Skip to main content
. 2000 Mar 6;66(3):1046–1061. doi: 10.1086/302815

Table 4.

Comparison of Nonparametric and Parametric Regressions, Based on Average Prediction Error (Residual Sums of Squares Averaged over 1,000 Replications), for a Single QTL, With 50 Sib Pairs[Note]

Candidate Interval Error in Predictiona
NP (95.3%)
P1 (97.6%)
P2 (98.0%)
β = 0, p = .5, ρ = .8:
 (1,2) 111.45 107.56 104.87
 (2,3) 103.40 100.48 97.84
 (3,4) 112.83 109.58 105.53
 (4,5) 122.17
118.97
116.04
NP (84.7%)
P1 (80.2%)
P2 (81.3%)
β = 2, p = .9, ρ = .7:
 (1,2) 167.93 170.56 168.01
 (2,3) 160.26 165.02 161.36
 (3,4) 169.88 172.64 169.90
 (4,5) 184.71
191.39
188.55
NP (70.7%)
P1 (38.8%)
P2 (40.7%)
β = 4, p = .7, ρ = .5:
 (1,2) 212.68 216.44 214.85
 (2,3) 207.79 215.75 210.26
 (3,4) 210.92 214.50 213.13
 (4,5) 221.36 229.23 226.39

Note.—Simulation parameter values were α=5, σ2=1, and θ12345=.01.

a

Definitions of abbreviations and results in parentheses are the same as those given in table 1.