Skip to main content
. 2000 Mar 6;66(3):1046–1061. doi: 10.1086/302815

Table 2.

Comparison of Nonparametric and Parametric Regressions, Based on Average Prediction Error (Residual Sums of Squares Averaged Over 1,000 Replications), for a Single QTL, with 100 Sib Pairs [Note]

Candidate Interval Error in Predictiona
NP (95.2%)
P1 (97.0%)
P2 (97.8%)
β = 0, p = .5, ρ = .8:
 (1,2) 104.72 98.44 95.61
 (2,3) 92.83 78.69 74.25
 (3,4) 106.29 101.54 99.02
 (4,5) 122.18
114.84
110.49
NP (88.4%)
P1 (80.6%)
P2 (82.9%)
β = 1, p = .9, ρ = .7:
 (1,2) 162.26 167.05 165.11
 (2,3) 147.75 154.68 151.83
 (3,4) 164.90 168.32 165.17
 (4,5) 179.44
188.69
184.72
NP (71.5%)
P1 (40.4%)
P2 (43.7%)
β = 2, p = .7, ρ = .5:
 (1,2) 196.65 211.76 203.38
 (2,3) 188.07 200.55 197.63
 (3,4) 199.19 213.01 206.05
 (4,5) 212.92 225.47 218.86

Note.—Simulation parameter values were α=3, σ2=1, and θ12345=.01.

a

Definitions of abbreviations and results in parentheses are the same as those given in table 1.