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The Nash equilibrium, the main solution concept in analytical game
theory, cannot make precise predictions about the outcome of
repeated mixed-motive games. Nor can it tell us much about the
dynamics by which a population of players moves from one
equilibrium to another. These limitations, along with concerns
about the cognitive demands of forward-looking rationality, have
motivated efforts to explore backward-looking alternatives to
analytical game theory. Most of the effort has been invested in
evolutionary models of population dynamics. We shift attention to
a learning-theoretic alternative. Computational experiments with
adaptive agents identify a fundamental solution concept for social
dilemmas–�stochastic collusion–�based on a random walk from a
self-limiting noncooperative equilibrium into a self-reinforcing
cooperative equilibrium. However, we show that this solution is
viable only within a narrow range of aspiration levels. Below the
lower threshold, agents are pulled into a deficient equilibrium that
is a stronger attractor than mutual cooperation. Above the upper
threshold, agents are dissatisfied with mutual cooperation. Aspi-
rations that adapt with experience (producing habituation to
stimuli) do not gravitate into the window of viability; rather, they
are the worst of both worlds. Habituation destabilizes cooperation
and stabilizes defection. Results from the two-person problem
suggest that applications to multiplex and embedded relationships
will yield unexpected insights into the global dynamics of coop-
eration in social dilemmas.

Learning Theory and Social Dilemmas

Why are some communities, organizations, and relation-
ships characterized by cooperation, trust, and solidarity

whereas others are fraught with corruption, discord, and fear?
Viewed from the top down, the answer centers on hierarchical
institutions that coordinate and regulate individual behavior to
conform to the functional requirements of the system at a higher
level of aggregation. These overarching institutions are backed
by central authorities and supported by cultural norms to which
individuals are socialized to conform.

Agent-based models assume a very different world, where
decision making is distributed and global order self-organizes
out of multiplex local interactions among autonomous interde-
pendent actors. From this ‘‘bottom-up’’ perspective, socially
efficient outcomes are possible but problematic. In striking
contrast to the image of a functionally integrated society, a
bottom-up world is one that is likely to be riddled with ‘‘social
dilemmas’’ (1) in which decisions that make sense to each
individual can aggregate into outcomes in which everyone
suffers. Although some relationships proceed cooperatively,
others descend into spiraling conflict, corruption, distrust, or
recrimination that all parties would prefer to avoid. Can agents
find their way out, and if so, how do they do it?

At the most elementary level, social dilemmas can be formal-
ized as a mixed-motive two-person game with two choices–
�cooperate (be honest, truthful, helpful, etc.) or defect (lie,
cheat, steal, and the like). These two choices intersect at four
possible outcomes, each with a designated payoff. R (reward)
and P (punishment) are the payoffs for mutual cooperation and
defection, respectively, whereas S (sucker) and T (temptation)

are the payoffs for cooperation by one player and defection by
the other. Using these payoffs, we can define a social dilemma
as any ordering of these four payoffs such that the following four
conditions are satisfied:

1. R � P: players prefer mutual cooperation (CC) over
mutual defection (DD).

2. R � S: players prefer mutual cooperation over uni-
lateral cooperation (CD).

3. 2R � T � S: players prefer mutual cooperation over an
equal probability of unilateral cooperation
and defection.

4. T � R: players prefer unilateral defection (DC) to
mutual cooperation (greed)

or P � S: players prefer mutual defection to unilateral
cooperation (fear).

These four conditions create the tension in social dilemmas
between individual and collective interests. This tension is
apparent when the preferred choices of each player intersect at
the outcome that both would prefer to avoid: mutual defection.
This outcome is Pareto deficient in all social dilemmas, that is,
there is always another outcome–mutual cooperation–that is
preferred by everyone (given R � P). Yet mutual cooperation
may be undermined by the temptation to cheat (if T � R) or by
the fear of being cheated (if P � S) or by both. In the game of
Stag Hunt (R � T � P � S) the problem is fear but not greed,
and in the game of Chicken (T � R � S � P) the problem is greed
but not fear. The problem is most challenging when both fear and
greed are present, that is, when T � R and P � S. Given the
assumption that R � P, there is only one way this can happen,
if T � R � P � S, the celebrated game of Prisoner’s Dilemma
(PD).

If the game is played only once, analytical game theory can
identify precise solutions to social dilemmas based on the Nash
equilibrium, a set of pure or mixed strategies from which no
player has an incentive to unilaterally deviate. The Nash solution
is discouraging: with one exception (mutual cooperation in Stag
Hunt), all pure- and mixed-strategy Nash equilibria, across all
possible one-shot social dilemma games, are Rawls deficient (2),
that is, there is at least one other outcome that both players
prefer, assuming they must choose under a “veil of ignorance,”
before knowing who will receive the higher payoff.§

If the game is repeated, the result is discouraging for game
theory but not for the players. The good news for the players is
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that there are now many more possibilities for mutual cooper-
ation to obtain as a Nash equilibrium in the super game (a game
of games). The bad news for game theory is that there are so
many possibilities that the solution concept is robbed of predic-
tive power.¶

An added concern is that analytical game theory imposes
heroic assumptions about the knowledge and calculating abilities
of the players. Simply put, game theorists tend to look for
solutions for games played by people like themselves. For
everyone else, the theory prescribes how choices ought to be
made–�choices that bear little resemblance to actual decision
making, even by business firms where forward-looking calcu-
lated rationality seems most plausible (4).

These problems have prompted the search for alternative
solution concepts with greater predictive accuracy as well as
precision. We would like an alternative to the Nash equilibrium
that predicts a relatively small number of possible solutions to
repeated social dilemma games. Equally important, where more
than one equilibrium is possible, we want to understand the
dynamics by which populations move from one equilibrium to
another, a task for which analytical game theory is ill-equipped.

Agent-based models are an effective tool on both counts. They
can be readily applied to backward-looking adaptive behavior, and
they are useful for studying autopoetic and path-dependent dynam-
ics. These models relax the conventional assumption of forward-
looking calculation and explore backward-looking alternatives
based on evolutionary adaptation (5) and learning (6). Evolution
modifies the frequency distribution of strategies in a population,
whereas learning modifies the probability distribution of strategies
in the repertoire of an individual. In both evolution and learning,
the probability that any randomly chosen individual uses a given
strategy increases if the associated payoff is above some benchmark
and decreases if below. In evolution, the benchmark is typically
assumed to be the mean payoff for the population (7). In learning,
the benchmark depends on the individual’s aspirations.

The evolutionary approach has yielded a new solution con-
cept, evolutionary stability. A strategy is evolutionarily stable if
it cannot be invaded by any possible mutation of that strategy.
All evolutionarily stable strategies (ESS) are Nash equilibria but
the reverse is not true, which means that we now have a more
restrictive solution concept for repeated games (7). However, the
problem of indefiniteness remains. There is no strict ESS for the
repeated PD (8).

Until recently, far less attention has been paid to learning
theory as an alternative to evolutionary approaches. Fudenberg
and Levine (6) give the first systematic account of the emerging
new theory of learning in games. Our article builds on their work,
and on earlier work by Roth and Erev (9) and Macy (10), which
applies learning theory to the problem of cooperation in mixed-
motive games. We identify a dynamic solution concept, stochas-
tic collusion, based on a random walk from a self-correcting
equilibrium (SCE) to a self-reinforcing equilibrium (SRE).
These concepts make much more precise predictions about the
possible outcomes for repeated games.

The learning-theoretic approach is based on connectionist
principles of reinforcement learning, with origins in the cognitive
psychology of William James. If a behavioral response has a
favorable outcome, the neural pathways that triggered the
behavior are strengthened, which “loads the dice in favor of
those of its performances that make for the most permanent
interests of the brain’s owner” (11). Thorndike (12) later refined

the theory as the Law of Effect, based on the principle that
‘‘pleasure stamps in, pain stamps out.’’ This connectionist model
of changes in the strength of neural pathways has changed very
little during the 100 years since it was first presented and closely
resembles the error back-propagation used in contemporary
neural networks (13).

Applications of learning theory to the problem of cooperation
do not solve the social dilemma, they merely reframe it: Where
the penalty for cooperation is larger than the reward, and the
reward for selfish behavior is larger than the penalty, how can
penalty-aversive, reward-seeking agents elude the trap of mutual
punishment?

The earliest answer was given by Rapoport and Chammah (14),
who used learning theory to propose a Markov model of PD with
state transition probabilities given by the payoffs for each state.
Macy (10) elaborated Rapapport and Chammah’s analysis by using
computer simulations of their Bush–Mosteller (BM) stochastic
learning model. Macy showed how a random walk may lead
adaptive agents out of the social trap of a PD and into lock-in
characterized by stable mutual cooperation, a process he charac-
terized as stochastic collusion, the backward-looking equivalent to
the tacit collusion engineered by forward-looking players.

More recently, Roth and Erev (9, 15) have proposed an
alternative to the earlier BM formulation. Their payoff-matching
model draws on the Matching Law, which holds that adaptive
agents will choose between alternatives in a ratio that matches
the ratio of reward. Applied to social dilemmas, both the BM and
Roth–Erev models identify a key difference with analytical
game-theoretic solutions: the existence of a cooperative equi-
librium that is not Nash equivalent, even in Stag Hunt games
where mutual cooperation is also a Nash equilibrium.

However, the generality of this solution may be questioned for
two reasons. First, most theoretical attention has centered on PD
games. We will show that the dynamics observed in PD cannot be
generalized to games with only fear (Stag Hunt) or only greed
(Chicken). Second, both the BM and Roth–Erev models have
hidden assumptions about aspiration levels that invite skepticism
about the simulation results. There are strong reasons to suspect
that these earlier results are artifacts of hidden assumptions about
payoff aspirations. By exploring a wider range of aspiration levels,
we discover a previously unnoticed obstacle to cooperation among
adaptive agents: a noncooperative equilibrium with much stronger
attraction than the equilibrium for mutual cooperation.

We elaborated the BM model to parameterize variable aspi-
ration levels and then applied the model to all three classes of
social dilemma: PD, Stag Hunt, and Chicken. We show that the
cooperative equilibrium based on stochastic collusion obtains in
all social dilemmas in which each side is satisfied if the partner
cooperates. We then show how attainment of this equilibrium
depends on the level and adaptability of aspirations.

Principles of Reinforcement Learning
Analytical game theory assumes that players have sufficient
knowledge and cognitive skill to make accurate predictions
about the consequences of alternative choices. Learning theory
lightens the cognitive load by allowing players to base these
predictions on experiential induction rather than logical deduc-
tion. Learning theory also differs from game theory in positing
two entirely separate cognitive mechanisms that guide decisions
toward better outcomes, approach and avoidance. Rewards
induce approach behavior, a tendency to repeat the associated
choices even if other choices have higher utility. In contrast,
punishments induce avoidance, leading to a search for alterna-
tive outcomes, including a tendency to revisit alternative choices
whose outcomes are even worse.

Approach and avoidance imply two dynamic alternatives to
the traditional Nash equilibrium. Rewards produce a SRE in
which the equilibrium strategy is reinforced by the payoff, even

¶This result is known as the folk theorem of the theory of repeated games. The theorem
asserts that if the players are sufficiently patient then any feasible, individually rational
payoffs can be enforced by an equilibrium in an indefinitely repeated social dilemma
game (3). The restriction of individual rationality of payoffs is a weak limitation for
possible equilibria; it only assures that players do not accept less than their maximin
payoff, which is P in the PD and Stag Hunt and S in Chicken.
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if an alternative strategy has higher utility. The expected change
in the probability of cooperation is zero when the probability of
repeating the equilibrium strategy attains unity. The number of
SRE in a social dilemma depends on the number of outcomes in
which both players are rewarded.

A mix of rewards and punishments can produce a SCE in
which outcomes that punish cooperation or reward defection
(causing the probability of cooperation to decrease) balance
outcomes that reward cooperation or punish defection (causing
the probability of cooperation to increase). The expected change
in the probability of cooperation is zero when the dynamics
pushing the probability higher are balanced by the dynamics
pushing in the other direction, like a tug-of-war between two
equally strong teams. There can be at most one SCE in a social
dilemma and there may be none.

The difference between approach and avoidance means that
the effect of an outcome depends entirely on whether or not it
is regarded as satisfactory. If the payoff exceeds aspirations, the
probability increases that the behavior will be repeated rather
than searching for a superior alternative, a behavioral tendency
March and Simon (16) call ‘‘satisficing.’’ While satisficing is
suboptimal when judged by forward-looking game-theoretic
criteria, it may be more effective in leading agents out of social
traps than if they were to use more sophisticated decision rules,
such as testing the waters to see whether they could occasionally
get away with cheating. Satisficing produces SRE by precluding
search for superior alternatives.

If the payoff falls below aspirations, the probability decreases that
the behavior will be repeated. Avoidance precludes the opportunity
to minimize losses by remaining with the lesser of two evils, a
pattern we call ‘‘dissatisficing.’’ Dissatisficing produces SCE by
inducing search for alternatives to punished behavior.

Changing behavior is not the only way that adaptive agents can
respond to an aversive stimulus. They can also respond by adapting
their aspiration level, a process known as habituation (17). Habit-
uation can lead to desensitization to a recurrent stimulus, whether
reward or punishment, and to increased sensitivity to change in the
stimulus. Thus, habituation to reward increases sensitivity to pun-
ishment. Conversely, habituation to punishment has a numbing
effect that increases sensitivity to reward.

BM: An Agent-Based Model of Reinforcement Learning
In general form, the BM model consists of a stochastic decision rule
and a learning algorithm in which the consequences of decision
create positive and negative stimuli (rewards and punishments) that
update the probability p that the decision will be repeated. Applied
to two-person social dilemmas, the model assumes binary choices
(C or D) that intersect at one of four possible outcomes (CC, CD,
DC, or DD), each with an associated payoff (R, S, P, and T,
respectively) that is evaluated as satisfactory or unsatisfactory
relative to an aspiration level. Although the BM model implies the
existence of some aspiration level relative to which cardinal payoffs
can be positively or negatively evaluated, the model imposes no
constraints on its determinants. Whether aspirations are high or low
or change with experience (habituation) depends on assumptions
that are exogenous to the model. Given some aspiration level,
satisfactory payoffs present a positive stimulus (or reward) and
unsatisfactory payoffs present a negative stimulus (or punishment).
Rewards and punishments then modify the probability of repeating
the associated action. Diagram 1 shows how the probability of
action a (a � {C, D}) is updated by the associated stimulus s.

The classification of payoffs as satisfactory or unsatisfactory
requires that agents hold an aspiration level relative to which
payoffs are positively or negatively evaluated on a standard scale.
Formally, the stimulus sa is calculated as

sa �
�a � A

sup��T � A�, �R � A�, �P � A�, �S � A�� , a � �C, D�, [1]

where �a is the payoff associated with action a (R or S if a � C,
and T or P if a � D). A is the aspiration level and sa is a positive
or negative stimulus derived from �a. The denominator in Eq. 1
represents the upper value of the set of possible differences
between payoff and aspiration. With this scaling factor, stimulus
s is always equal to or less than unity in absolute value, regardless
of the magnitude of the corresponding payoff.

If the aspiration level A is fixed, s will be unaffected by habitu-
ation to repeated stimuli. If A changes with experience, habituation
to � will cause s to decline over time in absolute value. The tendency
for s to approach zero with repeated reinforcement corresponds to
satiation, whereas the tendency for s to approach zero with repeated
punishment corresponds to desensitization. To implement habitu-
ation, we assume that the aspiration level adapts to recent payoffs
�. More precisely, the updated aspiration level, At�1, is a weighed
mean of the prior aspiration level at time t and the payoff � that was
experienced at t. Formally,

At � 1 � 	1 � h
At � h�t, [2]

where h indicates habituation, i.e., the degree to which the
aspiration level f loats toward the payoffs. With h � 0, the
aspiration level is constant, that is, recent payoffs are ignored
and the initial aspiration A0 is preserved throughout the game.
With h � 1, aspirations float immediately to the payoff that was
received in the previous iteration. The aspiration level then
provides the benchmark for positive or negative evaluation of the
payoffs, as given by Eq. 1.

This evaluation, in turn, determines whether the probability of
taking the associated action increases or decreases. Applied to
behavior in social dilemmas, the model updates probabilities
after an action a (cooperation or defection) as follows:

pa,t � 1 � �pa,t � 	1 � pa,t
lsa,t, if sa,t � 0
pa,t � pa,tlsa,t, if sa,t � 0, a � �C, D�. [3]

In Eq. 3, pa,t is the probability of action a at time t, l is the learning
rate (0 � l � 1), and sat is the positive or negative stimulus
experienced after action a in t. The change in the probability for
the action not taken obtains from the constraint that probabil-
ities always sum to unity.

Eq. 3 implies a tendency to repeat rewarded behaviors and
avoid punished behaviors, consistent with the Law of Effect. The
model implies a cooperative SRE if (and only if) both agents’
aspiration levels are lower than the payoff for mutual coopera-
tion (R). Aspirations above this point necessarily preclude a
mutually cooperative solution to social dilemmas. If both players’
aspiration levels fall below R but exceed maximin (the largest
possible payoff they can guarantee themselves), then there is a
unique SRE in which both players receive a reward, namely,
mutual cooperation.

Very low aspirations do not preclude mutual cooperation as
an equilibrium but may prevent adaptive agents from finding it.
In social dilemmas, if aspiration levels are below maximin, then
mutual or unilateral defection may also be mutually reinforcing,
even though these outcomes are socially deficient. Multiple SRE

Diagram 1. Schematic representation of the BM stochastic learning model.
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mean that learning may get trapped in an alternative basin of
attraction before locking in mutual cooperation.

The SRE is a black hole from which escape is impossible. In
contrast, players are never permanently trapped in SCE; a
chance sequence of fortuitous moves can lead both players into
a self-reinforcing stochastic collusion. The fewer the number of
coordinated moves needed to lock-in SRE, the better the
chances. Thus, the odds of attaining lock-in are highest if l �1
and behavior approximates a ‘‘win-stay, lose-change’’ heuristic,
in which choices always repeat when rewarded and always change
when punished (18).

In sum, the BM model identifies stochastic collusion as a
backward-looking solution for social dilemmas. However, this so-
lution is available only if both players have aspirations levels below
R, such that each is satisfied when both partners cooperate.
Stochastic collusion is guaranteed if an additional condition can be
met: Both players have aspirations fixed above their maximin and
below R, such that mutual cooperation is the unique SRE.

By manipulating the aspiration level, we can test both the
existence and the attraction to SRE under different payoff ine-
qualities. A fixed aspiration level can be manipulated to study the
effects of satisficing (when aspirations are low) and dissatificing
(when aspirations are high). A floating aspiration level can be used
to study the effects of habituation. Habituation is modeled as an
aspiration level that floats in the direction of a repeated stimulus,
regardless of the associated behavior. If the payoff exceeds aspira-
tions, the aspiration level increases, leading to satiation on reward
and sensitization to punishment. If the payoff falls below aspira-
tions, the aspiration level decreases, leading to sensitization on
reward and desensitization to punishment.

The model in Eqs. 1 and 2 allows us to independently
manipulate satisficing (precluded by fixed high aspirations),
dissatisficing (precluded by fixed low aspirations), and habitua-
tion (precluded by fixed aspirations of any level), using just two
parameters (h and A). Table 1 illustrates the corresponding
manipulations for the vector of payoffs � � (4,3,1,0).

We apply this model to the three classic types of social
dilemma (PD, Chicken, and Stag Hunt) and perform a series of
experiments that systematically explore the solutions that
emerge with different parameter combinations over each of the
three games.

Learning-Theoretic Solution Concepts for Social Dilemmas
We begin by testing the generality of stochastic collusion as a
solution concept, with aspirations fixed midway between maxi-

min and minimax. This aspiration level can also be interpreted
as the expected payoff when behavioral propensities are unin-
formed by prior experience (pa � 0.5), such that all four payoffs
are equiprobable (p� � 0.25). We define this as a neutral
aspiration, designated A0, while A� and A� designate aspirations
above minimax and below maximin, respectively.

Macy (10) identified mutual cooperation as the unique SRE
(or lock-in) for repeated PD. He also identified a mixed-strategy
SCE in which the ratio of bilateral (CC or DD) to unilateral (CD)
outcomes balances the ratio of unilateral to bilateral payoffs
(relative to aspirations).

Assuming neutral aspirations (A0, we can show analytically that
these results generalize to Chicken and Stag Hunt by solving for the
level of cooperation at which the expected change in the probability
of cooperation is zero. The expected change is zero when, for both
players, the probability of outcomes that reward cooperation or
punish defection, weighted by the absolute value of the associated
change in propensities, equals the probability of outcomes that
punish cooperation or reward defection, weighted likewise. For all
possible payoffs that conform to the four conditions we impose for
social dilemmas, SRE obtains at pc � 1. In PD, the cooperation rate
in the SCE is below pc � 0.5, which is the asymptotic upper bound
that the equilibrium approaches as R approaches T and P ap-
proaches S simultaneously. The lower bound is pc � 0 as P
approaches A0. In Chicken, the corresponding upper bound is pc �
1 as R approaches T and S approaches A0. The lower bound is pc
� 0 as R, S, and P all converge on A0 (retaining R � A0 � S � P).
Only in Stag Hunt is it possible that there is no SCE, if R � T �
A0 � S. The lower bound is pc � 0 as T approaches R and P
approaches A0.

These analytical results do not tell us much about the dynamics
or the probability of moving from one equilibrium to another. To
that end, we ran computational experiments with the payoffs
ordered from the set � � (4,3,1,0) for each of the three social
dilemma payoff inequalities. With this set, minimax is always 3,
maximin is always 1, giving A0 � 2, such that mutual cooperation
is a unique SRE in each of the three games, a key scope condition
for stochastic collusion. With h � 0, there are two analytical
solutions in each of the three games. The first solution is the SCE
at pc � 0.37 in PD and at pc � 0.5 in Chicken and Stag Hunt. The
second solution is a unique SRE at pc � 1 in each of the three
games.

We observe stochastic collusion by setting the learning rate l
high enough to facilitate coordination by random walk into the
SRE at CC. The parameter l � 0.5 allows lock-in on mutual
cooperation within a small number of coordinated CC moves.
Fig. 1 confirms the possibility of stochastic collusion in PD and
extends this result for the two other social dilemma games. Fig.
1 charts the change in the probability of cooperation, pc (which
in this case is statistically identical across the two players).

Fig. 1 shows that the characteristic pattern of stochastic
collusion occurs in all three games, but not with equal proba-
bility. Mutual cooperation locks in most readily in Stag Hunt and
least readily in PD. To test the robustness of this difference, we
simulated 1,000 replications of this experiment and measured the

Fig. 1. Change in pC over 100 iterations [� � (4,3,1,0), A0 � 2, l � 0, 5, h � 0, pC,1 � 0.5].

Table 1. Treatment groups for exploration of parameter space
for the BM model, with � � [4,3,1,0]

Aspiration
level Parameters Satisf. Dissatisf. Habituation

Fixed low h � 0, A � 0.5 Yes No No
Fixed high h � 0, A � 3.5 No Yes No
Floating h � 0.2 After punish After reward Yes

7232 � www.pnas.org�cgi�doi�10.1073�pnas.092080099 Macy and Flache



proportion of runs that locked in mutual cooperation within 100
iterations. We would expect the lock-in rate to be lowest in PD,
and that is confirmed, with a relative frequency of 0.13. We
might also expect the lock-in rate to be similar in Chicken and
Stag Hunt, because the model parameters yielded identical
equilibrium solutions (pc � 1 and pc � 0.5 in both games).
Surprisingly, this was not the case. The probability of lock-in
was nearly twice as high in Stag Hunt (0.96) compared with
Chicken (0.45).

This finding suggests that, all things being equal, the problem
of cooperation in PD is caused more by greed than fear, even
when the decomposed K indices� for fear and greed are identical–
�in this case, Kf � (P � S)�(T � S) � 0.25 and Kg � (T �
R)�(T � S) � 0.25. Holding all else constant, removing fear (by
setting S � P) only improved the probability of cooperation 32
points (from 0.13 to 0.45), whereas removing greed (by setting
R � T) improved the probability of cooperation an impressive 83
points (from 0.13 to 0.96).

A moment’s reflection shows why. Escape from the SCE by
random walk depends on a chance string of bilateral moves,
either CC (which rewards cooperation) or DD (which punishes
defection). At pc � 0.5, the equilibrium probabilities for CC and
DD are equal in Chicken and Stag Hunt. However, with each step
in the random walk, the probability of CC increases relative to
DD, such that R plays an increasingly greater role in the escape.
Greed constrains the value of R (relative to T) whereas fear does
not.

Effect of Aspiration Level: Low, High, or Floating. The simulations
with neutral aspirations (A0 � 2) make it possible for players to
satisfice when mutual cooperation is achieved and dissatisfice
when it fails. Intuitively, dissatisficing is crucial for stochastic
collusion. Otherwise, players could lock in on the lesser of two
evils, with zero probability of mutual cooperation. Dissatisfac-
tion with the social costs of a socially deficient outcome moti-
vates players to continue searching for a way out of the social
trap. The players then wander about in SCE with a nonzero
probability of cooperation that makes possible the chance se-
quence of bilateral cooperative moves needed to escape the
social trap by random walk, as illustrated in Fig. 1.

Mutual cooperation is always the optimal outcome in Stag
Hunt, a game in which there is no temptation to cheat (R � T).
However, satisficing is crucial for stochastic collusion in PD and
Chicken. Appreciation that the payoff for mutual cooperation is
good enough motivates players to stay the course despite the
temptation to cheat (given T � R). Otherwise, mutual cooper-
ation will not be self-reinforcing.

The dilemma is that dissatisficing and satisficing are comple-
mentary with respect to the aspiration level. Higher aspirations
increase the level of dissatisfaction with P, thereby increasing the
rate of cooperation in SCE. Lower aspirations increase the level

of satisfaction with R, thereby strengthening reinforcement for
mutual cooperation. This dilemma poses an interesting puzzle:
Where is the optimal balance point between satisficing and
dissatisficing, and how does the optimum vary across the three
games?

In Stag Hunt, the absence of a temptation to cheat makes
satisficing less important than in the other two games (where T �
R). Conversely, in Chicken, the high cost of mutual defection
(given P � S) suggests that dissatisficing is relatively less
important. And in all three games, an aspiration level below the
maximin payoff generates a second SRE besides mutual coop-
eration. This alternative basin of attraction may trap the players
in a self-reinforcing dynamic of mutual or unilateral defection.

Fixed Aspirations: Low vs. High. To test this idea, we assumed a
fixed aspiration level and manipulated it, ranging from below the
maximin payoff (which limits dissatisficing) to above the payoff
for mutual cooperation (which limits satisficing). More precisely,
for low aspirations, we fixed the aspiration level midway between
the minimum (� � 0) and maximin (� � 1) payoffs (A� � 0.5).
For high aspirations, we fixed the aspiration level midway
between the maximum (� � 4) and minimax (� � 3) payoffs (A�

� 3.5). Fig. 2 shows typical simulation runs under low aspira-
tions. The graph for the Chicken game also reports the proba-
bility of cooperation for the second player (broken line) whose
probabilities differ because of the possibility for reinforcement
of unilateral cooperation (given S � A�).

Fig. 2 presents typical simulation runs for the low-aspiration
condition in each of the three social dilemmas. The results show
that low aspirations—and thus a high level of satisficing relative
to dissatisficing—can undermine stochastic collusion. With as-
pirations below the maximin payoff, a socially deficient outcome
(either mutual or unilateral defection) becomes an alternative
SRE that competes with mutual cooperation as an attractor. In
PD and Stag Hunt, both players are attracted to mutual defection
as good enough. Cooperation in Stag Hunt almost attains lock-in
around t � 5 (because of R � T) but this result is not sufficient
to overcome the far greater pull of the competing attractor. In
Chicken, unilateral defection becomes a competing attractor
because S � A�.

We tested the robustness of these results by measuring the
proportion of trials that locked into one of the SRE within 100
iterations of the game. In all three games, the deficient attractor
dominated mutual cooperation. The proportion of trials that
converged on the deficient SRE was 0.89 in PD, 0.72 in Chicken,
and 0.59 in Stag Hunt. All runs that did not converge on a
deficient equilibrium ended up in CC as an SRE.

The stronger attraction to mutual cooperation in Chicken
(0.28) compared with PD (0.13) reflects the aversion to mutual
defection that is present in Chicken (given P � A�) but not in
PD. This aversion increases both players’ cooperative propen-
sities, and with a relatively high learning rate, this can jump-start
random walk into mutual cooperation. In PD, players are
aversive only to the S payoff, which teaches the opposite lesson:
it does not pay to cooperate. The only payoff that increases both

�The K index was invented by Rapoport and Chammah (14) to predict the level of cooper-
ation in mixed-motive games, where K � (R � P)�(T � S). We decomposed the index into
fear (Kf) and greed (Kg), such that K � 1 � (Kf � Kg).

Fig. 2. Change in pC over 100 iterations with low aspirations [� � (4,3,1,0), A� � 0.5, l � 0.5, h � 0, pC,1 � 0.5]. Broken line indicates pC for player 2 in Chicken.
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players’ cooperative propensities is R, which quickly becomes out
of reach as players are pulled into the noncooperative SRE.

The adverse effect of low aspirations might seem to suggest
that high aspirations are a possible solution to social dilemmas.
However, Fig. 3 shows that this is not the case. With the
exception of Stag Hunt, high aspirations preclude convergence
on mutual cooperation. The reason is that with A� � R, there
is no SRE in PD and Chicken, a prerequisite for stochastic
collusion. Only in Stag Hunt is mutual cooperation an SRE, and
even here, robustness tests show that this equilibrium is attained
in only 120 of 1,000 replications, a rate of 0.12.

To test the effects of aspiration more systematically, we varied
the aspiration level A across the entire range of payoffs (from 0
to 4) in steps of 0.1. The graphs in Fig. 4 show the proportion of
runs that lock in mutual cooperation within 250 iterations, based
on 1,000 replications at each level of aspiration.

Fig. 4 confirms the optimal aspiration level between maximin
and R. Below maximin, attraction to a deficient SRE reduces the
probability of stochastic collusion to about 0.1 in PD, 0.25 in
Chicken, and 0.4 in Stag Hunt. The probability then sharply
increases in all three games as soon as aspirations exceed
maximin (A � 1) and continues to do so in PD and Chicken until
a turning point is reached at approximately A � 2. For A � 2,
mutual cooperation loses its appeal as an outcome that is good
enough, leading to zero chance of stochastic collusion as aspi-
rations approach R (at A � 2.5 in PD and in Chicken and A �
3.5 in Stag Hunt).

To test the generality of this qualitative result across different
payoff vectors, we replicated the simulation with fear and greed
varied relative to the baseline payoff vector � � (4,3,1,0). We
assumed higher greed (T � 5) in PD and Chicken and greater
fear (S � �1) in PD and Stag Hunt. Fig. 5 shows the results of
increased fear and greed relative to the superimposed baseline
results of Fig. 4 (broken line).

Fig. 5 supports the generality of the nonlinear effect of
aspiration A. At the same time, the results reveal that both higher
greed and higher fear inhibit stochastic collusion, all else being
equal. Moreover, the manipulation of fear and greed in PD
confirms what we also find in the comparison between games.
Greed is a bigger problem for stochastic collusion than fear. In
PD, the 2-fold increase in greed from T � R � 1 to T � R � 2
causes a decline in the maximum rate of stochastic collusion,
from 0.8 in the baseline condition to about 0.2. However, the
2-fold increase in fear reduces the maximum rate of stochastic
collusion only to a level of 0.5. Correspondingly, although the
effect of greed on the peak rate in Chicken is substantial (a

decline from about 0.95 to about 0.6), fear does not reduce the
lock-in rate in Stag Hunt. The only effect of fear in Stag Hunt
is a slight reduction of the range of aspiration levels under which
stochastic collusion can be obtained.

Floating Aspirations: Habituation. Given the adverse effects of both
low and high aspirations, one might conclude that the best way
to find the optimal balance point is to let the agents find it
themselves, by allowing the aspiration level to float. However, on
closer inspection it seems that the opposite is more likely the
case. Floating aspirations are the worst of both worlds, causing
players to become easily dissatisfied with mutual cooperation
and numb to the social costs of socially deficient outcomes.
Moreover, the tendency to adapt to a repeated stimulus also
increases sensitivity to changes in the stimulus. Thus, agents who
became habituated to reward in SRE will respond more aver-
sively to unexpected punishment (and vice versa). Accordingly,
habituation not only attenuates the self-reinforcing effect of R,
it also amplifies the destabilizing effects of a chance defection.

Fig. 6 confirms the expected destabilizing effects, based on
conditions identical to those in Fig. 1 except for a modest
increase in habituation. With h � 0.2, agents’ reference points
represent a moving average of past payoffs based on a long
memory. Relatively slow adaptation of aspirations gives the
players sufficient time for stochastic collusion, but once SRE is
obtained, they eventually will habituate to rewards.

Fig. 6 shows that, in all three games, players can temporarily
achieve stochastic collusion but cannot sustain it. Habituation to
reward destabilizes mutual cooperation as players lose their
appetite for R. High aspirations also amplify disappointment
when cooperation is eventually ‘‘suckered,’’ leading quickly to
the SCE. This in turn restores the appetite for mutual cooper-
ation, especially in Chicken where the payoff for mutual defec-
tion is highly aversive.

Reliability tests confirm the pattern in Fig. 6. Over 1,000
replications, the rate of mutual cooperation in iteration 500 was
higher in Chicken (0.49) than in Stag Hunt (0.39) and lowest in
PD (0.16). Cooperation in PD suffers from less aversion to
mutual defection in SCE (compared with Chicken) and less
attraction to mutual cooperation in SRE (compared with Stag
Hunt).

Comparison with the corresponding results with fixed neutral
aspirations (Fig. 1) clearly demonstrates the destabilizing effect
of habituation in all three games. Over 1,000 replications with
aspirations fixed at A0 � 2, the rate of mutual cooperation was

Fig. 3. Change in pC over 100 iterations with high aspirations [� � (4,3,1,0), A� � 3.5, l � 0.5, h � 0, pC,1 � 0.5].

Fig. 4. Effects of aspiration levels on SRE within 250 iterations [� � (4,3,1,0), l � 0.5, h � 0, pC,1 � 0.5, n � 1,000].
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nearly universal by iteration 500 in PD (0.95), Chicken (0.98),
and Stag Hunt (1.0).

How Habituation Can Also Promote Cooperation. The destabilizing
effect of habituation on mutual cooperation suggests a way that
adaptation to stimuli may also promote cooperation through the
destabilization of noncooperative SRE. Previously we observed
how low fixed aspirations generate a competing attractor that
diverts random walk away from mutual cooperation and into
mutual or unilateral defection. However, if agents adapt to
repeated exposure to the associated payoffs, they may be able to
eventually escape. Moreover, the increased sensitivity to a
change in stimuli should then amplify the attraction to mutual
cooperation.

To test this hypothesis, we combined a low initial aspiration
level (A0

� � 0.5) with modest habituation (h � 0.2). Fig. 7 shows
representative examples of the dynamics that result.

Comparison with corresponding results without habituation
(Fig. 2) confirms the hypothesized effect of adaptation to
payoffs. With h � 0, satisficing with low initial aspirations
generally led to quick convergence on the SRE with lowest
coordination complexity. Mutual cooperation was preempted by
mutual defection in PD and unilateral defection in Chicken. By
contrast, Fig. 7 shows that moderate habituation weakens these
deficient attractors relative to mutual cooperation, which re-
mains viable as a punctuated equilibrium.

Curiously, in Stag Hunt, habituation has the opposite effect,
destabilizing mutual cooperation in favor of temporary conver-
gence on mutual defection. Reliability tests confirm this pattern.
Table 2 shows the interaction between satisficing and habitua-
tion on the rate of stochastic collusion within 500 iterations, over
1,000 replications of the three social dilemma games. Mutual
cooperation decreases with habituation when aspirations are
initially neutral (A0

0 � 2.0) in all three games. However, when
aspirations are initially low (A0

� � 0.5), mutual cooperation
decreases with habituation only in Stag Hunt; in the other two
games, mutual cooperation increases. Put differently, in the
absence of habituation (h � 0), mutual cooperation suffers when
aspirations are low, in all three games. However, with moderate
habituation (h � 0.2), low initial aspirations have almost no
effect on mutual cooperation.

Discussion and Conclusion
The Nash equilibrium, the main solution concept in analytical
game theory, cannot make precise predictions about the out-

come of repeated mixed-motive games. Nor can it tell us much
about the dynamics by which a population of players can move
from one equilibrium to another. These limitations, along with
concerns about the cognitive demands of forward-looking ra-
tionality, have led game theorists to explore backward-looking
alternatives based on evolution and learning. Considerable
progress has been made in agent-based modeling of evolutionary
dynamics (5), but much less work has been invested in learning-
theoretic approaches. This lacunae is curious. Evolution oper-
ates on the global distribution of strategies within a given
population, whereas learning operates on the local distribution
of strategies within the repertoire of each individual member of
that population. From the perspective of multilevel theorizing,
learning can be viewed as the cognitive microfoundation of
extragenetic evolutionary change. Just as evolutionary models
theorize autopoetic population dynamics from the bottom up,
learning models theorize social and cultural evolution from the
bottom up, beginning with a population of strategies competing
for the attention of a single individual.

Previous applications of reinforcement learning to the evolution
of cooperation have used the BM stochastic learning model and the
Roth–Erev payoff-matching model. Elsewhere (19) we explore
some interesting differences between these models, centered on
Blackburn’s Power Law of Learning. Here, we focus on the
convergent prediction–�the possibility of stochastic collusion in
which adaptive agents escape a socially deficient equilibrium by
random walk.

The generality of this solution has two important limitations.
First, previous applications were restricted to PD games, which
precluded disaggregation of the dynamic properties of fear and
greed. Second, aspiration levels were arbitrarily fixed, which
precluded analysis of the dynamic properties of satisficing,
dissatisficing, and habituation.

This study maps the landscape for the game dynamics at the
cognitive level, beginning with the simplest possible iterated social
dilemma, a two-person repeated game. Using a BM stochastic
learning model, we identify a fundamental solution concept for the
long-term dynamics of backward-looking behavior in all social
dilemmas–stochastic collusion–based on random walk into SRE.
However, the viability of this solution is sensitive to the aspiration
level and the relative magnitude of fear and greed.

With fixed aspirations between R and maximin, stochastic
collusion is much more robust against an increase in fear
compared with an increase in greed. Greed undermines attrac-

Fig. 5. Effect of aspirations (0 � A � 4) on SRE within 250 iterations, by fear [�f � (4,3,1,�1)] and greed [�g � (5,3,1,0)]. l � 0.5, h � 0, pC,1 � 0.5, n � 1,000.
Broken line shows baseline results with � � (4,3,1,0).

Fig. 6. Change in pC over 500 iterations with floating aspirations [� � (4,3,1,0), initial A0
0 � 2.0, l � 0.5, h � 0.2, pC,1 � 0.5].
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tion to mutual cooperation as the SRE, making it more difficult
to escape from a socially deficient SCE through a fortuitous
sequence of bilateral moves. Thus, when fear and greed are equal
in magnitude, the probability of stochastic collusion is greater in
Stag Hunt than in Chicken.

Stochastic collusion is also highly sensitive to aspirations. If
aspirations are too low, mutual cooperation can suffer from
insufficient dissatisfaction with socially deficient outcomes. Mu-
tual cooperation can then be preempted by attraction to an
alternative SRE that is socially deficient–�mutual defection (in
PD and Stag Hunt) or unilateral defection (in Chicken). If
aspirations are too high, agents may not feel sufficiently re-
warded by mutual cooperation to avoid the temptation to defect.
High aspirations are the greater problem in Chicken, whereas
low aspirations are the greater problem in Stag Hunt.

We also explored the effects of habituation–aspirations that
adjust to experience. Habituation destabilizes stochastic collu-
sion in all three games. Paradoxically, the problem is particularly
acute in Stag Hunt, where the low reward for exploitation (T)
facilitates accommodation to the social costs of mutual defec-
tion. On the other hand, habituation can also destabilize the
socially deficient SRE created by low baseline aspirations.

Although we are struck by the amount that could be learned
about the emergent dynamics of cooperation from a model as
simple as BM, these results need to be interpreted cautiously.
Our exploration of learning-theoretic solutions to social dilem-
mas is necessarily incomplete. We have limited the analysis to
symmetrical two-person simultaneous social dilemma games
within a narrow range of possible payoffs. Previous work (10, 20)
suggests that the coordination complexity of stochastic collusion
increases with the number of players and payoff asymmetry and

decreases with social influence. Much more work needs to be
done to study the evolution of cooperation at the cognitive level,
especially where dyadic games are embedded in dynamic social
networks, a problem addressed by Macy and Sato (23). Going
forward, we anticipate much more compelling insights with
multiplex models applied to socially embedded games.

We also assumed agents with minimal cognitive complexity.
Previous research by Hegselmann and Flache (21) suggests that
agents might be better off using more sophisticated strategies for
conditional cooperation, such as Tit for Tat (which retaliates
against defection by defecting on the next play) or Grim Trigger
(which retaliates by defecting forever). In future research, cog-
nitive game theory faces the challenge to show how more
sophisticated strategy choices might emerge from simple learn-
ing principles. As a first step, Macy (22) used artificial neural
networks to see whether adaptive agents could learn to coop-
erate based on conditionally cooperative super-game strategies,
but found that the coordination complexity of stochastic collu-
sion increased exponentially with the strategy space. Much more
work is needed to see how adaptive agents might also learn to
find nodal points or other solutions to the problem of coordi-
nation complexity.

Although theoretical elaborations are clearly needed, we
should not lose sight of the elementary principles suggested by
a simple learning model of the dynamics of cooperation. Social
order may ultimately depend less on top-down global coordina-
tion or enforcement than on bottom-up emergence of self-
enforcing norms for cooperation in everyday life. If so, then the
emphasis in agent-based modeling of the evolution of cooper-
ation may need to shift downward, from evolutionary dynamics
at the population level to cognitive dynamics at the level of the
individual. We see the simple BM learning model for two-person
games as a cautious step in this direction.
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Fig. 7. Change in pC over 500 iterations with initially low floating aspirations [� � (4,3,1,0), A0
0 � 0.5, l � 0.5, h � 0.2, pC,1 � 0.5].

Table 2. Effects of habituation on stochastic collusion within 500
iterations, by initial aspiration level (l � 0.5, pa,1 � 4, N � 1,000)

Aspiration
level

PD Chicken Stag hunt

h � 0 h � 0.2 h � 0 h � 0.2 h � 0 h � 0.2

A0
0 � 2.0 0.96 0.17 0.99 0.48 1.00 0.35

A0
� � 0.5 0.10 0.18 0.30 0.49 0.39 0.36
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