Skip to main content
. 2000 Mar 6;66(3):1046–1061. doi: 10.1086/302815

Table 5.

Comparison of Nonparametric and Parametric Regressions, Based on Average Prediction Error (Residual Sums of Squares Averaged over 1,000 Replications), for a Single QTL, with 25 Sib Pairs[Note]

Candidate Interval Error in Predictiona
NP (93.1%)
P1 (95.4%)
P2 (96.2%)
β = 0, p = .5, ρ = .8:
 (1,2) 126.04 122.76 119.64
 (2,3) 118.48 115.57 112.05
 (3,4) 128.16 121.35 120.03
 (4,5) 143.74
137.43
134.68
NP (82.6%)
P1 (75.3%)
P2 (77.0%)
β = 2, p = .9, ρ = .7:
 (1,2) 171.28 176.55 174.16
 (2,3) 164.09 171.63 167.32
 (3,4) 173.37 178.80 175.09
 (4,5) 188.48
198.06
195.45
NP (65.5%)
P1 (34.2%)
P2 (35.9%)
β = 4, p = .7, ρ = .5:
 (1,2) 229.53 240.08 237.62
 (2,3) 220.49 238.16 233.44
 (3,4) 226.86 237.61 233.38
 (4,5) 243.35 258.77 255.26

Note.— Simulation parameter values were α=5, σ2=1, and θ12345=.01.

a

Definitions of abbreviations and results in parentheses are the same as those given in table 1.