unpredictable and exhibit clustered
volatility. Although the ABS system considered here is a non-
linear dynamic system with only four lags, it exhibits long
memory with long-range autocorrelations. Our simple stationary
ABS thus exhibits a number of important stylized facts of S&P
500 returns data.

A Nonstationary Example
This section considers a simple example of a nonstationary
ABS.¶ It is far from trivial to study nonlinear, nonstationary
dynamical systems subject to random shocks. The example
discussed below exhibits oscillatory (periodic or perhaps chaotic)
f luctuations around a (stochastic) trend. There is hardly any
theory about such nonlinear, nonstationary systems. For our

§The October 1987 crash and the 2 days thereafter have been excluded. The returns for
these days were about �0.20, �0.05, and �0.09.

¶This section is based on an ongoing research project on the dynamics of nonstationary ABS,
jointly with Andrea Gaunersdorfer (University of Vienna), Florian Wagener, and Roy van
der Weide (both at CeNDEF, University of Amsterdam).
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evolutionary ABS nonstationarity makes the analysis much more
complicated, because growing trends in asset prices will affect
dynamic evolutionary switching of trading strategies. This section
presents some preliminary simulations of nonstationary ABS.

Assume that the dividend process follows a geometric random
walk—i.e.,

log yt�1 � log yt �  � �t�1 , [27]

where �t � N(0,��) and  is a drift term. Beliefs on dividends
are the same for all trader types and given by

Eht�yt�1� � Et�yt�1� � yteEt�e�t�1� � yte���
2�2.

A straightforward computation shows that for the dividend
process (Eq. 27) the fundamental price is proportional to the
dividend yt, and thus growing at the same rate, and given by

Fig. 1. Daily S&P 500 data, 08�17�1961–05�10�2000 (Left) compared with data generated by our ABS (Right), with dynamic noise �t � N(0, 10): price series
(Top), returns series (Middle), and autocorrelation functions of returns, absolute returns, and squared returns (Bottom). Parameters are: v � 1, g � 1.9, � �

2, � � 0.99, � � 1�1,800, r � 0.001, y� � 1, p* � 1,000, and �2 � 1.
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p*t � yt

e���
2�2

R � e���
2�2

, [28]

with R � 1 � r. In our nonstationary example, beliefs about
variances are given by exponentially moving averages—i.e.,

�t
2 � w�t�1

2 � �1 � w��Rt�1 � vt�1�
2

vt � wvt�1 � �1 � w�Rt�1 ,

where Rt � pt � yt � Rpt�1 is the excess return and 0 	 w 	
1 is a weight parameter, as in Gaunersdorfer (31).�

In the nonstationary case, beliefs of fundamentalists are
reformulated in relative terms. Fundamentalists believe that the
relative deviation of the price from the fundamental value will
decrease—i.e.,

E1t�pt�1 � p*t�1

p*t�1
	 � v

pt�1 � p*t�1

p*t�1
v � �0, 1� [29]

or equivalently

p1,t�1
e � Et�p*t�1� � v��2pt�1 � Et�p*t�1��, [30]

where � � e���2�2 is the growth rate of the dividend process
(and of the fundamental value). As before, technical traders
believe that prices will increase (decrease) when they have
increased (decreased) in the previous period—i.e.,

p2,t�1
e � pt�1 � g�pt�1 � pt�2�. [31]

In the nonstationary case, the conditioning of technical trading
rules on fundamentals is also modeled in relative terms, as

n2t � exp����pt�1 � p*t�1

p*t�1
	2	ñ2t

n1t � 1 � n2t ,

with ñ2t given by the discrete choice probabilities as before.
The complete nonstationary ABS with fundamentalists versus

trend extrapolators is given by:

pt �
1
R

�p1,t�1
e � n2t�p2,t�1

e � p1,t�1
e � � Et�yt�1���1 � �t�

p1,t�1
e � Et�p*t�1� � v�e2���

2
pt�1 � Et�p*t�1��

p2,t�1
e � pt�1 � g�pt�1 � pt�2�

n2t �
e�u2t

Zt
exp����pt�1 � p*t�1

p*t�1
	2	

n1t � 1 � n2t

Zt � e�u1t � e�u2t

�t
2 � w�t�1

2 � �1 � w��Rt�1 � vt�1�
2

vt � wvt�1 � �1 � w�Rt�1

u1t �
1

a�t
2 �pt�1 � yt�1 � Rpt�2��p1,t � 1

e � Et�2�yt�1�

� Rpt�2� � �u1,t�1

u2t �
1

a�t
2�pt�1 � yt�1 � Rpt�2��p2,t�1

e � Et�2�yt�1�

� Rpt�2� � �u2,t�1

yt�1 � yt exp� � �t�1�, �t � ��0, ���iid

p*t �
e � ��

2�2

R � e � ��
2�2

yt

Et�yt�1� � e � ��
2�2yt

Et�p*t�1� �
e2 � ��

2

R � e � ��
2�2

yt .

Notice that in the nonstationary case, the model approximation
error �t has been introduced as a random relative price change.

Before looking at the dynamics of the nonstationary ABS, let
us have a look at the S&P 500 data again. Fig. 2 shows 10,000
time series observations of daily S&P 500 data, namely the index,
changes of the index, returns (i.e., relative changes) of the index,
and absolute returns. The S&P 500 index shows a strong upward
trend over the past 40 years. Changes in the index increase in
amplitude and exhibit clustered volatility. Relative changes or
returns are unpredictable and show clustered volatility, as can
also be seen from the persistence in the absolute returns series.

We try to reproduce these stylized facts qualitatively by the
nonstationary ABS, both with and without noise. Figs. 3–6 show
some typical numerical simulations, for different choices of the
parameters � and g, and different levels of dividend noise �� and
model approximation noise ��, with other parameters fixed at

r � 0.0004;  � 0.0003; a � 1; v � 0.99; � � 1;

� � 0.99; w � 0.8. [32]

Fig. 3 shows an example without noise, with periodic price
fluctuations around a growing trend. The cycle is characterized

�In the stationary case, the introduction of time varying beliefs about conditional variances
does not change the results much, as shown in ref. 31. In the nonstationary case, time
varying beliefs about conditional variance are important because average price changes
increase over time.

Fig 2. Time series for daily S&P 500 data, 08�17�1961–05�10�2000, namely
the index (Top Left), changes of the index (Top Right), returns (i.e., relative
changes, Bottom Left), and absolute returns (Bottom Right).
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by a large drop in prices followed by oscillatory fluctuations
before a new upward price trend sets in. Price returns are
periodic, with a small volatility phase with close to zero price
changes interchanged with a high-volatility phase with oscilla-
tory prices. The oscillatory phase is dominated by trend followers
who cause the price to move away below the growing funda-
mental. As prices move too far away from the fundamental,
fundamentalists start dominating the market, driving prices
slowly (v � 0.99) back to the fundamental price. Although the
price cycle exhibits features of volatility clustering, its pattern
causes unrealistically regular and predictable asset returns.

To get rid of the periodic regularity in prices and returns, we
add small dividend noise (�� � 0.001) and small model noise
(�� � 0.0001; i.e., 0.01%), as illustrated in Fig. 4. An immediate
observation is that trend extrapolators dominate the market
most of the time (see the time series of the fraction of funda-
mentalists), leading to deviations from the fundamental and too
large fluctuations in asset prices. Returns become much more
irregular, but at the same time the clustered volatility present in
the noise-free limit cycle has been destroyed.

Figs. 5 and 6 show a second nonstationary simulation with and
without noise. In Fig. 5 a slow cycle with small amplitude around
the fundamental price occurs. The smaller amplitude is due to
a much larger value of �(� 100) preventing the trend extrapo-
lators from causing large deviations from the fundamental. Small
dividend noise and model noise leads to irregular fluctuations
around the stochastic fundamental price, with irregular switch-
ing between fundamentalists and trend extrapolators, as illus-
trated in Fig. 6.

Concluding Remarks
This paper has sketched simple nonlinear adaptive systems for
modeling and explaining the stylized facts of financial markets.

Fig 4. Simulated example with a large amplitude noisy limit cycle around a
stochastic growing fundamental price. Price (Top Left), price change (Top
Right), return (Middle Left), absolute return (Middle Right), fraction of fun-
damentalists (Bottom Left), and deviation from fundamental (Bottom Right).
Parameters: �� � 0.001, �� � 0.0001, � � 0.25, g � 1.03, and other parameters
as in Eq. 32.

Fig 5. Simulated example without noise with a slow, small-amplitude limit
cycle around a growing fundamental price. Price (Top Left), price change (Top
Right), return (Middle Left), absolute return (Middle Right), fraction of fun-
damentalists (Bottom Left), and deviation from fundamental (Bottom Right).
Parameters: �� � �� � 0, � � 100, g � 1, and other parameters as in Eq. 32.

Fig 3. Simulated example without noise with a large-amplitude limit cycle
around a growing fundamental price. Price (Top Left), price change (Top
Right), return (Middle Left), absolute return (Middle Right), fraction of fun-
damentalists (Bottom Left), and deviation from fundamental (Bottom Right).
Parameters: �� � �� � 0, � � 0.25, g � 1.03, and other parameters as in Eq. 32.
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Traders switch between different forecasting strategies based on
their success in the recent past. The stationary ABS, with IID
dividends and a constant fundamental price, are able to match
important stylized facts of financial time series, such as unpre-

dictable returns and clustered volatility. In real markets, long
price series are nonstationary, however, and it is important to
take these nonstationarities into account. Some preliminary
simulations of nonstationary adaptive belief systems have been
presented. In the nonstationary case, the evolutionary switching
of strategies interacts with nonstationarities and growing fun-
damental prices, which make the nonlinear, nonstationary ABS
dynamics very sensitive to noise. From a qualitative viewpoint,
price and return patterns in the simple nonstationary ABS seem
reasonable, but more work is needed to match all autocorrela-
tion structure in prices, returns, absolute and squared returns,
and other stylized facts.

A convenient feature of our ABS is that the benchmark
rational expectations model is nested as a special case. This
feature gives the model flexibility with respect to experimental
and empirical testing. It is worthwhile noting that Chavas (32)
and Baak (33) have run empirical tests for heterogeneity in
expectations in agricultural data and indeed find evidence for
the presence of boundedly rational traders in the cattle market.
Sharma (34) finds evidence of boundedly rational traders in
financial markets. Van de Velden (35) has run asset pricing
experiments and shows that, even in a stationary environment,
it is hard to learn the correct, rational expectations (RE)-
fundamental price level and deviations from the fundamental
price are persistent. Theoretical analysis of stylized evolution-
ary adaptive market systems, as discussed here, and its em-
pirical and experimental testing may contribute in providing
insight into the important question of whether asset prices in
real markets are driven only by news about economic funda-
mentals, or whether asset prices are, at least in part, driven by
‘‘market psychology.’’
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(Bottom Left), and deviation from fundamental (Bottom Right). Parameters: �� �
0.005, �� � 0.0001, � � 100, g � 1, and other parameters as in Eq. 32.
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