Skip to main content
. 2000 Mar 6;66(3):1046–1061. doi: 10.1086/302815

Table 1.

Comparison of Nonparametric and Parametric Regressions, Based on Average Prediction Error (Residual Sums of Squares Averaged Over 1,000 Replications), for a Single QTL, with 100 Sib Pairs[Note]

Candidate Interval Error in Predictiona
NP (97.2%)
P1 (98.5%)
P2 (98.9%)
β = 0, p = .5, ρ = .8:
 (1,2) 100.56 95.46 92.71
 (2,3) 87.65 74.72 70.62
 (3,4) 104.29 99.55 97.68
 (4,5) 117.03
110.84
107.27
NP (90.7%)
P1 (82.5%)
P2 (84.1%)
β = 2, p = .9, ρ = .7:
 (1,2) 152.76 157.63 155.35
 (2,3) 143.37 148.54 146.72
 (3,4) 152.90 160.81 157.64
 (4,5) 166.29
173.06
171.18
NP (75.8%)
P1 (43.0%)
P2 (51.5%)
β = 4, p = .7, ρ = .5:
 (1,2) 182.45 196.74 193.27
 (2,3) 180.34 194.68 191.93
 (3,4) 185.74 194.52 193.22
 (4,5) 190.59 207.02 203.51

Note.—Simulation parameter values were α=5, σ2=1, and θ12345=.01.

a

NP = nonparametric regression; P1 = parametric regression with the leave-one-out technique; P2 = parametric regression without the leave-one-out technique (i.e., standard parametric regression). Results in parentheses denote the percentages of correct identification of the true interval location.