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To develop new approaches for the treatment of invasive infections caused by Scedosporium prolificans, the
in vitro interaction between amphotericin B and pentamidine against 30 clinical isolates was evaluated using
a checkerboard microdilution method based on the National Committee for Clinical Laboratory Standards
M38-P guidelines. The interaction between the drugs was analyzed using fractional inhibitory concentration
index (FICI) analysis and response surface modeling. Amphotericin B alone was inactive against all the
isolates. The geometric mean MIC for pentamidine was 57 �g/ml (range, 8 to 256 �g/ml; MIC at which 50%
of the isolates tested were inhibited [MIC50], 64 �g/ml; MIC90, 128 �g/ml). The combination was synergistic
against 28 of 30 isolates (93.3%) by FICI analysis and 30 of 30 (100%) by response surface modeling analysis.
Antagonism was not observed.

The in vitro susceptibility of Scedosporium prolificans to an-
tifungal agents has been tested in several studies (5, 7, 22), and
although the methodological conditions differed in the various
studies, in general, their results correlated with the observed
poor clinical outcomes. The new azoles, such as ravuconazole,
voriconazole, and posaconazole, showed poor in vitro activity
(5, 7), with the exception of the experimental azole UR-9825,
which showed some activity against S. prolificans (5). Pentam-
idine (PN) displayed good in vitro and in vivo activity against
Pneumocystis carinii, a microorganism that now is believed to
belong to the fungal kingdom (12, 24, 28). Also, in combination
with amphotericin B (AMB), the drug displayed in vivo and in
vitro synergistic activity against other eukaryotic microorgan-
isms such as Leishmania donovani (21, 28). To develop new
therapeutic strategies to treat invasive scedosporiosis, we in-
vestigated the in vitro activity of AMB and PN, alone or in
combination, using two different criteria, the fractional inhib-
itory concentration index (FICI) (10) and response surface
modeling (13).

Thirty clinical isolates (3) of S. prolificans were tested. The
isolates were subcultured on potato dextrose agar (PDA) for 5
to 7 days at 30°C. Candida parapsilosis (ATCC 22019) and
Candida krusei (ATCC 6258) were used as quality control

strains. All isolates were tested in duplicate on two different
days. Conidia were obtained from fresh cultures each time. All
solutions were prepared ex novo with powders from the same
lot.

MICs were determined by a broth microdilution method
according to the National Committee for Clinical Laboratory
Standards guidelines (M38-P) (25).

Conidia were collected with a cotton stick and suspended in
sterile water. After the heavy particles were allowed to settle,
the turbidity of the supernatants was measured spectrophoto-
metrically (Spectronic 20D; Milton Roy, Rochester, N.Y.) at
530 nm and the transmission was adjusted to 68 to 70% and
diluted 1:50 in RPMI medium to obtain two times the desired
inoculum concentration. The inoculum size was verified by
determination of the number of viable CFU after plating serial
dilutions of the inoculum onto Sabouraud dextrose agar. These
cultures showed that the final inoculum concentrations ranged
between 1.5 � 104 and 5 � 104 CFU/ml, which is within the
recommended upper and lower limits. The drugs used in this
study were AMB (Bristol-Myers Squibb, Woerden, The Neth-
erlands) and PN (Sigma-Aldrich Chemie GmbH, Steinheim,
Germany). The final concentrations of the drugs ranged from
0.03 to 16 �g/ml for AMB and from 1 to 128 �g/ml for PN.
AMB was dissolved in dimethyl sulfoxide (Merck, Darmstadt,
Germany), and PN was dissolved in water.

Drug dilutions were made in RPMI 1640 medium (with
L-glutamine and without bicarbonate) (GIBCO BRL, Life
Technologies, Woerden, The Netherlands) buffered to pH 7.0
with 0.165 M morpholinepropanesulfonic acid (MOPS) (Sig-
ma-Aldrich Chemie). Susceptibility testing was performed in
96-well flat-bottom microtitration plates, which were kept at
�70°C until the day of testing. After inoculation and agitation,
the plates were incubated at 35°C for 72 h and the MICs were
read visually and spectrophotometrically. Growth was graded
on a scale of 0 to 4 as follows: 4 indicated no reduction in
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growth, 3 indicated a 25% reduction of growth, 2 indicated a
50% reduction of growth, 1 indicated a 75% reduction of
growth, and 0 indicated an optically clear well. The MIC end-
point was defined as the lowest concentration showing an op-
tically clear well or absence of growth (MIC 0, �95% inhibi-
tion) for the drugs alone as well as for the combination. The
optical density (OD) was measured with a spectrophotometer
(MS2 reader, Titertek-plus; ICN Biomedical Ltd., Basingstoke,
United Kingdom) at 405 nm. The OD of the blank, to which a
conidium-free inoculum had been added, was subtracted from
the OD values. The percentage of growth for each well was
calculated by comparing the OD of the well with that of the
drug-free control.

The in vitro fungicidal activity (minimal fungicidal concen-
tration [MFC]) of each agent was determined by streaking 100
�l from each well that showed complete inhibition (�95%
inhibition or an optically clear well) onto Sabouraud dextrose
agar plates. The plates were incubated at 35°C for 72 h, the
MFC was the lowest drug concentration at which there was
either no growth or only a single colony, which corresponds
with 99.9% killing. The drug was considered fungicidal if the
ratio of MFC to MIC did not exceed a value of 4. If the ratio
was greater than 4, the activity was considered to be fungistatic
(15).

A two-dimensional, two-agent broth microdilution checker-
board technique was used to study the interaction between
both drugs. Drug interaction was analyzed by two different
methods, the FICI and the response surface model of Greco et
al. (13, 14).

FICI values were calculated as follows: MIC of AMB-PN/
MIC of AMB � MIC of AMB-PN/MIC of PN. The interpre-
tation of the FICI was determined as follows: �0.5, synergistic
effect; �0.5 but �1, additive effect; �1 but �4, indifferent
effect; and �4, antagonistic effect (10). In practice, synergism
or antagonism calculated in this way is equivalent to a reduc-
tion or increase of at least two dilution steps in the MICs of
both drugs when they are combined compared to the MICs for
the drugs alone.

Because there is no definition of PN MIC endpoint for fungi,
alone or in combination with AMB, we used the response
surface modeling described by Greco et al. (13, 14). The model
is described by the formula below and was used previously to
characterize the interaction of antiviral, antifungal, and anti-
neoplastic agents (11, 14, 20, 28a):

1 �
D1

IC50,1� E
Econ � E�

1/m1 �
D2

IC50,2� E
Econ � E�

1/m2

� ��
D1D2

IC50,1 IC50,2� E
Econ � E�

�1/m1�1/m2��
1/2

where D1 and D2 are the concentrations of drug 1 and drug 2
(AMB and PN), IC50,1 and IC50,2 are the concentrations of
drug 1 and drug 2 resulting in 50% inhibition, E is the mea-
sured response, Econ is the control response, m1 and m2 are
the slope parameters for drugs 1 and 2 in constant ratios, and
� is the synergism-antagonism interaction parameter (IC�). If
� is zero, the combination is additive; if � is positive, the

interaction is synergistic. A negative � value indicates antago-
nism. The estimate of � has an associated 95% confidence
interval; if the confidence interval does not overlap zero, this
provides the statistical significance for the estimate of interac-
tion. A computer program (ModLab; Medimatics, Maastricht,
The Netherlands) was used to fit the data to this model (28a).
The program also determined the 95% confidence interval for
each parameter.

The MICs of AMB and PN, based on 95% reduction of
growth for C. krusei (ATCC 6258), were 0.5 and 16 �g/ml,
respectively, and for C. parapsilosis (ATCC 22019) were 0.25
and 4 �g/ml, respectively. The MICs for the quality control
strains were within the reference ranges for AMB, but there is
no reference MIC described for PN.

AMB was inactive in vitro against most isolates: MIC at
which 50% of the isolates were inhibited (MIC50) and MIC90

were 32 �g/ml, and the geometric mean MIC was 22.62 �g/ml
(range, 4 to 32 �g/ml). The geometric mean MIC for PN was
57 �g/ml (range, 8 to 256 �g/ml; MIC50, 64 �g/ml; MIC90, 128
�g/ml). The geometric means of the MFCs of AMB and PN
were 30.55 �g/ml (range, 16 to 32 �g/ml) and 165 �g/ml
(range, 16 to 256 �g/ml), respectively. The MFC/MIC ratios
were more than 4 for all the strains, indicating fungistatic
activity.

Synergism was found for 28 of 30 isolates (93.3%), according
to the FICI. The remaining two isolates showed an additive
effect (Table 1). According to the Greco model, AMB and PN
showed synergistic interaction against all S. prolificans isolates.
The 95% confidence interval of the � values did not overlap
zero, indicating significant synergism (Table 1).

Disseminated infection by S. prolificans most commonly oc-
curs in neutropenic patients with hematologic malignancies. It
is a rapidly fatal infection characterized by fever and multior-
gan failure. Many patients have been treated with AMB and
occasionally with other antifungals but commonly with unsuc-
cessful outcomes (3, 5, 18).

PN is an aromatic diamidine that displays multiple effects
and is active in vitro against a number of different bacteria,
protozoa, and fungi, such as Blastomyces dermatitidis, Saccha-
romyces cerevisiae, Candida species, and Cryptococcus neofor-
mans (2, 8, 19, 23, 27, 29). Patients who receive 4 mg/kg of body
weight daily by slow intravenous infusion can achieve a blood
concentration of 0.5 to 3.2 �g/ml. However, much higher levels
are found in tissue, with concentrations of up to 56 �g/g in
lung, 35 to 300 �g/g in liver, 40 to 368 �g/g in spleen, and 8.5
to 123 �g/g in kidney tissue (4, 9). When drug levels were
related to MICs, 20 of 30 of the S. prolificans isolates were
considered susceptible to this drug in vitro. Considering the
MIC/MFC ratios, fungistatic activity was observed for PN.

A promising approach to treatment of invasive scedosporio-
sis might be that of combining antifungal drugs with different
mechanisms of action. PN in combination with AMB showed
synergistic interaction in most of the strains, using either the
FICI or the Greco model. Several different mechanisms of
antimicrobial activity have been proposed for PN, such as
inhibition of DNA, RNA, phospholipid, and protein synthesis
(8, 28). However, because the mechanism of action is not fully
understood, it is difficult to characterize the synergistic inter-
action with AMB.

AMB in combination with tetracyclines, azithromycin, or
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rifampin was synergistic in vitro against Aspergillus spp. (6, 16,
17, 26). As with PN, the above-mentioned antibacterial drugs
inhibit the protein synthesis, and this could be an explanation
of their positive interaction. A disadvantage of the combina-
tion of AMB and PN was that it caused acute reversible renal
failure in vivo, and therefore, caution should be used when
these agents are given concomitantly (1). However, since the
most frequent portal of entry of the fungus appears to be the
respiratory tract, administration of aerosolized PN, combined
with systemic administration of AMB, could reduce toxicity.

In conclusion, this is the first description of activity of PN
alone or in combination with AMB against S. prolificans in
vitro.

Further studies with this and other combinations in appro-
priate animal models are required to develop therapeutic strat-
egies for treatment of invasive scedosporiosis.

(This work was presented in part at the 41st Interscience
Conference on Antimicrobial Agents and Chemotherapy, Chi-
cago, Ill., 16 to 19 December 2001.)
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