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Summary

Pancentromeric FISH and X-chromosome painting were
used to characterize anaphase aberrations in 2,048 cul-
tured lymphocytes from a healthy 62-year-old woman.
Of 163 aberrant anaphases, 66.9% contained either
chromosomes or their fragments that lagged behind.
Characterization of 200 laggards showed that 49% were
autosomes, 33.5% were autosomal fragments, and
17.5% were X chromosomes. The X chromosome rep-
resented one-fourth of all lagging chromosomes and was
involved much more often than would be expected by
chance (1/23). Labeling of the late-replicating inactive
X chromosome with 5-bromo-2′-deoxyuridine revealed
that both X homologues contributed equally to the lag-
gards. Among 200 micronuclei examined from inter-
phase cells, the proportion of the X chromosome (31%)
and autosomal fragments (50%) was higher than among
anaphase laggards, whereas autosomes were involved
less often (19%). These findings may reflect either se-
lection or the fact that lagging autosomes, which were
more proximal to the poles than were lagging X chro-
mosomes, were more frequently included within the
main nucleus. Our results suggest that the well-known
high micronucleation and loss of the X chromosome in
women’s lymphocytes is the result of frequent distal lag-
ging behind in anaphase and effective micronucleation
of this chromosome. This lagging appears to affect the
inactive and active X chromosomes equally.
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Aneuploid lymphocytes are increased with age. In
women, this effect mainly concerns the loss of the X
chromosome (Jacobs et al. 1961; Fitzgerald and Mc-
Ewan 1977; Richard et al. 1993). The X chromosome
is highly overrepresented in the micronuclei of female
lymphocytes, and the age-dependent increase of micro-
nuclei in women is due mainly to X-chromo-
some–positive micronuclei (Guttenbach et al. 1994;
Hando et al. 1994; Richard et al. 1994; Catalán et al.
1995; Surrallés et al. 1996a). This is interesting, since
the formation of micronuclei is probably an important
mechanism leading to chromosome loss (Ford et al.
1988). The only X chromosome in men is also micron-
ucleated in excess, but this occurs at a lower rate than
is seen in females, and this difference is not explained
by the fact that women have two X chromosomes (Ca-
talán et al. 1998). Thus, it has been suggested that the
inactive X chromosome is preferentially affected by mi-
cronucleation (Tucker et al. 1996), although another
group (Surrallés et al. 1996b) did not find any clear
difference in micronucleus formation between the hom-
ologues. Since lagging behind in anaphase is considered
to be a major source of micronuclei (Ford and Correll
1992; Maney et al. 1998), inspection of anaphases could
provide further information about the mechanisms of
X-chromosome loss and the possible involvement of the
inactive X chromosome. This question has not previ-
ously been studied, since the rarity of anaphases in spec-
imens of cultured human lymphocytes makes it very dif-
ficult to find a sufficient number of aberrant anaphases
for examination.

In the present study, we examined 12,000 anaphase-
telophase–stage cultured lymphocytes from a 62-year-
old healthy woman. Mononuclear leukocytes were iso-
lated and were cultured, in 5-ml cultures at an initial
cell density of 1.5 # 106, with the use of phytohem-
agglutinin but without use of cytochalasin B for 72 hours
(see Norppa et al. 1993). We used a pulse treatment
with 5-bromo-2′-deoxyuridine (BrdU) for the identifi-
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cation of the late-replicating inactive X chromosome
(fig. 1). BrdU (10 mg/ml) was added 7 h before harvest.
Anaphase-telophase cells were collected by means of a
modification (Lindholm et al. 1991) of the technique of
Ford and Congedi (1987). A three-day FISH procedure
was simultaneously performed with a biotin-labeled X-
chromosome–painting probe (1066-XB; Cambio) and
with a biotinylated pancentromeric probe (1141-B;
Cambio), according to the manufacturer’s instructions.
In this way, we were able to distinguish whether the
aberration consisted of the X chromosome (painting sig-
nal), autosomes (pancentromeric signal), or autosomal
fragments (no signals) (fig. 1). The probes were detected
and were amplified with the use of rhodamine-conju-
gated antibodies. The hybridization efficiency of the
probes was ascertained by examination of metaphase
spreads (see fig. 1A). BrdU-labeled DNA was detected
by use of fluorescein isothiocyanate–conjugated anti-
bodies. DNA was stained with 4′, 6-diamidino-2-phen-
ylindole (DAPI). The frequency of aberrant anaphases
was evaluated from 2,048 anaphases. A total of 163
aberrant anaphases were characterized for the involve-
ment of the X chromosome and centromeric signals. The
scoring of laggards was continued until a total of 200
laggards had been characterized. Fluorescence-micros-
copy images of all aberrant anaphases were stored in an
isis3 in situ imaging system (Metasystems), which al-
lowed us to ascertain the nature (chromatid or chro-
mosome) of each laggard and to measure the distances
both between the poles and between each laggard and
the nearest pole. In micronuclei analysis, FISH was per-
formed separately for both DNA probes, and BrdU was
not detected. In this way, 200 micronuclei were sepa-
rately characterized for the presence of the X chromo-
some and centromeres in interphase cells, to assess
whether the occurrence of the X chromosome, auto-
somes, and autosomal fragments in micronuclei corre-
sponded with their involvement in aberrations observed
in the preceding anaphase.

Mitotic cells constituted 2% of all cells, and the fre-
quency of anaphases was only .16%; 7.96% (163/2,048)
of the anaphases were aberrant (table 1). To accumulate
1200 aberrant anaphases, we had to go through 11.5
million cells. Most of the aberrations were laggards
(70.6% [66.9% of aberrant anaphases]), in agreement
with the findings of earlier studies (Lindholm et al. 1991;
Ford and Correll 1992). The rest of the aberrations con-
sisted of autosomal bridges, 19% of which had stretched
and broken. One-fourth of the aberrant anaphases (2%
of all anaphases) contained two or more aberrations,
76% of which were exclusively laggards (table 1). Such
a high proportion of multiple events suggests a common
origin for aberrations encountered in a multiaberrant
cell.

A closer characterization of 200 laggards (table 2)

showed that half (49%) were autosomes, whereas acen-
tric autosomal fragments and the X chromosome were
responsible for 33.5% and 17.5% of laggards, respec-
tively. The X chromosome represented one-fourth (35/
133) of all lagging chromosomes and was clearly in-
volved more often than was expected by chance (1/23);
this indicates that the X chromosome is more prone to
be lost than are the autosomes. Both X homologues con-
tributed equally to the X laggards. Although based on
a small number of laggards, this finding supports the
hypothesis of similar micronucleation of the inactive and
active X chromosomes of elderly women (Surrallés et al.
1996b). Five aberrant anaphases showed lagging of both
X chromosomes—a phenomenon that was noted else-
where (Ford and Correll 1992). Thus, if there is a higher
loss of the inactive X chromosome (Abruzzo et al. 1985;
Tucker et al. 1996), then the process does not seem to
be the result of its preferential lagging in anaphase.

The results of the micronuclei analyses are shown
in table 2. In comparison with laggards, there was a
clear increase in the contribution of autosomal frag-
ments (50%) and the X chromosome (31%), whereas
autosomes were found in micronuclei at a lower rate
(19%), with the differences being statistically signif-
icant ( , x2 test). A possible explanation is thatP ! .01
chromosomes lagging at anaphase will be reincor-
porated in either of the daughter nuclei, whereas their
fragments will tend to be left out and form micro-
nuclei. However, in such a case, one could also expect
a decreased incidence of contribution of the X chro-
mosome. It may be that autosomal laggards form mi-
cronuclei at a low efficiency because they are more
proximal to the daughter nuclei than are the lagging
X chromosomes. In fact, the relative distance to the
closer pole (the distance to the closer pole divided by
distance between poles) was significantly higher for
X-chromosome laggards (0.18) than for autosomal
(0.13) laggards ( , Fisher least-significant dif-P ! .05
ference). In previous investigations, X chromo-
some–positive micronuclei frequently lacked a signal
when labeled with antikinetochore antibodies (Hando
et al. 1994). Absence of a functional centromere may
delay sister-chromatid separation, which could result
in lagging of the whole duplicated chromosome
(Kirsch-Volders et al. 1998; Maney et al. 1998). In
fact, we found a significantly higher prevalence (P !

, by x2 test) of laggards with both sister chromatids.01
among lagging X chromosomes (68%) than among
lagging autosomes (23%). Another explanation for
the low proportion of autosomes in micronuclei may
be selection against cells that have lost autosomes,
which carry genes that are important for cell survival
(Marshall et al. 1996). Such cells (especially if mul-
tiaberrant) could die before expression of micronuclei
or during interphase. Selection against cells lacking



Figure 1 Characterization of anaphase/telophase laggards in female lymphocytes. A, Metaphase in which the X chromosome and cen-
tromeres are identified, by means of FISH (red), and (B) the late-replicating inactive X chromosome (uniform green label) is distinguished from
the active X chromosome (discontinuous green label), by means of BrdU labeling. C, Anaphase with a lagging X chromatid (red) that represents
the inactive X chromosome (D) (green). E, Anaphase with a lagging X chromatid (red) that represents the active X chromosome (F).
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Table 1

Aberrations in 2,048 Anaphases in Lymphocytes from a 62-Year-
Old Woman

ABERRATION TYPE AND NO.

ABERRANT ANAPHASES

No. %

Laggards:
One 74 3.61
Two 20 .98
Three 8 .39
Four 3 .15

Total 105a 5.13
Bridges:

One 48 2.34
Two 6 .29

Total 54b 2.64e

One laggard, one bridge: 4c .19
Grand Total 163d 7.96

a No. of individual aberrations = 150.
b No. of individual aberrations = 60.
c No. of individual aberrations = 8.
d No. of individual aberrations = 218.
e Total = rounded sum of exact figures for bridges one and two.

Table 2

Characterization of Anaphase Laggards and
Micronuclei in Lymphocytes from a 62-Year-Old
Woman

Characterization

No. (%) of
Anaphase Laggards

( )n = 200

No. (%) of
Micronuclei
( )an = 200

Fragment 67 (33.5%) 100 (50.0%)
Autosome 98 (49.0%) 38 (19.0%)
X chromosome 35 (17.5%) 62 (31.0%)

Active 15
Inactive 17
Activity status

uncertain 3b

a No. characterized per probe.
b Since the cultures were not synchronized (to avoid

chemical interference with normal chromosome segrega-
tion), the activity status of the X chromosome could not
always be ascertained.

the active X chromosome could also explain the pos-
sible preferential loss of the inactive X chromosome
which is not needed for cell survival (Hando et al.
1994). Finally, breakage of bridges, which was clas-
sified separately, is also expected to increase the yield
of micronuclei with fragments (Stopper 1997).

In conclusion, the well-known high micronuclea-
tion and the loss of the X chromosome in women’s
lymphocytes are probably the result of frequent lag-
ging behind of the X chromosome during anaphase.
This phenomenon appears to affect the inactive and
active X chromosomes alike. The distal location of
lagging X chromosomes in anaphase further seems to
favor micronucleus formation.
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