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Linkage Analysis in the Presence of Errors IV: Joint Pseudomarker Analysis
of Linkage and/or Linkage Disequilibrium on a Mixture of Pedigrees and
Singletons When the Mode of Inheritance Cannot Be Accurately Specified
Harald H. H. Göring1,* and Joseph D. Terwilliger2,3,4

1Department of Genetics and Development and 2Department of Psychiatry and 3Columbia Genome Center, Columbia University and 4New
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There is a lot of confusion in the literature about the “differences” between “model-based” and “model-free”
methods and about which approach is better suited for detection of the genes predisposing to complex multifactorial
phenotypes. By starting from first principles, we demonstrate that the differences between the two approaches have
more to do with study design than statistical analysis. When simple data structures are repeatedly ascertained, no
assumptions about the genotype-phenotype relationship need to be made for the analysis to be powerful, since
simple data structures admit only a small number of df. When more complicated and/or heterogeneous data
structures are ascertained, however, the number of df in the underlying probability model is too large to have a
powerful, truly “model-free” test. So-called “model-free” methods typically simplify the underlying probability
model by implicitly assuming that, in some sense, all meioses connecting two affected individuals are informative
for linkage with identical probability and that the affected individuals in a pedigree share as many disease-predis-
posing alleles as possible. By contrast, “model-based” methods add structure to the underlying parameter space
by making assumptions about the genotype-phenotype relationship, making it possible to probabilistically assign
disease-locus genotypes to all individuals in the data set on the basis of the observed phenotypes. In this study, we
demonstrate the equivalence of these two approaches in a variety of situations and exploit this equivalence to
develop more powerful and efficient likelihood-based analogues of “model-free” tests of linkage and/or linkage
disequilibrium. Through the use of a “pseudomarker” locus to structure the space of observations, sib-pairs, triads,
and singletons can be analyzed jointly, which will lead to tests that are more well-behaved, efficient, and powerful
than traditional “model-free” tests such as the affected sib-pair, transmission/disequilibrium, haplotype relative
risk, and case-control tests. Also described is an extension of this approach to large pedigrees, which, in practice,
is equivalent to affected relative-pair analysis. The proposed methods are equally applicable to two-point and
multipoint analysis (using complex-valued recombination fractions).

Introduction

There is a lot of rhetoric in the literature about whether
one should apply “model-based” (e.g., Hodge and Els-
ton 1994; Greenberg et al. 1996; Trembath et al. 1997)
or “model-free” (e.g., Farrall 1997; Kruglyak 1997)
analysis methods to map the genes whose alleles pre-
dispose to complex disease. Most of the arguments, how-
ever, seem motivated more by philosophical dogma than
practical and rational considerations—like the disagree-
ment over the size and position of the flags on the ne-
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gotiation table for the Panmunjom armistice talks (Joy
1955). Symmetries between “model-based” and “model-
free” analysis methods have been recognized for many
years (see Hyer et al. 1991; Knapp et al. 1994; Kuok-
kanen et al. 1996; Satsangi et al. 1996; Whittemore
1996; Trembath et al. 1997; Terwilliger 1998), yet the
tension and confusion remain strong, with the field being
somewhat polarized on this issue. We hope that the fol-
lowing comparative analysis of the underlying nature of
“model-based” and “model-free” methods will help at-
tenuate such contentious confusion.

In this study, we will start from first principles and
derive the most common “model-free” statistics, and
we will show that they are equivalent to “model-based”
analysis under certain rather extreme assumptions
about the mode of inheritance. Only when the same
very simple data structure is sampled repeatedly from
a population can truly “model-free” analysis be per-
formed powerfully. In all other instances, some as-
sumptions are required to reduce the df in the data to
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Table 1

Mean, Variance, Skewness, and Kurtosis of the “All-
Pairs” ASP Mean Test Statistic, ASPAP, as a Function of
Sibship Size

No. of
Affected Sibs Mean Variance Skewness Kurtosis

2 0 1 0.000 1.000
3 0 1 1.155 2.333
4 0 1 1.633 4.667
5 0 1 1.897 6.400
6 0 1 2.066 7.667
7 0 1 2.182 8.619
8 0 1 2.268 9.357
9 0 1 2.333 9.944
10 0 1 2.385 10.422
N(0,1) 0 1 0.000 3.000

NOTE.—The mean, variance, skewness, and kurtosis are
computed based on IBD sharing from one parent in a single
nuclear family of the indicated size, under the assumption
of a fully informative marker locus. The moment coefficient
of kurtosis given here is computed as E {[X 2

(note that some statisticians prefer us-4 4ÎE (X)] } [ Var(X)]Z
ing a different measure of kurtosis, in which 3 is subtracted
from the quantity given here).

a manageable number. A model of genotype-phenotype
correlation at a single trait locus is used in “model-
based” analysis to infer disease-locus genotypes in a
probabilistic manner, as a means of adding structure to
the underlying probability model. “Model-free” anal-
ysis accomplishes this goal by other, more ad hoc ap-
proaches, such as assuming that all meioses have equal
probability of being informative for linkage at the dis-
ease locus (i.e., disease-locus genotype D/1), with the
disease-predisposing allele (D) being transmitted with
equal probability from each D/1 parent to each affected
offspring. Though one may hesitate to formally call
these assumptions a “model” of the mode of inheri-
tance, they often lead to test statistics which will be
shown to be equivalent to “model-based” analysis un-
der certain extreme assumptions about the mode of
inheritance.

Another area of confusion which is dominated by
rhetoric is the distinction between linkage and linkage
disequilibrium (LD) analyses. In fact, both linkage and
LD are correlations between genotypes of two loci
(within and between pedigrees, respectively), not be-
tween the genotype of one (marker) locus and a phe-
notype influenced by genotypes of another (disease) lo-
cus. The ascertainment schemes have traditionally been
quite different when linkage or LD is the focus of in-
ference, with emphasis on ascertainment of unrelated
affected and unaffected individuals (for LD analysis)
and on pedigrees with as many affected relatives as pos-
sible (for linkage analysis). However, as has been argued
repeatedly (e.g., Risch and Merikangas 1996; Terwil-
liger and Göring in press), the power to detect LD in-

creases when affected relatives are ascertained, since this
will increase the probability that affected individuals
have a multifactorial disease for (the same) genetic rea-
son(s). Since, in most cases, investigators have a mixture
of different data structures available—such as pedigrees,
triads, and singletons—we propose that all of the data
be analyzed jointly, using likelihood-ratio tests for link-
age and/or LD. Joint analysis of linkage and LD on the
totality of the available data has been advocated by
others as well (Martin et al. 1997; Teng and Siegmund
1997; Excoffier and Slatkin 1998; Terwilliger and Weiss
1998; Zhao et al. 1998; Terwilliger and Göring in
press). We demonstrate here that “model-free” likeli-
hood-based analysis using “pseudomarker” genotypes
is more powerful than the conventional “model-free”
tests when both linkage and LD are present, and, unlike
some conventional “model-free” statistics, remains
powerful for detection of either of the two phenomena
in the absence of the other.

Unified Theoretical Model of Likelihood-Based
Linkage and LD Analysis

In both “model-based” and “model-free” analysis, in-
ference can be made based on the likelihood, L ∝

, where Ph represents the vector of observedP(Ph,G )M

disease phenotypes and GM the vector of observed
marker-locus genotypes (of one or multiple marker loci)
for all individuals in the data set. This likelihood is then
compared under different hypotheses, to test whether
the underlying genotypes of the disease and marker loci
are correlated (see Göring and Terwilliger 2000c; Ter-
williger and Göring in press). In “model-based” analysis,
this likelihood is computed by partitioning over all pos-
sible underlying disease- and marker-locus genotypes for
all individuals in the data set (gD and gM), as

P(Ph,G ) = P(PhFG )P(G )M M M

= P(PhFg )P(g FG )P(G )O D D M M
gD

= P(g ,G ) P(PhFg )P(g Fg ) .O OM M D D M
g gM D

In this formulation of the likelihood, P(gM,GM) is a func-
tion of the marker-locus genotype-frequency distribu-
tions (and genotyping-error rates), is a functionP(PhFg )D

of the assumed relationship between disease-locus gen-
otypes and disease phenotypes, and is a func-P(g Fg )D M

tion of linkage and/or LD between disease and marker
loci, as well as disease-locus genotype frequencies, as
enumerated in table 1 of Göring and Terwilliger (2000c).

is the focus of inference in linkage and LDP(g Fg )D M

analysis, as it contains all the information about cor-
relations among the loci. By contrast, in “model-
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free” analysis, the likelihood is expanded as L ∝
. In order to avoid stratifyingP(Ph,G ) = P(G FPh)P(Ph)M M

over underlying disease- and marker-locus genotypes
(which would require some “model” assumptions), the
same simple data structure (i.e., a particular pedigree
structure with a particular set of phenotypes, Ph) is re-
peatedly sampled from the population (e.g., affected sib-
pairs, triads, singletons, etc.). In this situation, all pos-
sible outcomes GM can be categorically enumerated such
that the probability would follow a multino-P(G FPh)M

mial distribution (see below for examples). A primary
drawback of conventional “model-free” methods is that
they only behave in a straightforward and predictable
manner when the same pedigree/phenotype structure can
be ascertained multiple times from a population.

In “model-based” analysis, the question of inferential
focus is whether the disease- and marker-locus geno-
types are correlated; that is, whether ,P(g Fg ) = P(g )D M D

independent of gM. Such correlation could be due to
linkage, LD, or both, and it can be parameterized as a
function of both phenomena, no matter what data struc-
tures have been ascertained (Göring and Terwilliger
2000c; Terwilliger and Göring in press). In “model-
free” analysis, the analogous question is whether the
observed marker-locus genotypes are independent of
the observed disease phenotypes; that is, whether

, independent of Ph. If this probabil-P(G FPh) = P(G )M M

ity is partitioned over the underlying marker- and
disease-locus genotypes, one obtains P(G FPh) =M

, where only theO P(G Fg )O P(g Fg )P(g FPh)g M M g M D DM D

term is a function of linkage and/or LD. ThusP(g Fg )M D

one can see that, fundamentally, “model-free” inference
is likewise focused on whether the underlying marker-
and disease-locus genotypes are correlated; that is,
whether in both cases. The dif-P(g ,g ) = P(g )P(g )M D M D

ference between the two approaches relates to the as-
sumptions one needs to make about gD. By repeated
ascertainment of the same simple data structure, no such
assumptions are required in “model-free” methods.
Such ascertainment minimizes the number of parame-
ters required to express the general likelihood as a mul-
tinomial function of the enumerated set of all possible
observations GM. In order to perform a “model-free”
analysis on larger data structures (or even a variety of
small ones), some simplifying assumptions are required
to structure the space of possible outcomes GM as a
function of the parameters of inferential interest.

To this end, we propose structuring the correlations
between Ph and GM in a “model-free” manner, by as-
signing “genotypes” of an artificial “pseudomarker” lo-
cus, gP, to all individuals in the data set as a surrogate
for the observed set of disease phenotypes, Ph. This
leads to statistical tests based on the likelihood L ∝

. P(gP) can be absorbed in theP(g ,G ) = P(G Fg )P(g )P M M P P

constant of proportionality, because it is constant under

all hypotheses, since the pseudomarker genotypes are
assigned solely on the basis of the observed phenotype
structure. We do not intend to imply that there is a
unique way that pseudomarker genotypes must be as-
signed in practice, though we will focus on simple al-
gorithms that lead to statistical tests analogous to many
of the traditional “model-free” methods, as shown be-
low. According to these algorithms, pseudomarker gen-
otypes would be assigned in such a way as to make
informative for linkage those meioses connecting af-
fected individuals, so that the affected individuals in-
herit as many pseudomarker alleles identical by descent
(IBD) as possible. In nuclear pedigrees, this can be ac-
complished by making both parents informative for
linkage (e.g., pseudomarker genotype D/1), irrespective
of their phenotype, with each of their affected children
receiving the parental D alleles. Since most “model-free”
analyses are conducted in an “affecteds-only” manner
(because it is hypothesized that the “unaffected” phe-
notype is not a reliable predictor of the underlying dis-
ease-locus genotype for a complex disease), all remain-
ing individuals would have unknown pseudomarker
genotype. If one wished to contrast affected and unaf-
fected individuals in the analysis as well, such as in
discordant sib-pair analysis, one could assume that the
unaffected sibs received the parental 1 allele, rather
than the D allele transmitted to the affected sibs. Sin-
gleton individuals and larger pedigrees can be assigned
pseudomarker genotypes in an analogous manner. Ap-
plying this algorithm to singletons and nuclear pedigrees
of various size yields likelihood-ratio tests of linkage
and/or LD that are equivalent to the sib-pair mean test,
the transmission/disequilibrium test (TDT), the haplo-
type-based haplotype relative risk (HHRR) test, and tra-
ditional case-control analyses. In addition, such appli-
cation leads to novel and more general “model-free”
tests that can be applied to a mixture of data structures
and can allow for joint testing of linkage and LD. Other
models for phenotyperpseudomarker genotype trans-
formation in general pedigrees are discussed below.

In “model-based” analysis, as was described above,
the likelihood of the observed disease phenotypes, Ph,
and marker-locus genotypes, GM, is partitioned over all
possible disease-locus genotype vectors, gD, for all in-
dividuals in the data set, weighted by their prior prob-
abilities. One may describe this procedure as a proba-
bilistic assignment of disease-locus genotypes, in
contrast to a deterministic pseudomarker algorithm. For
a given pedigree structure and observed disease phe-
notypes, the number of possible disease-locus genotype
vectors depends on the assumed disease model. If one
allows for phenocopies—that is, —P(affectedF 1 /1) 1 0
and incomplete penetrance—that is, P(affectedFD/D) !

—then every disease-locus genotype (D/D, D/1, 1/1)1
would be admissible for every individual in every data
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Figure 1 Observed recombination status as a function of meiotic
informativeness. In reality, every meiosis is either informative (I) or
uninformative (U) for linkage. A meiosis is only informative when a
parent is heterozygous at both the disease locus (D/1) and the marker
locus. Sometimes, however, the parental disease-locus genotypes will
be misspecified by the algorithm used to assign disease-locus genotypes
(such as the proposed pseudomarker algorithms), which is part of the
analysis. This will lead either to an informative meiosis being mis-
classified as uninformative (with probability 12a) or to an uninform-
ative meiosis being misclassified as informative (with probability b).
Meioses classified as uninformative are censored from the analysis.
Among those meioses classified as informative, the truly informative
ones will show recombination with probability v, whereas the ones
which are in reality uninformative will show recombination with prob-
ability .5. This often leads to an upward bias in the estimate of v, the
expectation of which is given by ˆE [v] = {[avK 1 b(0.5)K ] / (K 1I U I

, which is 1v unless , or , where KI and KU arebK )} v = .5 b = 0 K = 0U U

the number of truly informative and uninformative meioses, respec-
tively. In (recessive) pseudomarker analysis, and , and thusa = 1 b = 1

, whichE [v] = [(vK 1 0.5K ) / (K 1 K )] = v 1 (0.5 2 v) [K / (K 1 K )]I U I U U I U

is 1v unless or . The bias in the estimate of v can bev = .5 K = 0U

accounted for through the use of complex-valued recombination frac-
tions (Göring and Terwilliger 2000a). For further development of this
model, see Terwilliger and Göring (in press).

set (though not all combinations of genotypes would be
possible, because of Mendel’s laws [Mendel 1866]),
such that the likelihood would have to be computed
over a large number of underlying disease-locus geno-
type vectors, gD. For a model assuming full penetrance
and no phenocopies, however, the number of disease-
locus genotype vectors will be much smaller, and some-
times just a single vector, gD, may be admissible. Notice
that such an analysis is similar to pseudomarker anal-
ysis, in which disease-locus genotypes are assigned de-
terministically on the basis of the observed phenotypes.
In this sense, the stronger the genotype-phenotype cor-
relation assumed in a “model-based” analysis, the closer
it becomes, paradoxically, to “model-free” analysis!

The set of inferred disease-locus genotypes, gD (or,
analogously, gP in pseudomarker analysis), generally
will not be identical to the true genotypes of the disease
locus. As is generally the case in likelihood analysis,
errors will often lead to biased estimates of underlying
parameters. In linkage analysis, the parameter of inter-
est—the estimate of which will be biased—is the recom-
bination fraction, v, as follows. Some proportion, a, of
meioses that are truly informative for linkage (i.e., pa-
rental genotype is D/1) will be correctly inferred to be
informative, and some proportion, b, of meioses that
are actually uninformative for linkage (i.e., parental ge-
notype is either D/D or 1/1) will be incorrectly inferred
to be informative, according to the probability model
shown in figure 1. If a meiosis were misclassified as
uninformative, linkage information would be discarded
inappropriately (i.e., the signal would be reduced), but
no bias in the estimate of v would result. However, if
a meiosis were misclassified as informative, it would be
inappropriately inferred to be recombinant 50% of the
time (i.e., noise would be added into the analysis), re-
sulting in an upward bias in the estimate of v. Both
types of error can lead to reduction of power. If the
number of meioses which are actually informative for
linkage (D/1) is KI and the number of meioses which
are actually uninformative for linkage is KU, the ex-
pected maximum-likelihood estimate of v (assuming ab-
sence of misclassification errors in the recombination
status of the truly informative meioses—see Göring and
Terwilliger 2000a, 2000b) would be ˆE[v] = {[v(aK ) 1I

. In pseudomarker analysis,0.5(bK )] / (aK 1 bK )}U I U

every meiosis is assumed to be informative, and, ac-
cordingly, and , and ˆa = 1 b = 1 E[v] = [(vK 1I

, which10.5K ) / (K 1 K )] = v 1 ( 2 v) [K / (K 1 K )]U I U U I U2

is biased upward unless or . Such inflationK = 0 v = 0.5U

of the estimate of v can be allowed for in an analysis
through the use of complex-valued recombination frac-
tions, as described by Göring and Terwilliger (2000a,
2000b).

Common “Model-Free” Methods and Their
Pseudomarker Analogues

Linkage Tests Based on Affected Sib-Pairs

A common ascertainment scheme for “model-free”
linkage analysis is to collect a large sample of affected
sib-pairs, without regard to the parental phenotypes (see
Penrose 1935). In this scheme, Ph would be “in a nuclear
family with two sibs, both sibs are affected with the
disease,” and GM would represent the observed marker-
locus genotypes of both sibs and their parents. If parents
are not available for genotyping, one can sum over all
their admissible marker-locus genotypes, weighted by

as described above. On this data structure,P(G Fg )M M

one can categorize the possible outcomes, GM, as a func-
tion of how many alleles the two sibs share IBD (0, 1,
or 2), with corresponding multinomial likelihood L ∝
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Figure 2 Pseudomarker genotype assignment on a nuclear ped-
igree. The pseudomarker genotypes are shown as assigned in the pseu-
domarker analogue of the affected sib-pair mean test. The unaffected
sibs would be assigned genotype 1/1 instead of ?/? in discordant sib-
pair analysis. The same genotype assignment rule is also used in other
pseudomarker-based analyses on nuclear pedigrees and triads (see text
for details on pseudomarker genotype assignment schemes for other
data structures).

, where pi is the probability withX X X0 1 2p p (1 2 p 2 p )0 1 0 1

which a sib-pair shares i alleles IBD, and Xi is the number
of sib-pairs in the data set which are observed to share
i alleles IBD. Under the null hypothesis that marker- and
disease-locus genotypes are uncorrelated (i.e., there is no
linkage between the loci), , and . Underp = 0.25 p = 0.50 1

the alternative hypothesis of linkage, the likelihood
would be maximized over all possible values for these
parameters (sometimes restricted to a portion of the total
admissible parameter space—see Holmans 1993), lead-
ing to a likelihood-ratio test of the form

X X X0 1 2max p p (1 2 p 2 p )0 1 0 1
p ,p0 1L = 2 ln ,X X X0 1 20.25 0.5 0.25

which is asymptotically distributed according to x2 dis-
tribution with 2 df, when the pi are unconstrained (see
Blackwelder and Elston 1985; Holmans 1993). If one
assumes (as in the affected sib-pair mean test) that the
transmission of marker-locus alleles from the two par-
ents is independent, conditional on the observed phe-
notypes, one of those df can be eliminated. If we define

(two affected sibs share an allele IBD from a givenf = P
parent), then , , and .2 2p = (1 2 f) p = 2f(1 2 f) p = f0 1 2

When such structure is added to the underlying prob-
ability space, the likelihood-ratio test of linkage, L, can
be rewritten as

2 X X 2 X0 1 2[ ] [ ] ( )max (1 2 f) 2f(1 2 f) f
f

L = 2 ln X X X0 1 2(0.25) (0.50) (0.25)
2X 1X X 12X0 1 1 2( ) ( )max 1 2 f f

f= 2 ln ,2X 1X X 12X0 1 1 2( ) ( )0.5 0.5

which is asymptotically distributed as a 50-50 mixture
of point-mass at 0 and x2 distribution with 1 df (Nor-
dheim 1984; Tai and Chen 1989).

In a pseudomarker linkage analysis, under the as-
sumption that all meioses connecting affected individ-
uals are informative for linkage, both parents of an af-
fected sib-pair would be assigned pseudomarker
genotype D/1, and, assuming that the affected sibs share
as many pseudomarker alleles IBD as possible, the pseu-
domarker genotypes of the affected sibs would be set to
D/D, as illustrated in figure 2. In this model, the prob-
ability that two sibs inherit the same marker-locus allele
IBD from a single parent would be , and2 2f = v 1 (1 2 v)
the likelihood-ratio test of linkage comparing GM and
gP can be shown to be equal to

max L(f)
f

L = 2 ln
L(f = 0.5)

2X 1X X 12X0 1 1 2( ) ( )max 1 2 f f
f= 2 ln 2X 1X X 12X0 1 1 2( ) ( )0.5 0.5

2X 1X 2 2 X 12X0 1 1 2[ ] [ ]max 2v(1 2 v) v 1 (1 2 v)
v= 2 ln 2X 1X X 12X0 1 1 2( ) ( )0.5 0.5

max L(v)
v= 2 ln .

L(v = 0.5)

Since either parameterization gives an equivalent cov-
erage of the admissible probability space, the equiva-
lence of both approaches in the two-point case is estab-
lished (see also Knapp et al. 1994; Kuokkanen et al.
1997; Satsangi et al. 1997; Trembath et al. 1997; Ter-
williger 1998). To establish equivalence in the multipoint
case, one needs to use complex-valued recombination
fractions, which we have introduced elsewhere (Göring
and Terwilliger 2000a). Briefly, a complex-valued re-
combination fraction, , consists of two com-V = v 1 ei
ponents: v (the probability of actual recombination be-
tween alleles of disease and marker loci) and e (the
probability of apparent recombination events caused by
errors in the assignment of disease-locus genotypes).
Though these two components cannot be separated in
two-point linkage analysis, they are identifiable in mul-
tipoint analysis. In Göring and Terwilliger (2000a), the
equivalence of two-point analysis and multipoint anal-
ysis using complex-valued recombination fractions has
been established by arbitrarily fixing between thev = 0
disease locus and some position, xD, on the chromosome.
The alternative-hypothesis likelihood is maximized over
e, and compared to the null hypothesis likelihood in
which , such that the multipoint pseudomarkere = 0.5
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likelihood-ratio statistic, on a set of affected sib-pairs,
would be

max L(v = 0,e)
e

L = 2 ln
L(v = 0,e = 0.5)

2X 1X 2 2 X 12X0 1 1 2[ ] [ ]max 2e(1 2 e) e 1 (1 2 e)
e= 2 ln .2X 1X X 12X0 1 1 2( ) ( )0.5 0.5

This multipoint statistic has the same distribution as the
two-point statistic (though, when maximized over map
position, a correction for multiple testing is necessary as
in any multipoint analysis—see Dupuis et al. 1995). The
equivalence of the pseudomarker test (with complex-
valued recombination fractions) and the affected sib-pair
mean test is thus established for the multipoint situation
as well.

Linkage Analysis on Larger Sibships

The conventional sib-pair analysis methods and their
pseudomarker analogs presented above are completely
equivalent only when the data set consists solely of nu-
clear pedigrees with exactly two affected sibs. In prac-
tice, investigators typically also ascertain larger sibships,
with more than two affected sibs, since under most plau-
sible genetic models of disease it is more likely that dis-
ease alleles of strong effect are segregating in a sibship
ascertained through presence of three affected individ-
uals than in a sibship ascertained through presence of
only two affected individuals, and so on (see Lathrop et
al 1996; Terwilliger and Göring in press). A corollary
of this is that an affected sib-pair selected from a sibship
ascertained through the presence of more than two af-
fecteds will be more likely to share disease alleles IBD
than an affected sib-pair with no additional affected sib-
lings. For this reason, it is desirable to have sibships with
as many affected individuals as possible. The problem
is that the simple “pairs-based” analysis methods cannot
be applied in a straightforward manner. Blackwelder and
Elston (1985) analyzed the statistical properties of a sim-
pler algebraic representation of the mean test,

(2X 1 X ) 2 (2X 1 X )2 1 0 1ASP = ,Î2(X 1 X 1 X )0 1 2

which they showed to be asymptotically distributed as
a N(0,1) random variable under the hypothesis of no
linkage, even if one breaks a sibship of size s into all

possible sib-pairs and applies this statisticals(s 2 1)/2
test as if they were all independent (in which case we
denote it as ASPAP). They showed that the mean and
variance of this ASPAP statistic indeed remain 0 and 1,
respectively. However, the skewness and kurtosis of the

distribution of this statistic can deviate dramatically
from the values expected for a N(0,1) variable, as shown
in table 1 for allele sharing from a single parent in a
single sibship. This can lead to a high rate of false-pos-
itive linkage findings, even in fairly large data sets, as
shown below by simulation, though the problem goes
away asymptotically (i.e., if one had an infinitely large
data set) according to the central limit theorem (de
Moivre 1756). Based on power considerations, Suarez
and Hodge (1979) proposed a weighting function to
treat a sibship of size s as being equivalent to ( )s 2 1
independent sib-pairs (ASPWP). While this approximate
solution attenuates the effect of a small number of large
sibships, it still leads to substantial skewness and kur-
tosis relative to the assumed N(0,1) distribution and,
thus, a risk of false-positive results (see simulation results
below).

Pseudomarker analysis, however, allows larger sib-
ships to be analyzed by a straightforward extension, by
simply assigning pseudomarker genotype D/D to all af-
fected sibs in each sibship. This procedure leaves the
distribution of the LOD-score statistic invariant (see sim-
ulation results below), though one can no longer write
the LOD score as a function of X0, X1, and X2, but rather
as a function of the entire vector GM. Unaffected siblings
can be included in pseudomarker analysis by either of
two approaches. If one wanted to preserve the “affect-
eds-only” nature of the analysis, one should leave the
pseudomarker genotype indeterminate for unaffected
sibs (i.e., they would only be used to help infer unknown
parental marker-locus genotypes and to infer phase in
multipoint analysis). If one wanted to do a discordant
sib-pair analysis, the unaffecteds could be assigned pseu-
domarker genotype 1/1, resulting in a test that is equiv-
alent to the discordant sib-pair mean test (S.A.G.E.
1994).

LD Analysis on Singletons (Case-Control Studies)

The simplest experimental design for LD analysis in-
volves random ascertainment of a large sample of un-
related individuals with the disease (cases) and without
the disease (controls). In the absence of LD, one expects
the distribution of genotype frequencies to be identical
in cases and controls, assuming the samples were ascer-
tained in an unbiased manner from the same genetic
population. In “model-free” analysis of LD, one wants
to know whether , independent of Ph,P(G FPh) = P(G )M M

which is the same abstract hypothesis tested in “model-
free” linkage analysis. However, since the sample con-
sists solely of unrelated individuals, there is no way to
look at segregation of alleles in pedigrees, and the cor-
relations which might exist between marker-locus gen-
otypes and disease phenotypes are a function of LD
rather than linkage. Note that we use the term “LD” to
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refer to any gametic phase disequilibrium that may exist
between alleles of disease and marker loci, irrespective
of cause.

In traditional case-control analysis, one tests for cor-
relations by comparing the genotype-frequency distri-
bution in cases and controls; that is, testing whether

. For simplicity, let us restrictP(G Fcase) = P(G Fcontrol)M M

ourselves to consideration of a single-marker locus
(though this can be directly generalized to the multi-
point case), with parameters as follows: r =ij

, , and RijP(genotype ijFcase) s = P(genotype ijFcontrol)ij

and Sij represent the number of cases and controls, re-
spectively, with genotype ij. A likelihood-ratio test of LD
between alleles of the disease locus and a marker locus
with n alleles could be formulated as

R Sij ijmaxPP r sij ij
i j≥ir ,sij ij 22 ln ∼ x . (1)[0.5n(n11)21]R 1Sij ijmaxPP rij
i j≥irij

It should be noted that this test is analogous to a tra-
ditional contingency-table x2 test (with continuity cor-
rection) of LD, comparing genotype frequencies in cases
and controls. To reduce the number of df in the analysis,
one often assumes the existence of Hardy-Weinberg
equilibrium (HWE) in both case and control samples. If
we define the allele frequencies of allele i in cases and
controls as gi and hi, respectively, then the assumption
of HWE implies that when , and .2r = 2g g i ( j r = gij i j ii i

Adding this structure to the probability model leads to
a likelihood-ratio test statistic that reduces the number
of df in the analysis by n(n 2 1)/2

2R 2S R Sii ii ij ij( ) ( )maxP g h P 2g g 2h hi i i j i j
i j(ig ,hi i2 ln 2(R 1S ) R 1Sii ii ij ij( )maxP g P 2g gi i j

i j(igi

2R 1R 2S 1Sii ij ii ijmaxP g hi i
ig ,hi i 2= ∼ x (2)(n21)2(R 1S )1(R 1S )ii ii ij ijmaxP gi
igi

This test is analogous to the conventional contingency-
table x2 test (with continuity correction) (Wilks 1935)
comparing allele frequencies in cases and controls. It
should be noted that the assumption of HWE is rea-
sonable under the null hypothesis, making the test valid,
but that this is not formally possible under the alter-
native hypothesis, since, in the presence of LD, HWE
cannot hold in both cases and controls individually if it
holds in the population as a whole (see Terwilliger and
Göring in press), though this model serves as a reason-
able first-order approximation. One could allow for a
more realistic parameterization by allowing the inbreed-
ing coefficient, Fis, to admit nonzero values, which may

differ between cases and controls, as described elsewhere
[i.e. if ; ] (see2r = (1 2 F )2g g i ( j r = (1 2 F )g 1 g Fij is i j ii is i i is

Hartl and Clark 1997; Agarwala et al. 1999; Hovatta
et al. 1999; Göring and Terwilliger 2000c).

A test equivalent to (2) can be derived using our pseu-
domarker strategy. Inference in case-control analysis is
based on the allele frequencies of the marker locus con-
ditional on the phenotype. If one were to assign pseu-
domarker genotype D/D to all cases and pseudomarker
genotype 1/1 to the controls, by analogy to discordant
sib-pair analysis, as described above, the likelihood
could be written as a function of the haplotype fre-
quencies and . AP(Di) = P(iFD)P(D) P(1i) = P(iF1)P(1)
likelihood-ratio test comparing the allele frequency dis-
tributions in cases and controls, using this pseudomarker
strategy, could be written as follows (after canceling out
the P(D) and P(1) terms from both numerator and
denominator)

2R 1R 2S 1Sii ij ii ijmax PP(iFD) P(iF1)
iP(iF1),P(iFD) 22 ln ∼ x .(n21)2(R 1S )1(R 1S )ii ii ij ijmaxPP(i)

iP(i)

This test is stochastically equivalent to (2), replacing pa-
rameters gi by , etc., which have the same param-P(iFD)
eter space. Therefore, the pseudomarker LD test and the
conventional “model-free” contingency-table x2 test are
shown to behave identically. Note that one could allow
for nonzero values for Fis, the inbreeding coefficient, in
pseudomarker analysis, as above. For purposes of gen-
erality, the pseudomarker likelihood-ratio test of LD will
be written as , whereW = 2 ln {[max L(d )] /L(d = 0)}d D DD

is used as a shorthand notation for the LD betweendD

the alleles of the disease and marker loci, as in Göring
and Terwilliger (2000c). This notation is not intended
to imply any specific parametric model of LD, though
one can impose restrictions, as desired, to further min-
imize the number of df in the analysis.

If one wanted to do such a pseudomarker analysis of
LD using the ILINK program (Lathrop et al. 1984), one
would have to create artificial “pedigrees” from the sin-
gleton cases and control individuals. A simple way to
do this in practice is to create pedigrees in which a pair
of genotyped cases and/or controls are the parents of a
hypothetical child with unknown genotypes at both loci
(e.g., Annunen et al. 1999; Kainulainen et al. 1999). In
this way, both cases and controls would be assumed to
be unrelated pedigree founders by the software, and the
likelihoods would be proportional to those described
above. Analogous likelihood-ratio test statistics can be
computed in a “model-based” manner, as implemented
in the EH program (see Terwilliger and Ott 1994, section
24.2), or by creation of these artificial “pedigrees” from
a case-control sample and estimation of haplotype fre-
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quencies conditional on the disease-allele frequency and
mode of inheritance with ILINK, with the conditional
haplotype frequency model recently implemented as of
version 4.1P of the FASTLINK software package (Cot-
tingham et al. 1993).

LD Analysis on Triads (HHRR Tests) and Sibships

It is often advisable to ascertain the parents of an
affected individual as well, especially when multiple
marker loci are being analyzed jointly, as this can allow
more accurate prediction of the phase of the marker-
locus alleles (see Hodge et al. 1999). Rubinstein et al.
(1981) proposed such an ascertainment scheme, on the
basis of sampling affected individuals grouped with their
parents in “triads” to circumvent other problems arising
from population stratification, suggesting that the alleles
“not transmitted” by the parents to the affected off-
spring could serve as a control sample. Assuming HWE,
Ott (1989) demonstrated that the nontransmitted pa-
rental alleles are an unbiased sample of alleles from the
population, such that the probability model described
above for case-control samples can be applied directly
to the transmitted and nontransmitted genotypes in such
triads as well. As above, Rij would be the number of
affected individuals with genotype ij, while Sij would
now represent the number of triads with nontransmitted
parental alleles i and j (i.e., one parent with allele i not
transmitted to the affected child and one with j not trans-
mitted). In the original formulation of the haplotype
relative risk, inference was based on a comparison of
such “genotype” frequencies (GHRR), analogous to (1)
above (Falk and Rubinstein 1987). Terwilliger and Ott
(1992) proposed a reduction of the number of df in the
underlying probability model (HHRR) by assuming that
HWE holds in both samples of transmitted and non-
transmitted genotypes alike, leading to statistical tests
of the form of (2) above. They demonstrated that this
is more powerful in a wide variety of situations, as ex-
pected, because of the reduction in the number of df.

Terwilliger and Ott (1992) also considered tests on
this data structure which were restricted to parents who
are heterozygous at the marker locus, to test whether
they transmitted allele i or j to their affected offspring
with equal probability; that is, whether

P(i transmitted to affected childFparent ij)

= P(j transmitted to affected childFparent ij) . (3)

They proposed testing this hypothesis using a McNemar
(1947) paired sampling test, and demonstrated that this
approach, as a test of LD, was less powerful than the
HHRR test. Even though the assumption of HWE was
necessary to demonstrate the independence of the trans-
mitted and nontransmitted allele-frequency distribu-

tions, the McNemar test does not make this assumption,
leading to slightly reduced power when HWE applies.
When HWE does not hold, the HHRR test tends to be
conservative, and only when the deviation from HWE
is unrealistically large can the McNemar test exceed the
HHRR in power.

In the ascertained triads, the affected individuals have
the same disease- and marker-locus allele-frequency dis-
tribution as the affected individuals in case-control anal-
ysis, since parental phenotypes are not part of the as-
certainment scheme. In pseudomarker analysis, it is
therefore logically consistent to assign pseudomarker ge-
notype D/D to the affected offspring in triads, as we did
to the affected singletons in case-control pseudomarker
analysis. Since one wishes to contrast the transmitted
and nontransmitted alleles of the parents, the parents
should be assigned pseudomarker genotype D/1. Under
the momentary assumption that between diseasev = 0
and marker loci, the likelihood of a triad with an affected
child with genotype ij and parents with nontransmitted
alleles k and l would be .L ∝ P(iFD)P(jFD)P(kF1)P(lF1)
Note that in case-control analysis, if one had an affected
individual with genotype ij and a control individual with
genotype kl, , which is analogous. The re-L ∝ g g h hi j k l

sulting test statistics, which are both of the form of (2),
would thus be stochastically equivalent.

If v is significantly larger than 0, there is unlikely to
be meaningful allelic association, period (see Terwilliger
and Weiss 1998). When one allows for LD, however,
the likelihood of a triad is a function of v as well, and,
when , the HHRR will not be able to detect anyv = 0.5
allelic association that may exist—caused, for example,
by population stratification (Chase 1977; Ott 1989). For
this reason, many investigators choose this ascertain-
ment scheme as a means of distinguishing LD caused by
linkage from correlations resulting from poor sampling,
or other phenomena which may lead to nonindepend-
ence of the allele frequencies of unlinked loci (see Hov-
atta et al. 1999). If one uses ILINK to maximize the
likelihood, assuming such pseudomarker genotypes, the
test statistic could be computed either by fixing v to 0,
or by computing the profile likelihood maximized over
v, which leads to an equivalent statistical test when only
independent triads are analyzed, and a more reasonable
one when larger pedigrees are included (see below). The
resulting test statistic for LD allowing for linkage would
be (noticeW = 2 ln {[max L(d ,v)] / max L(d = 0,v)}d ,v D v DD

that we used the same symbol above for the statistic
on case-control data,W = 2 ln {[max L(d )] /L(d = 0)}d D DD

because the likelihood of such data is not a function of
v, and both expressions are therefore equivalent for case-
control data). As in Göring and Terwilliger (2000c), in
the case of multipoint analysis, the symbol v can be
generalized to the map position of the disease-locus (xD)
relative to those of the marker loci (xi). To extend this
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pseudomarker analysis to nuclear pedigrees with mul-
tiple affected sibs, one would simply assign the latter
pseudomarker genotype D/D, keeping the parental gen-
otypes as D/1, in which case W can be computed on the
larger sibships as well.

This test statistic is expected to asymptotically have a
x2

(1) distribution under the null hypothesis of no LD
when the marker locus is diallelic. Note that, in HHRR
parlance, the two-sided nature of the test means that it
is not known which of the two marker-locus alleles is
associated with the D allele. When there are n alleles,
the distribution should asymptotically converge to

. This statistic, while equivalent to the HHRR in2x(n21)

the case of singleton affecteds, allows inclusion of mul-
tiple affected siblings in the analysis of LD, rather than
the usual approach of selecting one individual per family
for association analysis, thus enabling a more efficient
use of all the data. Of course, one could add further
structure to the haplotype frequency space to reduce the
number of df in the analysis of a multiallelic marker
locus, for example, by using the likelihood model of
Terwilliger (1995).

LD-Based Linkage Analysis in Larger Sibships (TDT)
and Joint Tests of Linkage and LD

Spielman et al. (1993) noticed, in the framework of
the McNemar paired sampling test proposed by Ter-
williger and Ott (1992) for analysis of triad data, that
the null-hypothesis condition in (3) is obtained either if
there is no LD or if there is no linkage. Tests of this null
hypothesis on triad data are therefore valid tests of either
linkage equilibrium or the absence of linkage. Spielman
et al. further noticed that equality of (3) also holds, in
the absence of linkage, when multiple affected individ-
uals in a larger family are included in the analysis as if
they were independent, leading them to propose doing
exactly that, which they called the transmission-dise-
quilibrium test, or TDT. In the case of independent tri-
ads, (3) is an equality when there is either no LD or no
linkage, but in larger pedigrees, (3) is an equality only
under the hypothesis of no linkage; that is, if there is
linkage but no LD, (3) is an inequality. To avoid con-
fusion, we will distinguish between the tests based on
the ascertainment conditions, such that whenever more
than one affected individual per family is included, we
will refer to the resulting statistical test as the TDT, and
when only triads are used, we will refer to it as a
McNemar test (to highlight that the latter is also a valid
test of the null hypothesis of absence of LD).

One can assign pseudomarker genotypes as for the
HHRR analysis above and compute profile likelihoods
over the haplotype frequencies while focusing the infer-
ence on v, as z = 2 ln {[max L(v,d )]/[max L(v =v,d D dD D

. This is analogous to the pseudomarker equiv-0.5,d )]}D

alent of affected sib-pair analysis, with LD as a nui-
sance parameter. On triad data with a diallelic marker
locus, z would be numerically identical to W =

, because there2 ln {[max L(d ,v)]/[max L(d = 0,v)]}d ,v D v DD

is only one df in such data. However, when the number
of marker-locus alleles increases, the properties of these
two statistics can become different. The same is true
when there are multiple affected individuals in the same
sibship, because they share alleles because of linkage,
while having similar genotypes to affected individuals in
other sibships because of LD.

The distribution of z can be a source of complication,
as it depends on numerous factors, including the size
and structure of the sample and the number of alleles
of the marker locus. In general, it is most logical to first
test for linkage independent of LD (L), following up a
significant finding subsequently with a test of LD allow-
ing for linkage (W). A joint test for both linkage and LD
would be of the form of

max L(v,d )v,d DDY = 2 ln
L(v = 0.5,d = 0)D

max L(v,d = 0) max L(d ,v)v D d ,vD DD= 2 ln 1 2 ln[ ] [ ]L(v = 0.5,d = 0) max L(d = 0,v)D v D

= L 1 W .

This can only be significant if at least one of the com-
ponent test statistics is significant individually. In gen-
eral, we suggest testing for linkage first. Of course, it is
difficult to interpret W if there is no prior evidence of
linkage (i.e., L is not significant), in which case the joint
test, Y, should be applied instead. One can also obtain
Y by reversing the order in which the hypotheses are
tested, as

max L(d ,v)d ,v DDY = 2 ln
L(d = 0,v = 0.5)D

max L(d ,v = 0.5)d DD= 2 ln [ ]L(d = 0,v = 0.5)D

max L(v,d )v,d DD12 ln ,[ ]max L(v = 0.5,d )d DD

where the latter term in the sum is z. If one has a sample
that contains a large number of singleton cases and con-
trols, one can obtain significant results in the first test
(which would be asymptotically distributed as ). If2x(n21)

that is the case, it makes sense to apply z to test for
linkage allowing for the observed LD with profile like-
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lihoods. In other situations, it can be dangerous to apply
the test z. If one has a large and heterogeneous data set,
including singleton case-control samples and families,
then, asymptotically, the joint statistic Y would be dis-
tributed as a 50-50 mixture of and . This as-2 2x x(n21) (n)

sumption is generally conservative. The distribution of
Y would be on singleton-only (or triad-only) data,2x(n21)

as there would be no linkage parameter in the likelihood
formulation under either null or alternative hypotheses.
If both triads and singletons exist, or if sibships are in-
cluded, then the mixture distribution would be required,
as the linkage parameter would exist in the data set.

Joint Analysis of Sibships, Triads, and Singletons

The three data structures most commonly ascertained
in the study of complex diseases of late age of on-
set—nuclear pedigrees, triads, and singleton individu-
als—can be combined in one likelihood analysis by use
of this pseudomarker algorithm (or, for that matter, con-
ventional “model-based” analysis methods—Göring and
Terwilliger 2000c; Terwilliger and Göring in press). By
analyzing all available data jointly, a more powerful and
efficient set of statistics can be computed, instead of the
conventional approach of analyzing each data structure
independently. For “model-based” analysis, this has ear-
lier been proposed (Terwilliger and Ott 1992; Terwilliger
and Ott 1994) and applied (Hellsten et al. 1993; Tienari
et al. 1994; Annunen et al. 1999), and with the imple-
mentation of conditional haplotype frequency estima-
tion in version 4.1P of FASTLINK (Cottingham et al.
1993) this technique is accessible to all. Using the pseu-
domarker approach, this can be done for “model-free”
analysis as well (Kainulainen et al. 1999).

One should note that joint analysis of linkage and LD
on pedigrees with untyped founders can be much more
than the sum of the parts, as can be seen elsewhere
(Hellsten et al. 1993; Tienari et al. 1994; Annunen et
al. 1999; Kainulainen et al. 1999). In the absence of LD,
the possible phases of marker- and disease-locus alleles
have equal prior probabilities. However, if there is LD,
the prior probabilities of the two phases are not equal,
leading to an increase in the effective number of “equiv-
alent meioses” (Edwards 1976). If the founders are not
genotyped, then the marker-locus genotype probabilities
for all untyped individuals must also be estimated, to-
gether with the phase. Assuming absence of LD, this
would be done independent of the disease. However, in
the presence of LD, there is information about the
marker-locus genotypes as well as the phase, which can
be inferred from the disease-locus genotypes. Thus, not
only the phase information is added, but also infor-
mation about the marker-locus genotypes themselves. As
a result, in the analysis of Hellsten et al. (1993), the
LOD scores jumped from 9.55 to 30.93 when LD was

allowed for in their parametric linkage analysis of a rare,
autosomal recessive disease, with no increase in df. (In
that analysis, however, haplotype frequencies were es-
timated from an independent data set.) In a joint pseu-
domarker analysis of sib-pairs without parents and in-
dependent case-control samples, multipoint LOD scores
increased from 2.9 to 5.1 when LD was allowed for as
a nuisance parameter (Kainulainen et al. 1999). (In that
analysis, there was significant evidence of LD indepen-
dent of linkage because of the large number of singleton
cases and controls included in the analysis.)

Pseudomarker Methods Allowing for Dominance and
Multigenerational Pedigrees

We have described a simple method of assigning pseu-
domarker genotypes on nuclear pedigrees and singleton
individuals, leading to likelihood-ratio tests that are
equivalent to many of the traditional, pairs-based,
“model-free” methods. Of course, there are multiple
ways one could assign such pseudomarker genotypes in
pedigrees. A common practice in “model-based” linkage
analysis is to analyze the data with both a “dominant”
and a “recessive” single-locus model. There is no reason
not to apply an analogous philosophy in pseudomarker
analysis. One could assign pseudomarker genotype D/1
to all the affected individuals, and D/1 to one parent
and 1/1 to the other. If the parents are not genotyped
(as was the case in the nuclear pedigrees of Kainulainen
et al. 1999), then it makes no difference which of the
two parents is assumed to be informative for linkage at
the pseudomarker locus. If they are both genotyped,
however, there are two possible ways to proceed. If ex-
actly one parent was affected with the disease, one could
assign pseudomarker genotype D/1 to the affected par-
ent and 1/1 to the healthy one. However, if both parents
have the same (or unknown) phenotype, then one should
allow for both possible ordered parental-genotype com-
binations, such that the likelihood of a given pedigree
would be L(?D/1,/1/1) 1 0.5L(?1/1,/D/1),L = 0.5
where L(?D/1,/1/1) refers to the likelihood of a pedigree
assuming the father is D/1 and the mother is 1/1.

The larger and more complicated a pedigree is, the
wider the variety of options that exist for pseudomarker
genotype assignment, which is consistent with the in-
creasing complexity of the possible correlations between
Ph and GM as the number of possible outcomes GM in-
creases. As pedigrees become larger and more compli-
cated, the sensitivity of any linkage and/or LD analysis
to the mode-of-inheritance assumptions of the disease
grows exponentially, such that it may be important—and
valuable—to try a wider variety of models on such ped-
igrees in both “model-based” and “model-free” analysis
alike. Although it may sound paradoxical to speak of
“models” in “model-free” analysis, the models are just
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Figure 3 “Dominant” pseudomarker genotype assignment on
an extended pedigree. A, Conventional representation of a large ex-
ample pedigree. B, Descent graph of the pedigree. Each edge represents
a meioses. C, Pseudomarker genotypes as assigned by the method
described in the text.

different ways to add structure to the probability space
in the presence of so many possible outcomes GM. This
is, in fact, exactly what people are doing when they
analyze their data with several different “model-free”
approaches, each of which makes slightly different sim-
plifying assumptions about the underlying correlations
between GM and Ph.

To demonstrate how “dominant” pseudomarker gen-
otypes could be assigned in general pedigrees (see Trem-
bath et al. 1997; Terwilliger 1998), let us convert the
conventional representation of a pedigree (e.g., figure
3A) into a graph (see Hartsfield and Ringel 1994) with
edges connecting parents to each of their children,
such that each edge represents a meiosis in the pedigree
(e.g., figure 3B). Let us denote a path connecting two
individuals in the direction “childrparentrgrand-
parentr)” as an “ascending” path and a path con-
necting two individuals in the opposite direction as a
“descending” path, such that two individuals would be
blood relatives if and only if they can be connected by
a single ascending path, a single descending path, or a
combination of one ascending path followed by one de-
scending path through the pedigree. In a pedigree with-
out loops, if all the affected individuals can be connected
to a common ancestor using ascending paths alone, the
affecteds and all individuals along these ascending paths
to their nearest common ancestor would be assigned
pseudomarker genotype D/1, irrespective of their phe-
notype, with their spouses being assigned pseudomarker
genotype 1/1. The only exception would be the nearest-
common-ancestor couple, who would be assigned pseu-
domarker genotypes as described above for “dominant”
pseudomarker analysis on nuclear pedigrees. With the
exception of lineal ascendants of the “nearest common
ancestor” couple, all other founders or married-in in-
dividuals would be assigned pseudomarker genotype 1/
1, and to preserve the “affecteds-only” nature of this
dominant pseudomarker analysis on large pedigrees, all
individuals who have thus far not been assigned a pseu-
domarker genotype would be left unknown. If there are
any affecteds who are not blood relatives of each other,
one could use additional pseudomarker alleles to distin-
guish the possible disease-allele lineages. For example,
the affecteds in one lineage might be assigned pseudo-
marker genotype D/1, while those in the other lineage
might be given pseudomarker genotype E/1, etc. If there
are individuals who would be D/1 in one lineage, and
E/1 in another, they could be assigned D/E pseudomar-
ker genotype. Their affected offspring (or offspring with
affected lineal descendents) would all be assigned either
the D/1 or the E/1 pseudomarker genotype, with equal
probability, and the genotypes of their lineal descendants
would be assigned as above, conditional on whether
their parents were D/1 or E/1. See figure 3C for an
application of this algorithm for “dominant” pseudo-

marker-genotype assignment on a multigenerational
pedigree. In pedigrees with loops, there are further com-
plications. A simple heuristic for dealing with consan-
guinity loops would be to assign 1/1 to all married-in
persons in the loop and to allow one “D” allele to enter
the loop at the top. The connecting individuals in the
loop would then be assigned unknown pseudomarker
genotype, unless they were themselves affected, in which
case they would have been assigned D/1 anyway. When
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Figure 4 Goodness of fit of affected sib-pair tests. The goodness
of fit of the empirical distributions of statistics L (pseudomarker-sta-
tistic testing for linkage), ASPAP (“all-pairs” affected sib-pair mean test
statistic) and ASPWP (“weighted-pairs” affected sib-pair mean test sta-
tistic) to their assumed theoretical distributions under the null hy-
pothesis of no linkage (50-50 mixture of point mass at 0 and for2x(1)

L and N(0,1) for ASPAP and ASPWP) is shown. For each pairs-based
method, the statistics obtained on all replicates were grouped into two
categories, and the distribution of the statistics falling in either category
is shown separately, with plus signs (1) denoting to those replicates
in which 150% of the marker-locus alleles were found to be shared
IBD (i.e., ), and minus signs (2) denoting those with !50% IBDf̂ 1 0.5
sharing (i.e., ). In this graphical representation of goodness off̂ ! 0.5
fit, if the obtained curve for a statistic is found to follow the line

, the empirical distribution of the statistic fits its assumed theo-x = y
retical distribution. The upper left and lower right corners indicate
that the empirical distribution is conservative and anticonservative
relative to theoretical predictions, respectively. A, Simulation results
of 1,000,000 replicates of 30 sibships of size 2 and one sibship of size
8. L and ASPWP fit their assumed theoretical distributions, whereas
ASPAP does not. B, Simulation results of 1,000,000 replicates of 5
sibships of size 10. L fits its assumed theoretical distributions, whereas
ASPWP and ASPAP do not.

comparing a single pair of affected relatives, like first
cousins, “dominant” pseudomarker assignment as de-
scribed leads to a statistical test that has the same prop-
erties as a conventional “model-free” affected relative-
pair analysis, on the basis of extension of the
mathematical reasoning presented above for affected sib-
pair analysis (Terwilliger and Göring, in press).

Empirical Comparison of Pseudomarker and
Traditional “Model-Free” Statistics

To investigate the statistical properties of the pseudo-
marker likelihood-ratio test for linkage, L, in compar-
ison to pairs-based sib-pair tests, the computer program
SIMSIBS was written. As expected, when only sibships
of size two were simulated, the two traditional ASP mean
tests (the “all-pairs” statistic, ASPAP, and the “weighted-
pairs” statistic, ASPWP) and the pseudomarker test L fit
the theoretical distributions under the null hypothesis of
absence of linkage of marker and disease loci (data not
shown), consistent with the result of Knapp et al. (1994).
However, when larger sibships, with more than two af-
fected sibs, were included in the data set, the pairs-based
tests were characterized by an excess of false positives.
A pictorial representation of the goodness-of-fit is pre-
sented for two pathological examples in figure 4. To
emphasize the tails of the distribution, the X axis rep-
resents 2log10 of the P value of the statistic from the
assumed distribution, and the Y axis represents 2log10

of the empirical P value based on simulation of one
million replicates. If the assumed distribution of a sta-
tistic were correct, then the resulting graph for the sta-
tistic would lie approximately on the line (see Rischx = y
et al. 1999 for similar graphical representations of good-
ness of fit). If the curve tends to the upper left of this
line, the assumed distribution would be conservative; to
the lower right, it would be anticonservative. Since in-
vestigators are often tempted to use the proportion of
marker loci with “significant” evidence of !50% of al-
leles being shared IBD by affected sib-pairs (i.e., f̂ !

) as an empirical P value for interpretation of equally0.5
large values of the statistic observed for marker loci
showing excess IBD sharing (i.e., ) in their dataf̂ 1 0.5
set, the distribution of each pairs-based statistics was
graphed separately for the “two tails.” In figure 4, a
minus sign (2) denotes and a plus sign (1) de-f̂ ! 0.5
notes , with the empirical P values being basedf̂ 1 0.5
on the total number of replicates and the theoretical P
values coming from the N(0,1) distribution, which is
appropriate when all sib-pairs are independent.

Figure 4A shows the results of a simulation of a data
set consisting of 30 sibships of size 2 and one sibship
of size 8, in the absence of linkage between marker and
disease loci. In this case, one can clearly see that the
“all-pairs” statistic, ASPAP, is highly skewed, while the



1322 Am. J. Hum. Genet. 66:1310–1327, 2000

Figure 5 Goodness of fit of various linkage and LD statistics.
Each replicate consists of 50 affected sib-pairs with parents typed, 50
affected sib-pairs with parent untyped, 25 triads, 25 cases, and 25
controls. A, Goodness of fit of the statistics HHRR, HHRR1C, TDT,
z (pseudomarker statistic testing for linkage given LD), W (pseudo-
marker statistic testing for LD given linkage), and Y (pseudomarker
statistic testing for linkage and/or LD) in the absence of linkage and
LD between the disease locus and a diallelic marker locus with equal
allele frequencies (250 replicates). The individual curves are unlabeled,
since they are essentially indistinguishable. All statistics can be seen
to fit their assumed theoretical distributions (50-50 mixture of 2x(1)

and for Y and for all others). B, Goodness of fit of statistics2 2x x(2) (1)

HHRR, TDT, and W (pseudomarker statistic testing for LD given link-
age) to their assumed theoretical null hypothesis distributions, when
there is linkage ( ) but absence of LD between the disease locusv = .01
and a diallelic-marker locus with equal allele frequencies (10,000 rep-
licates). Note the anticonservative nature of the TDT in the presence
of linkage, which indicates that the TDT, when applied to multiple
related individuals, is not a valid test of LD, but only of linkage.

“weighted-pairs” statistic, ASPWP, and the pseudomar-
ker statistic, L, fit their theoretical expectations well.
Note that the ASPAP(1) curve is strongly skewed to-
wards the lower right, meaning that the N(0,1) as-
sumption is anticonservative (high risk of false positives)
for detecting linkage between a disease locus and a
marker locus at which the sib-pairs share 150% of their
alleles IBD, which is the hypothesis of interest in linkage
mapping. In contrast, the ASPAP(–) curve lies in the up-
per left, indicating that the N(0,1) assumption is con-
servative when !50% of alleles are observed to be
shared IBD at a marker locus. This is irrelevant, how-
ever, since less IBD sharing than expected under the null
hypothesis has no biological interpretation, though it
can also be characteristic of marker-locus genotyping
errors as well (Göring and Terwilliger 2000b). However,
the fact that the empirical distributions of the “pairs-
based” statistics are not identical when andf̂ ! 0.5

clearly demonstrates that the practice of inter-f̂ 1 0.5
preting results in which marker loci show an excess of
IBD sharing, by comparison to those with reduced IBD
sharing, is fallacious when larger sibships are present
in a data set, leading potentially to gross overstatement
of the significance of positive findings. The distribution
of L fits the assumed distribution, for reasons outlined
by Nordheim (1984) and Tai and Chen (1989). In figure
4B, results are presented for a data set consisting of five
sibships of size 10. In this situation, the weighting func-
tion has no effect on the skewness of the pairs-based
distribution, which is generally the case when there are
multiple large sibships in a sample (data not shown). L

maintains a good fit to the assumed distribution over
all mixtures of sibship sizes and thus is more reliable
for making inference on the extremely small P values
needed in a linkage study. In addition, the pseudomarker
approach (as implemented in the computer program
SIBPAIR) was shown to be consistently one of the more
powerful approaches to sib-pair analysis over a wide
variety of different genetic models for disease etiology
(Davis and Weeks 1997).

In order to verify that the various other linkage and
LD statistics discussed above have empirical null-hy-
pothesis distributions in agreement with the theoretical
predictions, a sample of 50 affected sib-pairs with gen-
otyped parents, 50 affected sib-pairs without genotyped
parents, 25 triads, 25 cases, and 25 controls was sim-
ulated. Absence of both linkage and LD between the
disease locus and a diallelic marker locus with equal
allele frequencies of 0.5 was simulated. The various sta-
tistics were computed for each of 250 replicates. In fig-
ure 5A, the X axis corresponds to the theoretical cu-
mulative distribution function (CDF), and the Y axis
corresponds to the simulated empirical CDF for each
statistic, which is different from figure 4 (because of the
computational complexity of some of the statistics, it
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Figure 6 Power comparison among three linkage tests and
among three tests designed to test for LD in the presence of linkage.
250 replicates of the same data set as in figure 5 were simulated. A,
Power of statistics TDT, L, and z, in the situation of tight linkage
( ) and strong LD of the alleles of the disease locus and a diallelic-v = 0
marker locus ( , ), but a “weak mode of in-P(1FD) = 0.9 P(1F1) = 0.1
heritance” of the disease locus ( ). While L effectively has nof = 0.58D

power, the TDT performs well as expected, since this is the archetypal
situation for which the TDT was designed. However, z, the pseudo-
marker statistic testing for linkage and treating haplotype frequencies
as a nuisance parameter, is far more powerful than the TDT. B, Power
of statistics HHRR, HHRR1C, and W, in the case of ,v = 0

, , and . Notice that W, the pseu-P(1FD) = 0.6 P(1F1) = 0.3 f = 0.745D

domarker statistic testing for LD and treating v as a nuisance param-
eter, has by far the greatest power.

was prohibitive to perform the large number of repli-
cates needed to accentuate the tail of the distribution,
as before). Note that now the lower right side of the
line indicates that the assumed distribution is con-x = y
servative, and the upper left side indicates that the as-
sumed distribution is anticonservative. The empirical
distributions of all statistics were found to match the
theoretical distributions quite well. The curves in figure
5A, for statistics HHRR (using triads and one random
affected individual per sibship where both parents are
genotyped), HHRR1C (same as HHRR, plus one ran-
dom affected individual per sibship when one or both
parents have not been genotyped—including affected
singletons—without matching controls), TDT (using
sibships and triads), z, W, and Y are not labeled, since
they are essentially indistinguishable. All statistics fit
their assumed distribution (50-50 mixture of x2

(1) and
x2

(2) for Y and x2
(1) for all others).

To look at the properties of statistics HHRR, TDT,
and W (pseudomarker statistic testing for LD, given link-
age) when there is only linkage but no LD, another
simulation (10,000 replicates) was done on the same
set of data structures ( between the disease locusv = 0.01
and a diallelic marker locus with equal allele frequencies
independent of disease; that is, .P(iFD) = P(iF1) = 0.5)
The results are shown in figure 5B, with the same
2log10(P value) scale as in figure 4 to emphasize the
properties of the upper tail of the distribution. The
HHRR and W statistics behaved as predicted under their
null hypothesis of no LD. The TDT, however, is clearly
anticonservative in the presence of linkage, even when
the absence of LD is assumed. This was expected, since
application of the TDT to multiple affected sibs per
sibship as if they were independent (sib-pairs were part
of the simulated data set) is a valid approach only to
reject the hypothesis that , which was not the casev = .5
simulated here. As predicted, when applied to sibships,
linkage can cause the TDT statistic to deviate from its
expected null-hypothesis distribution (i.e., to have
power to detect linkage) even in the absence of LD! A
significant TDT, therefore, does not imply that there is
LD, unless only singleton affecteds are included in the
analysis.

To compare the power of the linkage tests TDT, L,
and z in the presence of both linkage and LD, we sim-
ulated, on the same data set as above, a situation in
which a “linkage-only” test such as L is known to have
low power: tight linkage ( ), very strong LD be-v = 0
tween the disease locus and the diallelic-marker locus
( , ), but a “weak mode of in-P(1FD) = 0.9 P(1F1) = 0.1
heritance”—P(2 affected sibs inherit a parental disease-
locus allele IBD) = . The CDFs of the threef = 0.58D

statistics, based on 250 replicates, are shown in figure
6a. Note that the pseudomarker “linkage-only” test, L,
has essentially no power, while the TDT performed well.

However, the pseudomarker linkage test with LD as a
nuisance parameter, z, is more powerful than the TDT
and dramatically more powerful than L, as seen in the
analysis of Kainulainen et al. (1998).

To look at the relative power of the LD statistics
HHRR, HHRR1C and W, a similar simulation study
was done on the same data set, for the situation where

, and . Thev = 0 P(1FD) = 0.6,P(1F1) = 0.3 f = 0.745D

empirical CDFs from 250 replicates are shown in figure
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Table 2

Properties of Four Pseudomarker Test Statistics
under Different Simulation Settings

P VALUE

TEST STATISTIC

L z Y W

v = .5; P(1F1) = P(1FD) = .5

.05 .039 .043 .042 .049

.01 .009 .010 .006 .012

.001 .000 .001 .000 .002

v = .05; P(1F1) = P(1FD) = .5

.05 1.000 1.000 1.000 .051

.01 1.000 1.000 1.000 .006

.001 1.000 1.000 1.000 .000

v = .5; P(1F1) = .7; P(1FD) = .3

.05 .035 .027 1.000 1.000

.01 .007 .005 1.000 1.000

.001 .001 .000 1.000 1.000

NOTE.—One thousand replicates were simu-
lated of a data set consisting of 50 affected sib-
pairs with parents typed, 50 affected sib-pairs
with parent untyped, 25 triads, 25 cases, and 25
controls. Two-point analysis with a diallelic-
marker locus was performed. As can be seen, all
tests are valid (or conservative) under their re-
spective null hypotheses and deviate from their
null-hypothesis distribution when it is violated.

6B. Note that, as expected, the pseudomarker likelihood
test for LD allowing for linkage, W, is always more
powerful than the HHRR. To allow for a fairer com-
parison in situations where parental-genotype infor-
mation is unavailable (in which case a family provides
no data that is used by the HHRR), the genotype of a
singleton case and of one affected offspring per family
was included in the “transmitted” alleles sample with-
out matching controls when parents were unavailable
for genotyping, and a contingency-table x2 test equiv-
alent to the HHRR test was applied. The power of this
“HHRR1C” test is intermediate between that of the
HHRR and W tests. Lastly, to verify that the properties
of the pseudomarker tests are as desired (i.e., that they
are both valid and sensitive) under several other con-
ditions, additional simulation studies were performed
on the same data set. The results for various parameter
combinations are given in table 2.

Discussion

It is not unheard of for reviewers of a complex disease-
mapping paper to demand that authors analyze their
data with “model-free” sib-pair analysis methods, since
they refuse to believe the results of a “model-based”
LOD score analysis because the model cannot accurately
reflect the true mode of inheritance of the disease. The
opposite likewise occurs, where some reviewers prefer
to see the results of “model-based” analyses, because of
their own philosophical preference. Recently, we had an
experience where a reviewer of a data-analysis paper
complained that our analysis results were not as signif-
icant as we had claimed because the “model-based”
method we used to analyze the data was too powerful,
since the model we assumed was inaccurate. Using a
“more correct” model would have led to lower LOD
scores, and therefore our findings were not to be be-
lieved, though the reviewer added that a “model-free”
analysis would be a more appropriate and acceptable
course of action. Although criticism based on validity
of a test resulting in significant findings is reasonable
and desirable, in this case the criticism was based on
power, not validity, and unknowingly contradicted itself,
effectively advocating the same analysis method it crit-
icized, as follows.

In practice, the “recessive” pseudomarker method de-
scribed above leads to assignment of pseudomarker gen-
otypes that are virtually identical to the disease-locus
genotypes that would be inferred in a “model-based”
analysis, with the following assumptions: P(D) =

(or other small positive number very close to0.000001
0); (or other very small pos-P(AffectedFDD) = 0.000001
itive number); , which is aP(AffectedFD 1 or 1 1) = 0
very unrealistic and inaccurate “affecteds-only” model
for one to assume for analyzing a common multifac-

torial disease (see Terwilliger and Ott 1994, chapter 25).
However, we have already demonstrated above that this
leads to likelihood-ratio tests that are mathematically
equivalent to the ASP mean test, the TDT, the HHRR,
and traditional case-control analysis. In these examples,
using a very inaccurate model for the genotype-phe-
notype relationship at the disease locus leads to test
statistics which are equivalent to the “model-free” tests
that are so often applied. Similarly, a quick approxi-
mation to the “dominant” pseudomarker algorithm
would be to assume the following: P(D) = 0.000001 (or
other very small positive number); P(AffectedFDD or D
1 ) = 0.000001 (or other very small positive number);

, which is a dominant model withP(AffectedF 1 1) = 0
no phenocopies. Note that neither of these “models”
reflect how we believe the disease to be inherited, but
nevertheless they lead to statistical tests with properties
that are very nearly the same as “model-free” analyses.
In practice, it is often easiest to use these simple heu-
ristics to perform “pseudomarker” analysis on real data,
especially now (as of version 4.1P of FASTLINK [Cot-
tingham et al. 1993]) that one can easily maximize the
likelihood over haplotype frequencies, conditionally on
a set of “model” assumptions. It is hoped that this re-
alization will bring to an end the days when manuscripts
can be rejected because they do not provide “model-
free” analysis, or “model-based” analysis of the specific
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type that a given reviewer prefers, instead encouraging
us to open our minds and appreciate that the emprical
differences are not very great between the different phi-
losophies in practical, real-world terms.

In conclusion, we have described the philosophical
differences between “model-based” and “model-free”
analysis and have shown that the different philosophical
starting points can lead to equivalent statistical tests in
the end. When complex pedigree and phenotype struc-
tures have been ascertained, truly “model-free” analysis
is shown to be impossible, because of the large number
of df in the data space. To this end, the space must be
structured by some simplifying probability model,
which can be based on one’s belief about the inheritance
of the phenotype (“model-based”) or by some ad hoc
approach which is not based on one’s belief about the
true genotype-phenotype relationship (“model-free”).
Of course, these ad hoc structures often are symmetrical
to those which would be imposed by certain models of
the genotype-phenotype relationship, because the Men-
delian rules of inheritance constitute a very rigid frame-
work for possible inheritance patterns. We have ex-
ploited the resulting symmetries to develop a general
series of inferential tools on the basis of likelihood-ratio
tests for linkage and/or LD, which can be applied to
any combination of data structures, in a “model-based”
or “model-free” manner alike, and which are shown to
be more powerful and better-behaved than the conven-
tional “triad-based” and “pairs-based” methods of
“model-free” analysis so commonly used in gene map-
ping of complex traits.

Software

Shell software that uses ILINK to perform the analyses
described in this manuscript is available from the authors
for VMS systems, written in DEC Pascal. It is anticipated
that a Unix version will be released in the near future.
For more information, please contact the authors via e-
mail (at jdt3@columbia.edu or hgoring@darwin.sfbr
.org).
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