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Report

Testing the Robustness of the New Haseman-Elston Quantitative-Trait
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Variance components (VC) techniques have emerged as among the more powerful methods for detection of quan-
titative-trait loci (QTL) in linkage analysis. Allison et al. found that, with particularly marked leptokurtosis in the
phenotypic distribution and moderate-to-high residual sibling correlation, maximum likelihood (ML) VC methods
may produce a severe excess of type I errors. The new Haseman-Elston (NHE) method is a least-squares–based
VC method for mapping of QTL in sib pairs (Elston et al.). Using simulation, we investigate the robustness of the
NHE to marked nonnormality, by means of the same distributions and worst-case conditions identified by Allison
et al. for the ML approach (i.e., 100 pairs; high residual sibling correlation). Results showed that, when marked
nonnormality is present, the NHE can be used without severe type I error–rate inflation, even at very small alpha
levels.

Mapping of genes for complex traits requires that in-
vestigators have the most powerful statistical tests avail-
able at their disposal. In the context of a sib-pair study,
variance components (VC) models with maximum like-
lihood (ML) testing are used to detect quantitative-trait
loci (QTL). In a recent simulation study, Allison et al.
(1999) found that, on the basis of the likelihood-ratio
test (Fulker and Cherny 1996), marked leptokurtosis
and moderate-to-high residual sibling correlation re-
sulted in excessive type I errors for a VC QTL detection
test. This study evaluates the robustness of the “new
Haseman-Elston test” (NHE) that models the VC by
ordinary least squares (OLS) (Elston et al., in press),
rather than by ML.

The NHE entails regressing the cross product of the
siblings’ mean centered phenotypes on the proportion
of alleles that the pair shares identical by descent (IBD);
that is, one fits the following regression model: (Y 21

, where Y1 is the phenotype
— —
Y )(Y 2 Y ) = b 1 b p 1 e1 2 2 0 1

of the arbitrarily defined first sib in a pair, Y2 is the
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phenotype of the arbitrarily defined second sib in a pair,
is the sample mean of Y (the phenotype) among the

—
Y1

first sibs, is the sample mean of Y among the second
—
Y2

sibs, p represents the proportion of alleles that a pair
shares IBD, e is a residual or error term for unexplained
variation, b0 is the residual sibling covariance (induced
by other genetic and shared environmental influences),
and b1 is the additive genetic variance due to the QTL.
After the slope is constrained to be nonnegative, testing
the null hypothesis (H0: ) is equivalent to testingb = 01

whether the variance due to the QTL is equal to 0. This
can be accomplished using a one-tailed significance test.

It is plausible that the NHE will be more robust than
the ML-based VC test, because it is based on OLS re-
gression. In using the OLS-based NHE, one tests the
significance of the QTL by dividing the sample estimate
of b1 by its standard error and assumes that, under the
null hypothesis, the results will be distributed as t with

df, where N is the number of sibling pairs. ThisN 2 2
assumption will be met if either of two conditions holds:
(1) the population residuals from the NHE regression
model are normally distributed, or (2) the mean and the
variance of the population residuals from the NHE re-
gression model are finite and the sample size is suffi-
ciently large to ensure that the sampling distribution of
the sample estimate of b1 is normally distributed by the
central-limit theorem.

Research suggests that, with many commonly en-
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Table 1

First Four Moments of Sibling Phenotypic Distributions and CPs of Studied Distributions (S = 100,000)

MODEL

SIBLING PHENOTYPEa SIBLING CPb

Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis

Normal 0 1 0 0 .498 1.259 2.436 12.080
Mixture 1 .118 1.333 .587 1.253 .611 2.936 4.728 34.364
Mixture 2 1.00 1.500 .000 2.111 .754 2.758 2.139 8.138
Mixture 3 .088 1.333 .805 2.467 .617 3.736 6.124 65.524
(G#E) mixture 1 0 2 2 14 .792 15.794 17.214 495.632
(G#E) mixture 2 1 5 .537 1.04 2.349 37.913 3.714 27.274
(G#E) mixture 3 0 2 3 25 .754 21.596 25.145 929.652

2x df = 2 2 4 2 6 1.979 58.524 11.295 255.341
Laplace 0 2 0 3 1.009 8.916 6.287 86.906
Binary (.5) .5 .25 0 22 .083 .056 2.706 21.501
Binary (.1) .1 .09 2.67 5.11 .023 .022 4.654 21.436
Extremes 0 3.249 0 21.727 3.508 2.003 1.766 5.024

a Values were obtained analytically.
b Values were obtained by simulation.

countered nonnormal distributions, OLS methods are
quite robust in terms of type I error rate, with sample
sizes of >100 (Sawilowsky et al. 1992). Thus, our design
used a sample size of 100 sibling pairs and a residual
sibling correlation (r) of .5 as a “boundary condition,”
reported as leading to the highest type I error rates for
the Fulker and Cherny (1996) ML procedure (Allison et
al. 1999). Also, the use of 100 sib pairs probably rep-
resents the lower limit of reasonable sample size for sib-
pair studies of quantitative traits. IBD status for the sib
pairs (p from model 1) was generated, independently of
the dependent variable, from a binomial distribution
with and , where n represents the numbern = 2 P = .5
of alleles and where P is the probability of alleles being
IBD. For convenience, we assumed that we were working
with perfectly informative markers.

For comparability to the study by Allison et al. (1999),
13 different distributions were studied. Table 1 shows
the population means, variances, skewness, and kurtosis
values for the marginal phenotypic distributions and for
the mean centered cross products (CPs) for each con-
dition. For each distribution, 100,000 simulated data
sets (S) were produced and analyzed, under the null hy-
pothesis of no linkage at the marker locus. Data were
generated with the SAS RANNOR function (SAS release
7.0 [SAS Institute 1998]). Linkage was then tested at
nominal one-tailed a values of .10, .05, .01, .001, and
.0001.

First, we validated the program by simulating the data
in which the dependent variable (i.e., the CP) was nor-
mally distributed, so that the observed empirical a value
would match the nominal a value. For the second con-
dition, we simulated data from a bivariate normal phe-
notypic distribution with a residual correlation of .5 un-
der the null hypothesis, with the CPs as the dependent
variable. The NHE assumes that the CPs of sibling mean

centered phenotypes are univariate normal; however, the
CPs cannot be univariate normal if the phenotypes them-
selves are normally distributed. Thus, in the case of the
NHE, a primary source of nonnormality is the very act
of taking CPs.

Several other reasons for nonnormality of the phe-
notypes exist (see Allison et al. 1999). The presence of
“major” genes or oligogenes, which create mixed non-
normal distributions (Schork et al. 1996), was assessed
by three mixture distributions due to a biallelic segre-
gating QTL not at the locus under study ( ,Y = G 1 R
where G is the mean of the genotype at the QTL and
R is the normally distributed residual term). In mixture
1, a recessive mode of inheritance was modeled in which
the frequency of the increasing allele was .20. For mix-
ture 2, the mode of inheritance was additive, and the
two alleles had a frequency of .50. Mixture 3 represented
a recessive mode of action in which the increasing allele
had a frequency of .15. For each of the mixtures, the
within-genotype residual distribution was normal, with
a variance of 1.0.

Nonnormality due to gene by environment (G#E)
interaction (either interaction between a major or oli-
gogene and the environment or between a polygenic
component and the environment) and epistasis (Pooni
et al. 1976) was simulated by addition of an interaction
term to each of the previously discussed mixture models:

. For these simulations, the residualY = G 1 R 1 G # R
correlation (expressed as the correlation in the R com-
ponent) and the phenotype correlation will not neces-
sarily be equal after adjustment for the QTL genotype
effects. Moreover, the amounts of variance accounted
for by the QTL in G#E mixture 1, G#E mixture 2,
and G#E mixture 3 were 7.14%, 10%, and 7.14%,
respectively.

To study the effect of intrinsic nonnormality of the
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Table 2

Type I Error Rates for Different a Values in the Different
Distributions

MODEL

TYPE I ERROR RATES FOR a =

.10 .05 .01 .001 .0001

Normal .09901 .04934 .0120a .00091 .00008
CP-normal .10080 .05073 .00983 .00096 .00010
CP-mixture 1 .10255a .05005 .00914b .00067b .00004
CP-mixture 2 .10050 .04970 .00974 .00092 .00006
CP-mixture 3 .10410a .04977 .00773b .00053b .00003b

CP-(G#E) mixture 1 .10928a .04816b .00621b .00045b .00002b

CP-(G#E) mixture 2 .10181 .05052 .00911b .00070b .00004
CP-(G#E) mixture 3 .11350a .04668b .00650b .00040b .00001b

CP-x2 df = 2 .10776a .05017 .00703b .00026b .00001b

CP-Laplace .10250a .05020 .00843b .00051b .00001b

CP-binary (.5) .09898 .04849 .00981 .00098 .00009
CP-binary (.1) .10613a .05060 .00679b .00026b .00000b

CP-extremes .09868 .04925 .00975 .00084 .00008

a Above the upper bound of the confidence interval (inflated type I
error rate).

b Below the lower bound of the confidence interval (conservative
type I error rate).

phenotype, the marginal distribution of each sibling was
set to be x2 with 2 df, which represents a markedly
skewed phenotypic distribution and a standard Laplace
distribution (a symmetrical but leptokurtic distribution)
(Evans et al. 1993). In the study of the effect of di-
chotomous distributions (i.e., diagnosis of disease X),
the parameters underlying mixture 2, described above,
served as the basis for the simulation by choosing the
cut points necessary to produce two Bernoulli distri-
butions: one symmetrical, with a probability of being
affected (PA) that is equal to .5; and one skewed, with

. Once the data were dichotomized for a pop-P = .10A

ulation residual correlation of .50, the expected sample
phenotypic correlation values for was .34, andP = .5A

for was .25.P = .10A

Nonnormal distribution obtained from extreme selec-
tive sampling, which follows the “extreme discordant
and concordant sib-pair” design (Dolan and Boomsma
1998), was simulated by selection of sib pairs in which
neither phenotypic value was located between the 90th
and the 10th percentile of a bivariate normal distribu-
tion, with a population correlation of .50. Data gener-
ation continued until sample size equaled 100 sib pairs.
As a consequence of this data-generating strategy, the
expected value of the sample correlation increased to
.92, meaning that concordant sib pairs constituted the
majority of the sample.

In terms of assessment of the empirical type I error
rates for the NHE test, sampling error was taken into
account by construction of an interval , wherer̂ 5 2 SE

is the empirical proportion of rejections and SE is ther̂

standard error. With a large sample approximation,
, where a is the nominal level of sig-ÎSE = a(1 2 a)/S

nificance and S is the number of simulations.
Table 2 displays the results of the simulations for the

13 different distributions. When normal data were sim-
ulated as a test of the validity of the software, type I
error rates were consistent with the nominal a values,
except for a = .01. This apparent inflation presumably
corresponds to sampling error. For the CP of normal
phenotypes (CP-normal), type I error rates were consis-
tent with the nominal a values.

For the CPs of the mixture distributions, the rejection
rates for mixture 2 were consistent with the nominal a

values. The type I error rates of mixtures 1 and 3 were
somewhat conservative toward the tails of the distri-
bution; that is, the proportions of rejections were well
below the nominal a values of .01, .001, and .0001.
Consistent with other simulation studies using OLS-
based statistical models (e.g., Wilcox 1998), these find-
ings may be considered a consequence of the skewed,
leptokurtic distribution of mixtures 1 and 3, as com-
pared with mixture 2 (see table 1).

When a G#E component was added to the mixtures,
mixtures 1 and 3 produced some inflation of the type I

errors for and a more conservative pattern fora = .10
(and even .0001 for mixture 1).a = .05, .01, and .001

For mixture 2, a conservative pattern was noticed for
and . Conservative results at these samea = .01 a = .001

a values were observed in the x2, Laplace, and binary
distributions. In all other cases, the expected type I error
rate corresponded to the nominal a.

Results of these simulations indicated that, even under
conditions of moderately small sample sizes, strong re-
sidual correlation, and marked nonnormality, the NHE
test was quite robust; that is, even in these “worst case”
scenarios, the NHE test held the empirical type I error
rate at or below the nominal a value. Moreover, we
repeated all simulations described herein with 50 sib
pairs, and we observed results that remained conser-
vative (data not shown). In fact, with nonnormality,
results tended to be conservative for smaller a values.
Although this might be expected by appeal to the central-
limit theorem and knowledge of previous studies of ro-
bustness involving tests based on OLS procedures (e.g.,
see Wilcox 1998), these results stand in marked contrast
to those obtained with an ML-based test of the same
hypothesis under the same conditions (Allison et al.
1999).

It must be pointed out that these results can be gen-
eralized with certainty only to the conditions of this
study. It is not certain that this degree of robustness
would still be obtained if different pedigree structures,
nonindependent sibling pairs, different distributions, or
!50 sibling pairs were used. On the basis of other results
(Allison et al. 1999), one would not expect less robust-
ness with a lower residual correlation. It is possible that,
if the residual correlation were 1.5, the degree of ro-
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bustness might not be as strong, although, in our ex-
perience, sibling correlations 1.5 are uncommon. More-
over, the NHE was robust, given the smaller a values
(e.g., .01, .001, and .0001) commonly used in genetic
research. In disciplines where a = .10 is more common,
OLS-based procedures such as the NHE would not be
considered robust, given the distributions simulated in
this study.

The NHE test is simple to implement and can be easily
used in standard statistical software such as SAS or SPSS.
For multivariate linkage studies, the NHE may be es-
pecially useful as the number of phenotypes increases.
A multivariate version of the NHE can be adapted, just
as it is possible to adapt the original Haseman-Elston
test (Allison et al. 1997; Amos and Laing 1993). Al-
though an ML framework is flexible in allowing for
multivariate testing, as the number of phenotypes grows
large, the number of parameter estimates increases by

, where m is the number of phenotypes studied.m 1 1
In contrast, with each additional phenotype, the number
of parameters to be estimated by the NHE test will in-
crease only by 1. Thus, with multivariate testing, the
NHE may be far more computationally tractable and
efficient. Even with univariate testing, the difference in
computation speed for the two approaches is dramatic.

It should be pointed out that the OLS solution that
comprises the NHE test and the standard ML imple-
mentation are not the only options for implementation
of VC tests for QTL mapping (see Allison et al. 1999);
for example, some investigators are working on imple-
mentations of VC QTL procedures in an ML framework
in which the data are assumed to be sampled from a
multivariate t distribution with k df, where k is a pa-
rameter to be estimated. Therefore, although the current
results clearly show that the NHE was robust in that
type I error rates were not inflated, the more conservative
trend toward the upper tail of the referent distribution
suggests that it may have low statistical power in many
of the situations simulated in this study. Thus, in terms
of robustness to violations of normality and residual
correlation as well as of statistical power, further re-

search is needed to evaluate how the NHE compares
with other QTL-mapping VC procedures.
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